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Abstract

Fractional differential equations are the best way to model many real-world
physical phenomena. Apart from modelling, solution strategies and their
implications are essential for determining critical points where a significant
divergence or bifurcation begins. Therefore, high-precision solutions are
always required. There are many different definitions of fractional deriva-
tives in literature, one simple way to cope with this variation is to com-
bine those concepts by considering fractional derivatives of a function with
respect to another function ψ. Fractional differential equations with ψ-
Caputo derivative provide more flexible models, in the sense that by a
proper choice of function ψ, hidden features of the real-world phenomena
could be extracted. The main objective of this study is to develop reliable
and proficient numerical methods for solving linear and nonlinear Fractional
Differential Equations(FDEs) involving ψ-Caputo fractional derivative. In
this work, wavelets are the primary part for developing numerical schemes.
We derived an operational matrix, called the ψ-Haar wavelet operational
matrix, to find a numerical approximation of ψ- FDEs.
We extended the method to nonlinear ψ-FDEs by using ψ-Haar wavelet
operational matrix method and quasilinearization technique. The quasilin-
earization techniques convert the fractional nonlinear differential equation
to fractional discretized differential equation. ψ-Haar wavelet method is
applied at each iteration of quasilinearization technique to get the approxi-
mate solution. The method is simple and good mathematical tool for find-
ing solution of nonlinear ψ-FDEs. The operational matrix approach offers
less computational complexity. The error analysis of the proposed method
is discussed in-depth. Accuracy and efficiency of the method are verified
through numerical examples.
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Chapter 1

Introduction

Fractional calculus is as old as the classical calculus, and goes back to time
when G. W. Leibniz and Newton invented differential calculus. In the 17th

century, G. W. Leibniz (1646−1716) presented nth order derivative symbol dn

dxn

for the first time. L’Hospital asked Leibniz how this operator works if num-
ber n is 1/2. S. F. Lacroix was motivated by this question and formulated
the formula for the arbitrary order derivative by use of Gamma function
in his famous book published in 1819 [2]. The formula by Lacroix for α

order derivative for xm is Γ(m+1)
Γ(m−α+1)

xm−α. In [3], Joseph Liouville (1809− 1882)
extended integer order derivative to fractional order α. This definition is
considered to be the first formula for fractional derivative but that formula
only applicable to the functions of the form f(x) =

∑∞
n=0 cne

anx. Liouville
formulated another formula to extend his first definition for fractional or-
der derivative as Dαx−m = (−1)α Γ(α+m)

Γ(m)
x−α−m for m > 0. This definition only

applicable to rational functions. Most scientist prefer Liouville’s defini-
tion, however, Peacock supports the definition given by Lacroix. To avoid
this conflict J. Fourier obtained the integral representation of function and
its derivatives. Greer formulated fractional derivative for hyperbolic and
trigonometric functions using first definition of Liouville. Various Mathe-
matician including Hardy and Littlewood, Davis, Pitcher and Sewell, Deb-
nath and Grum published a lot of research on fractional integral and deriva-
tive in 20th century [4, 5]. Several books have been written on the philosophy
and development of fractional calculus [6, 7, 8, 9].

In field of fractional calculus, Riemann-Liouville fractional derivative is
note-worthy although it has specific drawbacks when trying to model phys-
ical problems that has inappropriate physical conditions. Caputo made a
significant contribution by introducing the definition of fractional deriva-
tive that is suitable for modeling real world physical problems [10]. In
addition, many other families of fractional operators have been introduced
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until now. Due to many definitions of fractional operators, it was important
to establish the generalized fractional operators for which the classical ones
are particular cases. One of the extensions of Riemann-Liouville fractional
operators are the so-called fractional operators of a function by another
function (ψ-Riemann-Liouville fractional operators) which can be seen in
[9, 11, 12]. In [1, 13] Almeida defined the Caputo version of fractional
derivative of a function by another function, (ψ-Caputo fractional deriva-
tive) and studied its basic properties that plays a vital role in combining a
large class of fractional operators. As an application of Caputo derivative
of a function with respect to another function Almeida [1, 14] analyzed the
world population growth modeled as FDE and showed that the choice of
fractional derivative determines the accuracy of the model. Almeida et al.
in [15] investigated existence and uniqueness results of nonlinear fractional
differential equations involving a Caputo type derivative with respect to
another function by means of fixed point theorems and developed Picard
iteration method for solving the problem numerically. Almeida et al. in [16]
provided a numerical method to solve fractional oscillation equations involv-
ing ψ-Caputo fractional derivative by introducing the ψ-fractional integral
of ψ-shifted legendre polynomials. Almeida et al. has shown in [15] that the
mathematical models with ψ-Caputo fractional derivatives are more flexi-
ble and ψ-Caputo fractional derivative has the potential to extract hidden
aspects of real world phenomena.

A fractional differential equation (FDE) is a general form of ordinary dif-
ferential equation(ODE). FDE’s have many applications in different areas of
science and engineering such as heat transfer in heterogeneous media [17],
control theory, computational analysis [6, 9], fluid mechanics [18], dynam-
ics of viscoelastic materials [19], biosciences [20], electromagnetism [21],
continuum and statistical mechanics [22]. Most of the physical problems
modeled as FDEs have no exact solution. Nevertheless in literature, there
are some methods which are used for finding the exact solution of FDE’s,
like Transform methods, but these methods are limited to certain class of
linear FDE’s. Numerical approach is one of the best options to tackle dif-
ferent problems modeled as FDEs. Therefore, different numerical methods
used for the approximate solutions to classical differential equations are ex-
tended to solve FDE’s. Some of these methods include fractional difference
method [23], differential transform method [24], Adomian decomposition
method [25], and homotopy analysis method [26].

Wavelet methods are widely used in different numerical approxima-
tions being the most useful methods. Wavelets methods can be used for
the numerical solutions of integral equations and numerical integration
[27], ODEs [28], PDEs [29, 30] and FDEs [31]. For the detailed use and
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application of the wavelets and various type of wavelets see Daubechies
[32], Battle-Lemarie [33], B-spline [28], Chebyshev [34], Modified Cheby-
shev wavelets [35], a unified finite difference Chebyshev wavelet [36], Haar
wavelets [37, 38, 39, 40], a unified approach for time fractional partial dif-
ferential equations based on Haar wavelet, L1 discretization and Haar series
[41], Legendre wavelets [42], sine-cosine wavelets [43] and Hermite wavelets
[44].

Haar wavelet is also one of the best choices for solving FDEs and has been
vastly used by many researchers. The simplicity of this method is one of its
main advantages. Also it has better convergence in case of sharp transition
of a function. Motivated by the above cited work on ψ-fractional deriva-
tive, we develop ψ-Haar wavelets Operational matrix method to solve linear
and nonlinear fractional differential equations having ψ-Caputo fractional
derivatives. For the convergence of the proposed technique we established
an inequality in the context of error analysis. To check the efficiency of the
suggested method we test some examples. The results of these examples are
given in the graphical and tabular form. The thesis is organized as follows:
In the first sections of Chapter 2, we introduced some special functions that
were required for the development of our results. In the second section, the
quasilinearization technique is discussed which is used for linearizing the
nonlinear problems. In the third and fourth sections, some fundamental
concepts, and definitions from fractional calculus and ψ-fractional calculus
are provided. In section five, Haar wavelets and function approximation
by Haar wavelets are given. Also, we constructed an operational matrix,
called the ψ-Haar wavelet operational matrix. In the last section of chapter
2, the error analysis of the numerical scheme based on the ψ-Haar wavelets
operational matrix is discussed in-depth. In chapter 3, we established a
numerical scheme based on ψ-Haar wavelet operational matrices for solving
linear and nonlinear initial value ψ-fractional differential equations. The
quasilinearization technique is applied to convert the fractional nonlinear
differential equation to a fractional to discretized differential equation. ψ-
Haar wavelet method is applied at each iteration of the quasilinearization
technique to get the approximate solution. We give some numerical exam-
ples utilizing the ψ-Haar wavelet operational matrix method to approximate
the numerical solutions of linear and non-linear initial value fractional dif-
ferential equations. The wavelet-based method reduces the problem to a
system of algebraic equations. The numerical results obtained are compared
with exact solutions by tabulating their absolute error and by comparing
their respective graphs. It is worth mentioning that results obtained, agree
well with exact solutions even for small number of collocation points. More
accurate results are obtained by increasing the level of resolution J.
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ψ-Haar wavelet technique has been extended, in Chapter 4, for linear
and nonlinear fractional boundary value problems. Procedure of imple-
mentation of the method for general fractional differential equation has
been introduced. This approach relies on the ψ-Haar wavelet operational
integration matrices. The ψ-operational matrices are used to convert the
ψ-Fractional Differential Equations to an algebraic system of equations. To
handle the nonlinear case, we use quasilinearization technique to transform
nonlinear ψ-fractional differential equation into linearized form and then
ψ-Haar wavelets technique is applied in succession. The results obtained
by the numerical scheme based on the ψ-Haar wavelet operational matrix
method are compared with exact solutions. It has been observed that the
results are in good agreement with the exact solution. The proposed method
is a good and simple mathematical technique for numerically solving non-
linear ψ-fractional differential equations. The operational matrix method
is computationally more efficient. Several linear and non-linear boundary
value problems are discussed to demonstrate the applicability, efficiency,
and simplicity of the method. The method is convenient for solving linear
and nonlinear initial value problems as well as boundary value problems.
It has been observed that the method gives more accurate results while in-
creasing the level of resolution. In Chapter 5, a numerical method based on
the two-dimensional ψ-Haar wavelets is discussed for numerical solutions of
arbitrary order ψ-fractional partial differential equation. The method is ap-
plied to fractional initial and boundary value problems with constant coeffi-
cients and variable coefficients. We considered the time-fractional telegraph
equation, linear fractional diffusion equation, and convection-diffusion equa-
tion with ψ-Caputo fractional derivative as test problems. A comparison of
the approximate and exact solutions is carried out, results are given in the
graphical and tabular form. It is observed that the solution becomes more
accurate by increasing the level of resolution of the method. Operational
matrices approach has been applied for the first time to solve ψ-fractional
partial differential equations.
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Chapter 2

Preliminaries

For the sake of convenience, we will review some necessary definitions and
special functions. These are preliminaries in terms of fractional calculus
which are going to aid in upcoming chapters.

2.1 Special Functions

In this part we review some basic special functions. These special functions
are going to help in the upcoming chapters.

2.1.1 Euler’s Gamma Function

Gamma function was introduced and defined by L. Euler in inspiration
to sum up the factorial to whole number esteem. We observe that some
well known scientific constants are happening in investigation of gamma
function. It additionally appear in different fields such as geometric series,
number theory and in definite integrals. The gamma function is defined in
terms of definite integral as

Γ(x) =

∫ ∞
0

ξx−1e−ξdξ, x > 0, (2.1)

where the variable x is a dummy variable. We define some basic properties
of Euler’s gamma function

Γ(1) = 1

Γ(x+ 1) = xΓ(x).
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An important relation between the gamma and beta function is defined as

β(x1, x2) =
Γ(x1)Γ(x2)

Γ(x1 + x2)
, x1, x2 > 0.

The beta function can be defined as

β(x1, x2) =

∫ 1

0

ξx1−1(1− ξ)x2−1dξ.

The beta function is utilized by Legendre, Whittaker and Watson in 1990 is
also called Eulerian integral of first kind.

2.1.2 Mittag-Leffler Function

The earliest appearance of the Mittag-Leffler function dates back to 1903
whenMagnus Gosta Mittag-Leffler [45] presented the classical Mittag-Leffler
function Eα(z) as a special function of the form

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, α ∈ C, such that Re(α) > 0. (2.2)

After two years, Wiman [46] introduced the two-parameter Mittag-Leffler
function Eα,β(z) as

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α ∈ C, such that Re(α) > 0. (2.3)

In 2007, Shukla and Prajapati [47] presented a four-parameter Mittag-Leffler
function Ep,q

α,β(z) defined as

Ep,q
α,β(z) =

∞∑
k=0

(p)qkz
k

Γ(αk + β)k!
, α, β, p ∈ C and q ∈ (0, 1) ∩ N, (2.4)

where Re(α) > 0, Re(β) > 0, Re(p) > 0 and (p)qk = Γ(p+ qk)/Γ(p).

Lemma 2.1.1. [10] For θ ∈ R, γ > 0 and β > 1, we have

xD
α
a (x− a)β−1Eγ,β[θ(x− a)γ] = (x− a)β−α−1Eγ,β−α[θ(x− a)γ], (2.5)

and for β = 1 and α = γ, we have

xD
α
aEα[θ(x− a)α] = θEα[θ(x− a)α]. (2.6)

6



2.2 Quasilinearization Technique

The technique named quasilinearization was presented by Kalaba and Bell-
man [48] as a generalization of a specific method (Newton-Raphson) [49]
which assist in solving the nonlinear ordinary and partial differential equa-
tions. We explain the Quasilinearization technique to solve nonlinear frac-
tional differential equations.

Consider the nonlinear fractional differential equation with boundary
conditions

xD
α
a y(x) = g(x, y(x)), 1 < α ≤ 2, x ∈ [0, 1], (2.7)

subject to the boundary conditions y(0) = µ and y(1) = ω. Suppose that
the initial approximation of y(x) is y0(x). Applying the Quasilinearization
technique about y0 to equation (2.7), we have

xD
α
a y(x) = g(x, y0(x)) + [y(x)− y0(x)]gy0(x, y0(x)), (2.8)

which is a linear equation, solving (2.8) for y(x) and assuming it y1(x) and
expanding (2.7) with respect to y1(x), we have

xD
α
a y(x) = g(x, u1(x)) + [y(x)− y1(x)]gy1(x, y1(x)). (2.9)

which is a third approximation. Assume that the iterative procedure con-
verges, we continue the process till obtaining the desired accuracy. There-
fore the recurrence relation can be written in the form

xD
α
a yr+1(x) = g(x, yr(x)) + [yr+1(x)− yr(x)]gyr(x, yr(x)), (2.10)

with the conditions
yr+1(0) = µ, yr+1(1) = ω,

which is a sequence of linear fractional differential equations and the func-
tion yr(x) is known function which can be used to find the yr+1(x) ∼= y(x).

2.3 Basic Definitions of Fractional Calculus

2.3.1 Riemann-Liouville Integral

Fractional integrals and derivatives are defined by the use of Cauchy’s in-
tegral formula

xIna f(x) =

∫ x

a

(x− ξ)n−1f(ξ)

(n− 1)!
dξ. (2.11)

where n ∈ N, f ∈ L1[a, b] and a, b ∈ R. By substituting gamma function for
factorial in (2.11) leads to the definition of fractional integral.
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Definition 2.3.1. [10] The Riemann-Liouville fractional integral of order α is defined
as, let α ∈ R+ and the operator xIαa defined on L1[a, b] by

(xIαa f)(x) =
1

Γ(α)

∫ x

a

(x− ξ)α−1f(ξ)dξ, (2.12)

is called Riemann-Liouville fractional integral operator or precisely R-L fractional in-
tegral operator.

For α = 0, we have xI0
af = f which is the identity operator, if α ∈ N, then

xIαa f coincides with the classical integral.

2.3.2 Riemann-Liouville Derivative

We discuss the concepts leading to definition of fractional differential opera-
tors. The fundamental theorem of integer order calculus gives xD

n
a xIna f = f ,

where n ∈ N denote the order of integral and differential operator. For
n1, n2 ∈ N we can also write xD

n1−n2
a xIn1−n2

a f = f . Therefore we can write as,

xD
n2
a f = xD

n1
a xIn1−n2

a f. (2.13)

If we replace n2 by any α > 0, relation (2.13) is valid for particular class of
functions unless n1−n2 > 0. This leads to the definition of Riemann-Liouville
fractional differential operator.

Definition 2.3.2. [10] For α ∈ R+ The Riemann-Liouville fractional derivative can
be defined as;

xD̂α
af(x) =

1

Γ(n− α)

( d
dx

)n ∫ x

a

(x− ξ)n−α−1f(ξ)dξ, (2.14)

where n− 1 < α ≤ n.

2.3.3 The Caputo fractional Differential Operator

The Rieman Liouville derivative assumed a noteworthy part in progres-
sion of hypothesis of fractional calculus. In theory of Riemann Liouville
fractional derivative, we have seen that their are certain impediments of
utilizing the Riemann Liouville differential operator for demonstrating this
present reality wonders. It is to be noted that the Riemann Liouville deriva-
tive of a constant is not zero. To deal with these circumstances, in 1967
Caputo presented another definition of fractional derivative. Here we talk
about the Caputo derivative, its properties and it’s connection with the
Riemann Liouville operators for integral and derivative [10].
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Definition 2.3.3. [10] Assume α ∈ R+U {0} and k = dαe, then
∗Dα

a f(t) = Ik−αa Dkf(t)

=

∫ t

a

(t− η)k−α−1Dkf(η)

Γ(k − α)
dη, a < t < b,

the operator ∗Dα
a is said to be α order Caputo differential operator.

Example 2.3.1. [10] Consider α, β ∈ R+ and f(x) = xβ. The Caputo fractional
derivative of f(x) is given as

xD
α
0 f(x) =

Γ(β + 1)

Γ(β − α + 1)
xβ−α, (2.15)

provided that the right hand side of (2.15) is defined.

2.4 Basics of ψ-Fractional Calculus

This section reviews several concepts, definitions, and basic results from ψ-
fractional calculus that are essential for subsequent advancements in thesis.

2.4.1 ψ-Fractional integral :

[50, 13] Let h : J → R be an integrable function, where J = [δ1, δ2] and
α ∈ R, n ∈ N and ψ(t) ∈ Cn(J) such that ψ′(t) > 0 ∀ t ∈ J. The ψ-Riemann-
Liouville fractional integral of order α > 0 is defined as

Iα,ψδ1
h(t) =

1

Γ(α)

∫ t

δ1

(
ψ(t)− ψ(s)

)α−1
ψ′(s)h(s)ds.

Property 1:

Iη,ψδ1 I
ζ,ψ
δ1
h(t) = Iη+ζ,ψ

δ1
h(t).

2.4.2 ψ-Fractional Derivative :

[6, 1, 50, 13]
For α > 0, n − 1 < α ≤ n, the ψ-Reimann-Liouville fractional derivative is
given as

Dα,ψ
δ1
h(t) =

(
1

ψ′(t)

d

dt

)n

In−α,ψδ1
h(t).

9



2.4.3 ψ-Caputo Fractional Derivative :[1]

For n− 1 < α ≤ n, ψ-Caputo fractional derivative of order α is defined as

CDα,ψ
δ1
h(t) = In−α,ψδ1

(
1

ψ′(t)

d

dt

)n

h(t)

or
CDα,ψ

δ1
h(t) = In−α,ψδ1

h
[n]
ψ (t), where h

[n]
ψ (t) =

(
1

ψ′(t)

d

dt

)n

h(t)

ψ-Caputo fractional derivative can also be defined as

CDα,ψ
δ1
h(t) = Dα,ψ

δ1

[
h(t)−

n−1∑
κ=0

h
[κ]
ψ (δ1)

κ!
(ψ(t)− ψ(δ1))κ

]
where n = dαe for α /∈ N and n = α for α ∈ N.

Property 2: [1, 13]

If h(t) =
(
ψ(t)− ψ(δ1)

)ζ where ζ > n and α > 0 then

cDα,ψ
δ1
h(t) =

Γ(ζ + 1)

Γ(ζ − α + 1)

(
ψ(t)− ψ(δ1)

)ζ−α
.

Property 3:[1, 13]
cDα,ψ

δ1
Iα,ψδ1

h(t) = h(t).

Proof By definition

cDα,ψ
δ1
Iα,ψδ1

h(t) = Dα,ψ
δ1

[
Iα,ψδ1

h(t)−
n−1∑
κ=0

[Iα,ψδ1
h(t)]

[κ]
ψ (δ1)

κ!
(ψ(t)− ψ(δ1))κ

]
. (2.16)
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Note that

[Iα,ψδ1
h]

[κ]
ψ (t) =

(
1

ψ′(t)

d

dt

)κ

Iα,ψδ1
h(t)

=

(
1

ψ′(t)

d

dt

)κ−1
1

ψ′(t)

d

dt

∫ t

δ1

(
ψ(t)− ψ(s)

)α−1

Γ(α)
ψ′(s)h(s)ds

=

(
1

ψ′(t)

d

dt

)κ−1
1

ψ′(t)

∫ t

δ1

(α− 1)
(
ψ(t)− ψ(s)

)α−2

Γ(α)
ψ′(t)ψ′(s)h(s)ds

=

(
1

ψ′(t)

d

dt

)κ−1 ∫ t

δ1

(
ψ(t)− ψ(s)

)α−2

Γ(α− 1)
ψ′(s)h(s)ds

=

(
1

ψ′(t)

d

dt

)κ−1

Iα−1,ψ
δ1

h(t)

[Iα,ψδ1
h]

[κ]
ψ (t) =

(
1

ψ′(t)

d

dt

)κ−1

Iα−1,ψ
δ1

h(t).

Repeating the process κ-times we are at

[Iα,ψδ1
h]

[κ]
ψ (t) = Iα−κ,ψδ1

h(t)
(2.17)

using equation (2.17) in equation (2.16), we have

cDα,ψ
δ1
Iα,ψδ1

h(t) = Dα,ψ
δ1

[
Iα,ψδ1

h(t)−
n−1∑
κ=0

Iα−κ,ψδ1
h(δ1)

κ!
(ψ(t)−ψ(δ1))κ

]
.

(2.18)
Now we show that Iα−κ,ψδ1

h(δ1) = 0, that is limt→a Iα−κ,ψδ1
h(t) = 0.

‖ Iα,ψδ1
h(t)‖ = ‖ 1

Γ(α)

∫ t

δ1

(
ψ(t)− ψ(s)

)α−1
ψ′(s)h(s)ds‖

≤ 1

Γ(α)

∫ t

δ1

‖
(
ψ(t)− ψ(s)

)α−1
ψ′(s)h(s)ds‖

≤ ‖h‖
Γ(α)

∫ t

δ1

(
ψ(t)− ψ(s)

)α−1
ψ′(s)h(s)ds

≤ ‖h‖
(
ψ(t)− ψ(δ1)

)α
Γ(α + 1)

.
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Hence Iα,ψδ1
h(t)→ 0 as t→ δ1. From equation (2.18), we have

cDα,ψ
δ1
Iα,ψδ1

h(t) = Dα,ψ
δ1
Iα,ψδ1

h(t)

=

(
1

ψ′(t)

d

dt

)n

In−α,ψδ1
Iα,ψδ1

h(t)

=

(
1

ψ′(t)

d

dt

)n

In−α+α,ψ
δ1

h(t)

=

(
1

ψ′(t)

d

dt

)n

In,ψδ1
h(t).

Consequently, cDα,ψ
δ1
Iα,ψδ1

h(t) = h(t). As we know that

1

ψ′(t)

d

dt
I1,ψ
δ1
h(t) =

1

ψ′(t)

d

dt

∫ t

δ1

(
ψ(t)− ψ(s)

)1−1
ψ′(s)h(s)ds

=
1

ψ′(t)
ψ
′
(t)h(t), (Leibniz rule)

= h(t),

by repeating above process n-times we have( 1

ψ′(t)

d

dt

)n
In,ψδ1

h(t) = h(t).

Lemma 2.4.1.

In,ψδ1
h

[n]
ψ (t) = h(t)−

n−1∑
κ=0

h
[n]
ψ (δ1)

κ!

(
ψ(t)− ψ(δ1)

)κ
.

Proof. For n = 1,

I1,ψ
δ1
h

[1]
ψ (t) =

∫ t

δ1

(
ψ(t)− ψ(s)

)1−1

Γ(1)
ψ′(s)

1

ψ′(s)

d

ds
h(s)ds

=

∫ t

δ1

d

ds
h(s)ds

= h(t)− h(δ1).

(2.19)
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For n = 2,

I2,ψ
δ1
h

[2]
ψ (t) = I1,ψ

δ1
I1,ψ
δ1

[
h

[1]
ψ

]1
ψ
(t)

= I1,ψ
δ1

[
h

[1]
ψ − h

[1]
ψ

]
by (2.19)

= I1,ψ
δ1
h

[1]
ψ (t)− I1,ψ

δ1
h

[1]
ψ (δ1)

= h(t)− h(δ1)− h[1]
ψ (δ1)

∫ t

δ1

(ψ(t)− ψ(δ1))1−1ψ′(s)ds

= h(t)− h(δ1)− h[1]
ψ (δ1)(ψ(t)− ψ(δ1)).

(2.20)

By repeating above process n-times, we get

In,ψδ1
h

[n]
ψ (t) = h(t)−

n−1∑
κ=0

h
[κ]
ψ (δ1)

κ!

(
ψ(t)− ψ(δ1)

)κ
.

The proof of lemma 2.4.1 is completed.

Lemma 2.4.2.

Iα,ψδ1
CDα,ψ

δ1
h(t) = h(t)−

n−1∑
κ=0

h
[κ]
ψ (δ1)

κ!
(ψ(t)− ψ(δ1))κ.

Proof. Since
CDα,ψ

δ1
h(t) = In−α,ψδ1

h
[n]
ψ (t),

thus

Iα,ψδ1
CDα,ψ

δ1
h(t) = Iα,ψδ1

In−α,ψδ1
h

[n]
ψ (t)

= Iα+n−α,ψ
δ1

h
[n]
ψ (t)

= In,ψδ1
h

[n]
ψ (t)

Iα,ψδ1
CDα,ψ

δ1
h(t) = h(t)−

n−1∑
κ=0

h
[κ]
ψ (δ1)

κ!

(
ψ(t)− ψ(δ1)

)κ
.

2.5 Haar wavelets and function approximation

Haar wavelets were first introduced by the Hungarian Mathematician Al-
fred Haar in 1990. Haar wavelets are the simplest wavelets among vari-
ous wavelets families that has a compact support. Wavelets with compact
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support are proven to be a good tool for numerical approximation of the
functions. The Haar wavelets family consist of step functions defined on
real line, which means that they are not continuous and hence at the points
of discontinuity the derivatives do not exist. To overcome this drawback,
the higher order derivatives appearing in the differential equations are first
expanded into Haar series [38]. The lower order derivatives and the solu-
tions can then be obtained quite easily by using Haar operational matrix of
integration [51, 52, 53].
All functions in the Haar wavelet family defined on the interval [a, b] are
given by :

hi(x) =


1, if x ∈ [ξ1(i), ξ2(i));

−1, if x ∈ [ξ2(i), ξ3(i));

0, otherwise,
(2.21)

where ξ1(i) = a+(b−a) k
m
, ξ2(i) = a+(b−a)2k+1

2m
, ξ3(i) = a+(b−a)k+1

m
and m = 2j,

where j = 0, 1, 2, 3, ..., J and k = 0, 1, 2, 3, ...,m− 1. Here, the parameters j and
k represent dilation and translation of the wavelet, respectively, while J
represents the maximum level of resolution for Haar wavelet. The wavelet
number i and the parameters m and k have the relation i = m + k + 1.
Equation (2.21) is valid for i ≥ 3.
The scaling functions for the family of Haar wavelets corresponding to i = 1,
and i = 2 are given by:

h1(x) =

{
1, if x ∈ [a, b);

0, otherwise,
(2.22)

and

h2(x) =


1, if x ∈ [a, a+b

2
);

−1, if x ∈ [a+b
2
, b);

0, otherwise.
(2.23)

Any function y(x) defined over the interval (a, b) can be decomposed as:

y(x) =
∞∑
i=0

cihi(x), (2.24)

where ci = 〈y(x),hi(x)〉, here 〈.〉 stands for the inner product. In practice,
only the first m terms are considered, where m is a power of 2, that is

y(x) ∼= um(x) =
m−1∑
i=0

cihi(x)
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with matrix form as:
y(x) ∼= um(x) = CT

mHm(x), (2.25)

where

Cm = [c0, c1, c2, · · · , cm−1]T and Hm(x) = [h0(x), h1(x), h2(x), · · · , hm−1(x)]T .

2.5.1 ψ-Haar wavelets operational matrix

The ψ-Haar wavelet operational matrix of integration Pα,ψ of fractional or-
der α is constructed and utilized for numerical approximation of ψ-fractional
differential equations. We use equation (2.4.1) for the ψ- fractional integra-
tion of Haar wavelets. The generalized ψ-fractional integration of the Haar
wavelets, Hm = [h0, h1, h2, · · · , hm−1], is given by:

Pα,ψ
i (x) =

1

Γ(α)

∫ x

a

ψ
′
(t)
(
ψ(x)− ψ(t)

)α−1
hi(t)dt. (2.26)

These generalized ψ-fractional integrals can be approximated analytically
as

Pα,ψi (x) =



0, if x < ξ1(i);
1

Γ(α+1)

[
ψ(x)− ψ(ξ1(i))

]α
, if x ∈ [ξ1(i), ξ2(i));

1
Γ(α+1)

[(
ψ(x)− ψ(ξ1(i))

)α − 2
(
ψ(x)− ψ(ξ2(i))

)α]
, if x ∈ (ξ2(i), ξ3(i)];

1
Γ(α+1)

[(
ψ(x)− ψ(ξ1(i))

)α − 2
(
ψ(x)− ψ(ξ2(i))

)α
+(

ψ(x)− ψ(ξ3(i))
)α]

, if x > ξ3(i).

(2.27)

Equation (2.27) holds for i > 1, for i = 1 we have:

Pα,ψ(x) =
1

Γ(α + 1)

[
ψ(x)− ψ(a)

]α
. (2.28)

Here we compute the ψ-Haar wavelets operational matrix Pα,ψ for the func-
tion ψ(x) = x2 and α = 0.75. The numerical and exact integration of the
function ψ(x) = x3/15 for J = 5 and different values of α is plotted in Figure
2.1.

Pα,ψ =



0.4342 −0.2816 −0.0998 −0.1763 −0.0356 −0.0623 −0.0806 −0.0953
−0.0210 0.1735 −0.0998 0.2392 −0.0356 −0.0623 0.1297 0.1153
−0.0739 0.0653 0.0613 −0.0204 −0.0356 0.0833 −0.0173 −0.0058
0.0653 −0.0653 0 0.1167 0 0 −0.1051 0.1635
−0.0285 0.0022 0.0221 −0.00291 0.0211 −0.0066 −0.0019 −0.0010
−0.0094 0.0318 −0.0224 −0.00901 0 0.0435 −0.0088 −0.0020
0.0064 −0.0064 0 0.06786 0 0 0.0616 −0.0113
0.0280 −0.0280 0 −0.05604 0 0 0 0.0779


.
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Figure 2.1: Numerical and exact integral of function f(x) = ψ(x) = x3/15 for J = 5
and for different values of α.

2.6 Error analysis

Recently, Caputo type fractional differential equations are analyzed for er-
ror in [54]. Also, convergence for the solution of nonlinear Fredholm integral
equation using Haar wavelet is given in [55]. We derive the upper bound
for the error estimate using the ψ−Caputo fractional differential operator
in Theorem 2.6.1 and Theorem 2.6.2 which are given in [56], showing con-
vergence of the ψ-Haar wavelet method for fractional differential equations.

Theorem 2.6.1. Suppose that Dny is continuous on [a, b], assume also that there
exists M > 0 such that |Dn,ψy(x)| ≤M for all x ∈ [a, b], where a, b ∈ R+, Dn,ψy(x) =(

1
ψ′ (x)

d
dx

)n
y(x) and Dα,ψ

a ym(x) is the approximation of Dα,ψ
a y(x), then we have

∥∥∥Dα,ψ
a y(x)−Dα,ψ

a ym(x)
∥∥∥
E
≤

(b− a)M
(
ψ
′
(b)
)n−α

Γ(n− α + 1)

1

m(n−α)

1

[1− 22(α−n)]1/2
.

Proof. The function Dα,ψ
a y defined over the interval [a, b] can be approximated as:

Dα,ψ
a y(x) =

∞∑
i=a

cihi(x),

where

ci = 〈Dα,ψ
a y(x),hi(x)〉 =

∫ b

a

(
Dα,ψ
a y(x)

)
hi(x)dx. (2.29)
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Suppose that Dα,ψ
a ym is the following approximation of Dα,ψ

a y

Dα,ψ
a ym(x) =

m−1∑
i=0

cihi(x), (2.30)

where m = 2β+1, β = 1, 2, 3, · · · , then

Dα,ψ
a y(x)−Dα,ψ

a ym(x) =
∞∑
i=m

cihi(x) =
∞∑

i=2β+1

cihi(x), (2.31)

which implies that∥∥∥Dα,ψ
a y(x)−Dα,ψ

a ym(x)
∥∥∥2

E
=

∫ x

a

(
Dα,ψ
a y(x)−Dα,ψ

a ym(x)

)2

dx

=
∞∑

i=2β+1

∞∑
i′=2β+1

cici′

∫ x

a

hi(x)hi′ (x)dx.

By orthogonality of the sequence {hm(x)}, we have
∫ b
a
hm(x)hm(x)dx = Im, where Im

is the identity matrix of order m, therefore,∥∥∥Dα,ψ
a y(x)−Dα,ψ

a ym(x)
∥∥∥2

E
=

∞∑
i′=2β+1

c2
i . (2.32)

From equation (2.29) we have:

ci =

∫ b

a

(
Dα,ψ
a y(x)

)
hi(x)dx

= 2
j
2

{∫ a+(b−a)(k+ 1
2

)2−j

a+(b−a)k2−j
Dα,ψ
a y(x)dx−

∫ a+(b−a)(k+1)2−j

a+(b−a)(k+ 1
2

)2−j
Dα,ψ
a y(x)dx

}
.

(2.33)

Using mean value theorem of integrals: there exist x1, x2 ∈ (a, b) with

a+ (b− a)k2−j < x1 < a+ (b− a)
(
k +

1

2

)
2−j,

a+ (b− a)
(
k +

1

2

)
2−j < x2 < a+ (b− a)(k + 1)2−j,

such that

ci =2
j
2 (b− a)

{(
a+ (k +

1

2
)2−j − (a+ k2−j)

)
Dα,ψ
a y(x1)

−
(
a+ (k + 1)2−j − (a+ (k +

1

2
)2−j

)
Dα,ψ
a y(x2)

}

=2
j
2 (b− a)

{
2−j−1

(
Dα,ψ
a y(x1)−Dα,ψ

a y(x2)

)}
.

(2.34)
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Hence
c2
i = 2−j−2(b− a)2(Dα,ψ

a y(x1)−Dα,ψ
a y(x2))2. (2.35)

Using the definition of ψ-Caputo differential operator,the increasing property of ψ and
the condition |Dn,ψy(x)| ≤M , we have:

|Dα,ψ
a y(x1)−Dα,ψ

a y(x2)|= 1

Γ(n− α)

∣∣∣∣ ∫ x1

a

ψ
′
(x)

(
ψ(x1)− ψ(x)

)n−α−1

Dn,ψy(x)dx

−
∫ x2

a

ψ
′
(x)

(
ψ(x2)− ψ(x)

)n−α−1

Dn,ψy(x)dx

∣∣∣∣
≤ 1

Γ(n− α)

∣∣∣∣ ∫ x1

a

ψ
′
(x)

(
ψ(x1)− ψ(x)

)n−α−1

Dn,ψy(x)dx

−
∫ x1

a

ψ
′
(x)

(
ψ(x2)− ψ(x)

)n−α−1

Dn,ψy(x)dx

∣∣∣∣
+

∣∣∣∣ ∫ x2

x1

ψ
′
(x)

(
ψ(x2)− ψ(x)

)n−α−1

Dn,ψy(x)dx

∣∣∣∣
≤ 1

Γ(n− α)

(∫ x1

a

ψ
′
(x)

[(
ψ(x1)− ψ(x)

)n−α−1

−
(
ψ(x2)− ψ(x)

)n−α−1]∣∣∣∣Dn,ψy(x)

∣∣∣∣dx
+

∫ x2

x1

ψ
′
(x)

(
ψ(x2)− ψ(x)

)n−α−1∣∣∣∣Dn,ψy(x)

∣∣∣∣dx
)
,where n− α− 1 > 0

=
M

Γ(n− α + 1)

((
ψ(x1)−ψ(a)

)n−α
−
(
ψ(x2)−ψ(a)

)n−α
+2

(
ψ(x2)−ψ(x1)

)n−α)
.

Since x1 > a, x2 > a and x2 > x1 and ψ(x) is an increasing function, so(
ψ(x1)− ψ(a)

)n−α
−
(
ψ(x2)− ψ(a)

)n−α
< 0. Therefore,

|Dα,ψ
a y(x1)−Dα,ψ

a y(x2)|≤ 2M

Γ(n− α + 1)

(
ψ(x2)− ψ(x1)

)n−α
.

By mean value theorem, there exists ξ ∈ [x1, x2] ⊆ [a, b] such that ψ(x2) − ψ(x1) ≤
(x2 − x1)ψ

′
(ξ), we get:

|Dα,ψ
a y(x1)−Dα,ψ

a y(x2)| ≤ 2M

Γ(n− α + 1)

(
(x2 − x1)ψ

′
(ξ)

)n−α
≤ 2M

Γ(n− α + 1)2j(n−α)

(
ψ
′
(b)
)n−α

,
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which implies that,(
Dα,ψ
a y(x1)−Dα,ψ

a y(x2)

)2

≤ 4M2

Γ2(n− α + 1)22j(n−α)

(
ψ
′
(b)
)2(n−α)

. (2.36)

By substituting the equation (2.36) in (2.35), we get:

c2
i ≤ 2−j−2(b− a)2 4M2

Γ2(n− α + 1)22j(n−α)

(
ψ
′
(b)
)2(n−α)

. (2.37)

Combining equation (2.32) and equation (2.37), we get

∥∥∥Dα,ψ
a y(x)−Dα,ψ

a ym(x)
∥∥∥2

E
=

∞∑
i=2β+1

c2
i =

∞∑
j=β+1

(
2j+1−1∑
i=2j

c2
i

)
(2.38)

≤
∞∑

j=β+1

(b− a)2 M2

Γ2(n− α + 1)22j(n−α)+j

(
ψ
′
(b)
)2(n−α)

(2j+1 − 1− 2j + 1).

=
(b− a)2M2

(
ψ
′
(b)
)2(n−α)

Γ2(n− α + 1)

∞∑
j=β+1

1

22j(n−α)

=
(b− a)2M2

(
ψ
′
(b)
)2(n−α)

Γ2(n− α + 1)

1

22(β+1)(n−α)

1

1− 22(α−n)
.

Which implies that

∥∥∥Dα,ψ
a y(x)−Dα,ψ

a ym(x)
∥∥∥
E
≤

(b− a)M
(
ψ
′
(b)
)n−α

Γ(n− α + 1)

1

2(β+1)(n−α)

1

[1− 22(α−n)]
1
2

. (2.39)

Using m = 2β+1, (2.39) can also be written as:

∥∥∥Dα,ψ
a y(x)−Dα,ψ

a ym(x)
∥∥∥
E
≤

(b− a)M
(
ψ
′
(b)
)n−α

Γ(n− α + 1)

1

K(n−α)

1

[1− 22(α−n)]
1
2

. (2.40)

The error bound can be computed once we get the value of M . For estimating M ,
since Dny(x) is bounded and continuous on the interval [a, b], therefore, Dn,ψy(x) is
also bounded and continuous in [a, b] and can be estimated as:

Dn,ψy(x) ∼=
n−1∑
i=0

cihi(x) = CT
mHm(x), (2.41)
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where Cm = [c0, c1, c2, · · · , cm−1]T and Hm(x) = [h0(x), h1(x), h2(x), · · · , hm−1(x)]T .
Integrating (2.41), we have:

Dn−1,ψy(x) =

∫ x

a

Dn,ψy(x)dx+Dn−1,ψy(a) ∼= CT
mP

1,ψHm(x). (2.42)

Similarly,

Dm−2,ψy(x) =

∫ x

a

Dn−1,ψy(x)dx+Dn−2,ψy(a) ∼= CT
mP

2,ψHm(x). (2.43)

Proceeding in the same way we get:

Dψy(x) ∼= CT
mP

n,ψHm(x). (2.44)

By defining the points xj = j−1/2
n

, j = 0, 1, 2, · · · , n. Substituting xj in (2.44), we
have:

Dψy(xj) ∼= CT
mP

n,ψHm(xj). (2.45)

The matrix form of (2.45) is as:

DψY
T ∼= CT

mP
n,ψHm(xj), (2.46)

where DψY
T

= [Dψy(x1), Dψy(x2), Dψy(x3), · · · , Dψy(xm)]T . By solving equation
(2.46), we can find CT

m. From equation (2.41), we know the value of Dn,ψ(x) for each
x ∈ [a, b]. Assume ti ∈ [a, b], for i = 1, 2, 3, · · · , l, ti = (i− 1)/l and calculate Dn,ψy(ti)
for i = 1, 2, 3, . . . , l, then ε + max |Dny(ti)| may be considered as the estimation for
M . Clearly, this estimation would come more precise if l increases and ε be chosen as
b.

Theorem 2.6.2. Suppose that the function Dα,ψ
a ym, obtained by using ψ-Haar wavelets

is the approximation of Dα,ψ
a y, then we have an exact upper bound as follows∥∥y(x)− ym(x)

∥∥
E
≤ MN

Γ(α + 1)Γ(n− α + 1)

1

m(n−α)

1

[1− 22(α−n)]
1
2

. (2.47)

where N = max|(b− a)(ψ(b))n−α(ψ(x)− ψ(0))α|

The proof of the Theorem 2.6.2. can easily be established by using
Theorem 2.6.1. From equation (2.47) we can see that

∥∥y(x)− ym(x)
∥∥
E
→ 0

when m→∞. So we deduce that the ψ-Haar wavelets method is convergent.

Example 2.6.1. To demonstrate the validity and applicability of error analysis and
the upper bound, we consider the following fractional differential equation

Dα,ψ
0 y(x) + y(x) = (ψ(x))2 +

Γ(3)

Γ(3− α)
, 0 < α ≤ 1, and x ∈ [0, 1].
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Table 2.1. Error and upper bound of error for different values of J and α = 0.25.

J
∣∣∣∣∣y(x)− ym(x)

∣∣∣∣∣
E

Upper bound of error

5 4.6000× 10−4 0.1274
6 1.9029× 10−4 0.0761
7 7.9228× 10−5 0.0453
8 3.3118× 10−5 0.0269

Subject to the initial condition y(0) = y0, the exact solution is given by y(x) = (ψ(x))2.
The error and the upper bound of error computed for different values of α = 0.25 are
given in the Table 2.1, which shows that using the ψ-Haar wavelets method, we may
obtain a good approximation of the exact solution. We might also observe that as J
increases, the error gets smaller and smaller. The value of the upper bound of error
is also getting smaller and smaller at the same time. It also demonstrates that, as J
increases, the numerical solutions gradually approach the exact solution.
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Chapter 3

Numerical solution of initial value
problems using ψ-Haar wavelets
method

In this chapter we find solutions for linear and nonlinear Fractional Dif-
ferential Equations(FDEs) involving ψ-Caputo derivative. This chapter is
based on our paper [56], where we have derived an operational matrix to
find a numerical approximation of ψ- FDEs. We extended the method to
nonlinear ψ-FDEs by using quasi linearization technique to linearize the
nonlinear problems. The method is simple and good mathematical tool
for finding solution of nonlinear ψ-FDEs. The operational matrix approach
offers less computational complexity.

We give some numerical examples utilizing the ψ-Haar wavelet opera-
tional matrix method to approximate the numerical solutions of linear and
non-linear initial value FDEs.

3.1 Linear problems

In this section, we take two linear problems as follows.

Example 3.1.1. Consider the linear fractional ordinary differential equation with vari-
able coefficient involving ψ-Caputo derivative with initial condition

Dα,ψ
0 y + a(x)y = f(x), 0 < α ≤ 1, and x ∈ [0, 1] with y(0) = y0. (3.1)

For a(x) = ex and f(x) = ex(ψ(x))2α + Γ(2α+ 1)/Γ(α+ 1)(ψ(x))α, it is easy to verify
that y(x) = (ψ(x))2α is the analytic solution of equation (3.1). To find the approximate
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solution, we apply the ψ-Haar wavelet technique to equation (3.1). Consider

Dα,ψ
0 y(x) = CT

mHm(x). (3.2)

Applying the integral operator Iα,ψ0 on both sides of equation (3.2), we have

y(x) = Iα,ψ0 CT
mHm(x) + c1 = CT

mP
α,ψ
m×mHm(x) + c1. (3.3)

Using the initial condition in (3.1), we have:

y(x) = CT
mP

α,ψ
m×mHm(x) + (ψ(0))2α. (3.4)

Substituting (3.2) and (3.4) in (3.1), we have:

CT
m

(
Hm + a(x)Pα,ψ

m×mHm(x)
)

= f(x)− a(x)(ψ(0))2α. (3.5)

Consider the diagonal matrix A of the of the function a(x) at the collocation points
xi = 2i−1

2m
x, where i = 1, 2, · · · , m, is given by:

A =


a(x1) 0 · · · 0

0 a(x2) · · · 0
...

... . . . ...
0 0 · · · a(xm)

 .
From equation (3.5), we have the following matrix form:

CT
m

(
Hm + APα,ψ

m×mHm

)
= F, (3.6)

where F = f(x) − a(x)(ψ(0))2. To find the value of C we have to solve the algebraic
system (3.6), and putting the value of C into (3.4) we will get the approximate solution.
Numerical solutions are obtain for different values of α and J , which are shown in the
tabular form in the Table 3.1. Numerical solution of equation (3.1) for ψ(x) = x2 and
ψ(x) = tan(x/2), and different values of α is shown in the graphical form in the Figure
3.1. The exact and approximate solution and the maximum absolute error for J = 6
and α = 1 are given in the Figure 3.2 (a) and (b) respectively.

Example 3.1.2. Consider the initial value problem with variable coefficients

Dα,ψ
0 y + a(x)Dβ,ψ

0 y + b(x)y = f(x), (3.7)

where 1 < α ≤ 2, 0 < β ≤ 1 and x ∈ [0, 1], with the initial conditions

y(0) = y0, y
′
(0) = y1. (3.8)
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Table 3.1. Maximum absolute error for different values of α and J .

J α = 0.5 α = 0.7 α = 0.9 α = 1.0

5 2.383349× 10−4 1.936029× 10−4 1.825123× 10−4 1.892904× 10−4

6 8.449661× 10−5 5.876715× 10−5 4.819711× 10−5 4.732614× 10−5

7 2.991332× 10−5 1.787101× 10−5 1.273172× 10−5 1.183166× 10−5

8 1.058271× 10−5 5.444213× 10−6 3.365286× 10−6 2.957938× 10−6
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Figure 3.1: Numerical solutions of equation (3.1) for J = 8 and for different values of
α.
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Figure 3.2: For J = 6, α = 1 and ψ(x) = x2 (a) exact and approximate solution (b)
maximum absolute error

For a(x) = ex, b(x) = sin(x), and

f(x) =
Γ(3)

Γ(3− α)
(ψ(x))2−α + a(x)

Γ(3)

Γ(3− β)
(ψ(x))2−β + b(x)(ψ(x))2.
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One may verify that y(x) = (ψ(x))2 is the analytic solution for the problem (3.7). For
approximate solution, we use Haar wavelet techniques. Let

Dα,ψ
0 y(x) = CT

mHm(x). (3.9)

Applying the integral operator Iα,ψ0 on both sides of equation (3.9), we obtain

y(x) = Iα,ψ0 CT
mHm(x) + c1 + c2(ψ(x)− ψ(0)). (3.10)

Using the initial conditions in (3.10),we get c1 = y0 and c2 = y1/(ψ(0))
′ . Equation

(3.10) becomes

y(x) = CT
mP

α,ψHm + y0 + y1/(ψ(0))
′
(ψ(x)− ψ(0)). (3.11)

Again applying the operator Dβ,ψ
0 on (3.11) we get

Dβ,ψ
0 y = CT

mP
α−βHm + y1/(ψ(0))

′
Γ(2)/Γ(2− β)(ψ(x))1−β. (3.12)

Substituting equations (3.9), (3.10) and (3.12) in equation (3.7), we get

CT
m(Hm + a(x)Pα−β,ψHm + b(x)Pα,ψHm) = F (x), (3.13)

where F (x) = f(x) − a(x)Γ(2)/Γ(2 − β)(ψ(x))1−β − b(x)(ψ(x))2. Solving equation
(3.13) for C and putting the value of C in equation (3.11) we get the required solution.
Exact and numerical solutions and their maximum absolute error are presented in the
Figure 4.4 for J = 6 and various values of α. Maximum absolute error obtained for
different values of α, β and J are shown in the tabular form in the Table 3.2. We
observed that maximum absolute error decrease by increasing value of J .
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Figure 3.3: Exact and numerical solutions of equation (3.7) for different values of α
and their absolute error.
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Table 3.2. Maximum absolute error for different values of α, β and J .

β = 0.7
α J = 5 J = 6 J = 7 J = 8

1.5 3.503526× 10−4 1.215296× 10−4 4.273888× 10−5 1.514266× 10−5

1.6 5.026274× 10−4 1.901886× 10−4 7.221228× 10−5 2.744912× 10−5

1.7 6.705020× 10−4 2.719547× 10−4 1.104044× 10−4 4.483553× 10−5

1.8 7.818761× 10−4 3.392458× 10−4 1.473415× 10−4 6.403718× 10−5

1.9 6.757137× 10−4 3.139957× 10−4 1.46089× 10−4 6.803371× 10−5

β = 0.9
1.5 2.718617× 10−4 9.020570× 10−5 3.072957× 10−5 1.067530× 10−5

1.6 4.134163× 10−4 1.573446× 10−4 6.052547× 10−5 2.337513× 10−5

1.7 5.949382× 10−4 2.449613× 10−4 1.008262× 10−4 4.142341× 10−5

1.8 7.228608× 10−4 3.170263× 10−4 1.387916× 10−4 6.066605× 10−5

1.9 6.334264× 10−4 2.960765× 10−4 1.382828× 10−4 6.455392× 10−5

3.2 Nonlinear problems

Example 3.2.1. Consider the non-linear ψ-Caputo fractional differential equation:

Dα,ψ
0 y + y2 = f(x), 0 < α ≤ 1, x ∈ [0, 1] and y(0) = y0. (3.14)

For f(x) = ex(ψ(x))2 + Γ(3)/Γ(3−α)(ψ(x))2−α it is easy to verify that y(x) = (ψ(x))2

is the exact solution of equation (3.14). To find the approximate solution we first apply
the quasilinearization techniques [57] to linearize the nonlinear terms in equation (3.14)
and then utilize Haar wavelet technique to obtain the approximate solution of the linear
problem. The linearized form of (3.14) is

Dα,ψ
0 yr+1 + 2yryr+1 = f(x) + y2

r . (3.15)

Let
Dα,ψ

0 yr+1 = CT
mHm. (3.16)

Applying the integral operator Iα,ψ0 on both sides of equation (3.16), we have

yr+1 = Iα,ψCT
mHm(x) + c1 = CT

mP
α,ψ
0 Hm(x) + c1. (3.17)

Using the initial condition in (3.17), we have

yr+1 = CT
mP

α,ψ
m×mHm(x) + (ψ(0))2. (3.18)

Substituting (3.16) and (3.17) in (3.15) we have,
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CT
m

(
Hm + 2yrP

α,ψ
m×mHm

)
= f(x) + y2

r − y0. (3.19)

From equation (3.19) we will have the following matrix form

CT
m

(
Hm + 2yrP

α,ψ
m×mHm

)
= F, (3.20)

where F = f(x) + y2
r − y0. To find the value of C we have to solve the algebraic system

(3.20), and putting the value of C into (3.18) we will get the approximate solution at
the collocation points. Maximum absolute error for ψ(x) = x3 are given in the Table
3.3. Also the numerical solutions for various functions ψ are displayed in the graphical
form in the Figure 3.4. Moreover, for J = 6, α = 1 and ψ(x) = x2 − x, the exact and
numerical solutions and their maximum absolute error are presented in the Figure 3.5.

Table 3.3. maximum absolute error for ψ(x) = x3 and different values of J and α.

J α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

5 1.99059× 10−3 1.60809× 10−3 1.25456× 10−3 9.49891× 10−4 7.00046× 10−4

6 6.39868× 10−4 4.82375× 10−4 3.52569× 10−4 2.51551× 10−4 1.76100× 10−4

7 2.05770× 10−4 1.44594× 10−4 9.88581× 10−5 6.63693× 10−5 4.41123× 10−5

8 6.64110× 10−5 4.34549× 10−5 2.77479× 10−5 1.75011× 10−5 1.10358× 10−5

9 2.15209× 10−5 1.31026× 10−5 7.80338× 10−6 4.61656× 10−6 2.75975× 10−6
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Figure 3.4: Numerical solutions for α = 1, J = 8 and for different functions ψ(x).

Example 3.2.2. Consider the nonlinear ψ-Caputo fractional differential equation with
variable coefficients

Dα,ψ
0 y + a(x)Dβ,ψ

0 y + yDγ,ψ
0 y = f(x), (3.21)

1 < α ≤ 2, 0 < β ≤ 1, 0 < γ ≤ 1 and x ∈ [0, 1].
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Figure 3.5: for J = 6, α = 1 and ψ(x) = x2 − x (1) the exact and approximate
solution (2) the maximum absolute error between exact and approximate solution

y(0) = y0, y′(0) = y1. (3.22)

For a(x) = x2 and f(x) = 2/Γ(3− α) (ψ(x))2−α + a(x)2/Γ(3− β) (ψ(x))2−β

+2(ψ(x))2/Γ(3− γ) (ψ(x))2−γ. One may verify that y(x) = (ψ(x))2 is the analytic
solution for the problem (3.21). For linearization of the nonlinear terms we use the
Quasilinearization techniques and then apply the ψ-Haar wavelet method to find the
approximate solution of the linearized fractional differential equation. The linearized
form of (3.21) becomes

Dα,ψ
0 yr+1 + a(x)Dβ,ψ

0 yr+1 + (Dγ,ψ
0 yr)yr+1 + (yr)D

γ,ψ
0 yr+1 = f(x)− yrDγ,ψ

0 yr. (3.23)

Consider
Dα,ψ

0 yr+1 = CT
mHm (3.24)

applying the integral operator Iα,ψ0 on both sides of (3.24)

yr+1 = Iα,ψ0 CT
mHm(x) + c1 + c2(ψ(x)− ψ(0)) (3.25)

using the initial conditions from equation (3.22) in equation (3.25) we get c1 = y0 and
c2 = y1/(ψ(0))

′ . Using values of c1 and c2 in equation (3.25) we get,

yr+1 = CT
mP

α,ψHm + y0 + y1/(ψ(0))
′
(ψ(x)− ψ(0)) (3.26)

applying the operator Dβ,ψ
0 on equation (3.26) we get

Dβ,ψ
0 yr+1 = CT

mP
α−βHm + y1/(ψ(0))

′
Γ(2)/Γ(2− β)(ψ(x))1−β (3.27)

again applying the operator Dγ,ψ on equation (3.26) we get

Dγ,ψ
0 yr+1 = CT

mP
α−γHm + y1/(ψ(0))

′
Γ(2)/Γ(2− γ)(ψ(x))1−γ (3.28)
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substituting equations (3.24), (3.26), (3.27) and (3.28) in equation (3.21), we get

CT
m(Hm + a(x)Pα−β,ψHm + (Dγ,ψ

0 yr)P
α,ψHm + (yr)P

α−γ,ψ) = F (x). (3.29)

solving equation (3.29) for C and putting the value of C in equation (3.26) we get
the required numerical solutions. Table 3.4 contains the Maximum absolute error for
distinct values of α and J . It shows that the maximum absolute error becomes smaller
and smaller by taking greater values of J .

Table 3.4. Maximum absolute error for different values of α, β and J .

β = 0.5 and γ = 0.75
α J = 5 J = 6 J = 7 J = 8

1.5 6.508129× 10−5 2.491141× 10−5 8.232340× 10−6 2.560913× 10−6

1.6 3.977282× 10−5 1.311337× 10−5 3.885524× 10−6 1.100174× 10−6

1.7 3.101982× 10−5 8.657270× 10−6 2.280651× 10−6 5.852983× 10−7

1.8 2.919557× 10−5 7.456689× 10−6 1.857814× 10−6 4.579923× 10−7

1.9 2.368181× 10−5 5.937789× 10−6 1.473492× 10−6 3.644554× 10−7
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3.3 ψ-Fractional Relaxation Oscillation Differential Equa-
tions (ψ-FRODEs)

In this section, based on our paper [58], we present several examples of
how to get numerical solutions of ψ-FRODEs using the ψ-HW operational
matrix approach.

Example 3.3.1. Consider the ψ-FRODE:

Dα,ψy(x) + ay(x) = g(x), 0 < α ≤ 1, x ∈ [0, 1] and y(0) = 0. (3.30)

For a = 2
Γ(3−α)

g(x) = 2
Γ(3−α)

(ψ(x))2−α+(ψ(x)2) , the actual solution of equation (3.30)
is y(x) = (ψ(x))2. We use the ψ-HW technique to solve problem (3.30).
Let

CDα,ψy(x) = CT
mHm(x). (3.31)

Integrating equation (3.31) with respect to Iα,ψa and using the initial conditions, we
have

y(x) = Iα,ψCT
mHm(x) = CT

mP
α,ψ
m×mHm(x). (3.32)

Substituting (3.31) and (3.32) in (3.30) we have,

CT
m

(
Hm(x) + aPα,ψ

m×mHm(x)
)

= g(x). (3.33)

Equation (3.33) has the following matrix form:

CT
m

(
Hm(x) + aPα,ψ

m×mHm(x)
)

= G, (3.34)

whereG is the matrix representation of g at the collocation points. Solving the algebraic
system given by equation (3.34) for CT

m and substituting this value into equation (3.32)
we will have the required numerical solution. In Table 3.5 the max. absolute-error is
given for J = 6 and ψ(x) = x3. Approximate solutions for J = 6, α = 0.5 and different
choices of the function ψ are plotted in Figure 3.6. Also actual and approximate results
and the absolute error are given for J = 6, α = 0.8 and ψ(x) = 1/3(x3 − x2 − x) in
Figure 3.6.

Example 3.3.2. Consider the composite ψ-FRODE

Dα,ψy(x) + by(x) =
Γ(2α + 1)

Γ(α + 1)
(ψ(x))α

[
1 + (ψ(x))α

]
, 0 < α ≤ 1, x ∈ [0, 1]. (3.35)

y(0) = 0. (3.36)

For b = Γ(2α + 1)/Γ(α + 1). The exact solution for the problem (3.35) is y(x) =
(ψ(x))2α. For numerical solution we employ the ψ-HW technique. Let

CDα,ψy(x) = CT
mHm(x). (3.37)
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Table 3.5. max absolute-error for various choices of α and J .

α J = 5 J = 6 J = 7 J = 8 J = 9

0.6 1.0141× 10−4 3.2169× 10−5 1.0296× 10−5 3.3179× 10−6 1.0751× 10−6

0.7 9.2421× 10−5 2.7180× 10−5 8.0595× 10−6 2.4056× 10−6 7.2213× 10−7

0.8 7.8481× 10−5 2.1470× 10−5 5.9091× 10−6 1.6349× 10−6 4.5452× 10−7

0.9 6.3749× 10−5 1.6437× 10−5 4.2464× 10−6 1.0994× 10−6 2.8527× 10−7

1.0 5.3010× 10−5 1.3250× 10−5 3.3127× 10−6 8.2817× 10−7 2.0704× 10−7

Integrating equation (3.37) with respect to Iα,ψa and utilizing the initial condition, we
have:

y(x) = Iα,ψCT
mHm(x) = CT

mP
α,ψ
m×mHm(x). (3.38)

substituting equations (3.37) and (3.38) in equation (3.35), we get

CT
m

(
Hm(x) + Pα,ψ

m×mHm(x)
)

= g(x), (3.39)

where Γ(2α+1)
Γ(α+1)

(ψ(x))α
[
1 + (ψ(x))α

]
. Equation (3.39) in matrix form is given as:

CT
m

(
Hm(x) + Pα,ψ

m×mHm(x)
)

= G. (3.40)

where G is the matrix representation of g(x). The required approximate solutions can
be obtained by using the value of CT

m from equation (3.40) in equation (3.38). The
max absolute-error are tabulated for ψ(x) = (x)3

5
and various choices of J and α in

Table 3.6, which shows that the Maximum Absolute Error decreasing by increasing the
values of J . Figure 3.7 represents approximate solutions for different choices of α. Also
comparison of actual and approximate results and their absolute-error are displayed in
Figure 3.7.

Table 3.6. max absolute-error for various choices of α and J .

α J = 5 J = 6 J = 7 J = 8 J = 9

0.6 1.2082× 10−4 3.9804× 10−5 1.3061× 10−5 4.2822× 10−6 1.4045× 10−6

0.7 9.1203× 10−5 2.8002× 10−5 8.5466× 10−6 2.6042× 10−6 7.9372× 10−7

0.8 6.7053× 10−5 1.9253× 10−5 5.4799× 10−6 1.5545× 10−6 4.4065× 10−7

0.9 4.8650× 10−5 1.3151× 10−5 3.5128× 10−6 9.3312× 10−7 2.4729× 10−7

1.0 3.5205× 10−5 9.0544× 10−6 2.2954× 10−6 5.7785× 10−7 1.4496× 10−7

Example 3.3.3. Consider the ψ-FRODE:

Dα,ψy(x) + y(x) = 1− 4ψ(x) + 5(ψ(x))2

− 4

Γ(2− α)
(ψ(x))1−α +

10

Γ(3− α)
(ψ(x))2−α,

(3.41)

31



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ

u(χ)

Numerical solutions for α =0.5 and   diffetent choices of Φ 

 

 

Φ(χ)=χ

Φ(χ)=1/2(χ2+χ)

Φ(χ)=1/3(χ3+χ2+χ)

Φ(χ)=1/4(χ4+χ3+χ2+χ)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

χ

u(χ)

 

 
Numerical, Exact

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8
x 10

−5

 

 
Absolute Error

Figure 3.6: Approximate and Exact results of equation (3.30) and their absolute error.

where 0 < α ≤ 1, x ∈ [0, 1] and y(0) = 1. It is easy to verify that y(x) = 1− 4ψ(x) +
5(ψ(x))2 is the actual solution of equation (3.41). For numerical approximation we
employ ψ-HW technique.
Let

CDα,ψy(x) = CT
mHm(x). (3.42)

Integrating equation (3.42) in terms of Iα,ψa and using the initial conditions, we have

y(x) = Iα,ψCT
mHm(x) + y(0)

= CT
mP

α,ψ
m×mHm(x) + 1.

(3.43)

Substituting equations (3.42), (3.43) in equation (3.41) we have,

CT
m

(
Hm(x) + Pα,ψ

m×mHm(x)
)

= g(x), (3.44)

where g(x) = −4ψ(x)+5(ψ(x))2− 4
Γ(2−α)

(ψ(x))1−α+ 10
Γ(3−α)

(ψ(x))2−α. The matrix form
of equation (3.44) is:

CT
m

(
Hm(x) + Pα,ψ

m×mHm(x)
)

= G, (3.45)
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Figure 3.7: Approximate results of equation (3.35) for various choices of α, actual,
approximate results and the absolute error.
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where G is the matrix representation of g(x). The required approximate solutions can
be obtained by using the value of CT

m from equation (3.45) in equation (3.43). Table
5.3 shows that the Maximum Absolute Error decreasing by increasing the values of
J . Approximate solutions are displayed in Figure 5.3 for various values of ψ. Also
Figure 5.3 represents approximate and exact solutions and their max absolute error for
α = 0.75, J = 6 and ψ(x) = (x)3

15
.

Table 3.7. max-absolute error for ψ(x) = x3

15
and various choices of J and α.

α J = 5 J = 6 J = 7 J = 8 J = 9

0.6 9.0149× 10−5 2.9995× 10−5 9.9647× 10−6 3.3058× 10−6 1.0954× 10−6

0.7 4.3216× 10−5 1.3568× 10−5 4.2468× 10−6 1.3254× 10−6 4.1271× 10−7

0.8 1.5201× 10−5 4.5357× 10−6 1.3466× 10−6 3.9805× 10−7 1.1721× 10−7

0.9 2.2599× 10−5 6.0704× 10−6 1.5981× 10−6 4.1680× 10−7 1.0825× 10−7

1.0 2.2302× 10−5 5.7525× 10−6 1.4605× 10−6 3.6795× 10−7 9.2342× 10−8

Example 3.3.4. Consider the ψ-FRODE:

Dα,ψy(x) + µy(x) = g(x), 0 < α ≤ 1, x ∈ [0, 1] and y(0) = 0. (3.46)

For µ = 1 and g(x) = Γ(2α+1)
Γ(1+α)

(ψ(x))α + Γ(2)
Γ(2−α)

(ψ(x))1+α + (ψ(x))2α +ψ(x) the exact
solution of equation (3.46) is (ψ(x))2α + ψ(x). For approximate solutions we use the
ψ-HW technique. Let

CDα,ψy(x) = CT
mHm(x). (3.47)

Integrating equation (3.47) with respect to Iα,ψ0 and using the initial conditions, we
have

y(x) = Iα,ψ0 CT
mHm(x) = CT

mP
α,ψ
m×mHm(x). (3.48)

Substituting (3.47) and (3.48) in (3.46) we have,

CT
m

(
Hm(x) + µPα,ψ

m×mHm(x)
)

= g(x). (3.49)

Matrix representation of equation (3.49) is:

CT
m

(
Hm(x) + µPα,ψ

m×mHm(x)
)

= G, (3.50)

where G is the matrix representation of g(x) at the collocation points.
Required approximate solutions can be obtained by using the value of CT

m from equation
(3.50) in equation (3.48). Table 5.4 shows that the Maximum Absolute Error decreasing
by increasing the values of J . Also the Approximate solutions are displayed in Figure
5.4 for various values of α.
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Figure 3.8: Approximate solutions for different choices of α and functions ψ(x).

Table 3.8. max absolute-error for ψ(x) = x2

15
and various choices of J and α.

α J = 5 J = 6 J = 7 J = 8 J = 9

0.6 3.8255× 10−5 1.2688× 10−5 4.1987× 10−6 1.3876× 10−6 4.5829× 10−7

0.7 2.0382× 10−5 6.3431× 10−6 1.9679× 10−6 6.0937× 10−7 1.8843× 10−7

0.8 9.0481× 10−6 2.6383× 10−6 7.6857× 10−7 2.2372× 10−7 6.5069× 10−8

0.9 3.0670× 10−6 8.0025× 10−7 2.1048× 10−7 5.5848× 10−8 1.4938× 10−8

1.0 2.0360× 10−6 5.1692× 10−7 1.3022× 10−7 3.2678× 10−8 8.1852× 10−9
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Figure 3.9: Numerical solutions for α = 1, J = 8 and for different functions ψ(x).

3.4 Conclusion

This chapter introduces a computational method for solving a class of
fractional differential equations involving the ψ-Caputo fractional deriva-
tive based on a new operational-matrix of fractional integration, the ψ-
HW operational-matrix.The method’s convergence is demonstrated. The
method can also be applied to other wavelet bases, such as Legendre, Cheby-
shev, and Gegenbauer wavelets.This approach can be applied to boundary
value problems in FDEs as well as fractional partial differential equations.
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Chapter 4

Numerical Solution of boundary value
problems using ψ-Haar wavelet
method

In this chapter we introduce a new numerical approach for solving linear and
non-linear boundary value problems for ψ-fractional differential equations
(ψ-FDEs) [59]. This approach relies on the ψ-Haar wavelet operational inte-
gration matrices. The ψ-operational matrices (ψ-OMs) are used to convert
the ψ-FDE to an algebraic system of equations. The non-linear fractional
boundary value problems are first linearized using the quasi-linearization
technique, and then the ψ-Haar wavelet technique is applied to the lin-
earized problem. The solution is updated by the ψ-Haar wavelet method in
each iteration of the quasi-linearization technique. The proposed method
is a good and simple mathematical technique for numerically solving non-
linear ψ-FDEs. The operational matrix (OM) method is computationally
more efficient. Several linear and non-linear boundary value problems are
discussed to demonstrate the applicability, efficiency, and simplicity of the
method. Moreover, the error analysis is carried out resulting a rigorous
error bound for the proposed method.

4.1 Methodology for solution of ψ-fractional bound-
ary value problem:

Consider the boundary value problem

CDα,ψ
δ1
y(t) = g(t), 1 < α ≤ 2 (4.1)
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y(δ1) = yδ1 y(δ2) = yδ2 ,

apply Iα,ψδ1
on equation (4.1)

Iα,ψδ1
CDα,ψ

δ1
y(t) = Iα,ψδ1

g(t),

apply lemma 2.4.2 on L.H.S, we get

y(t)− c0 − c1

(
ψ(t)− ψ(δ1)

)
=

1

Γ(α)

∫ t

δ1

(
ψ(t)− ψ(s)

)α−1
ψ′(s)g(s)ds. (4.2)

Apply y(δ1) = yδ1, equation (4.2) implies yδ1 = c0. Again apply y(δ2) = yδ2 (put
t = δ2 in equation (4.2)) we have,

yδ2 − yδ1 − c1

(
ψ(δ2)− ψ(δ1)

)
=

1

Γ(α)

∫ δ2

δ1

(
ψ(δ2)− ψ(s)

)α−1
ψ′(s)g(s)ds.

⇒ c1 =
yδ1 − yδ2

ψ(δ2)− ψ(δ1)
+

1

ψ(s)− ψ(δ1)

∫ δ2

δ1

(ψ(δ2)− ψ(s))

Γ(α)
ψ′(s)g(s)ds.

Substituting c0 and c1 in equation (4.2) we obtained

y(t) = yδ1 +

[
yδ1 − yδ2

ψ(δ2)− ψ(δ1)

]
[ψ(t)− ψ(δ1)]

+
ψ(t)− ψ(δ1)

ψ(δ2)− ψ(δ1)

∫ δ2

δ1

[ψ(δ2)− ψ(s)]α−1

Γ(α)
ψ′(s)g(s)ds

+
1

Γ(α)

∫ t

δ1

(ψ(t)− ψ(s))α−1ψ′(s)g(s)ds.

The general case:
consider the boundary value problem

Dα,ψ
δ1
y(t) = g(t), t ∈ [δ1, δ2], n− 1 < α ≤ n, (4.3)

with the initial and boundary conditions given by

y
[κ]
ψ (δ1) = yκδ1 , y

[n−1]
ψ (δ2) = yδ2 , κ = 0, 1, 2, · · ·n− 2.

Apply Iα,ψδ1
on (4.3)

Iα,ψδ1
CDα,ψ

δ1
y(t) = Iα,ψδ1

g(t), (4.4)

using Lemma 2.4.2 in equation (4.4), we have

y(t)−
n−1∑
κ=0

y
[κ]
ψ (δ1)

κ!
(ψ(t)− ψ(δ1))κ = Iα,ψg(t)

y(t) =
n−2∑
κ=0

y
[κ]
ψ (δ1)

κ!
(ψ(t)− ψ(δ1))κ +

y
[n−1)
ψ (δ1)

(n− 1)!
(ψ(t)− ψ(δ1))n−1 + Iα,ψδ1

g(t)

38



y(t) =
n−2∑
κ=0

yκδ1
κ!

(ψ(t)− ψ(δ1))κ + Cn−1(ψ(t)− ψ(δ1))n−1 + Iα,ψδ1
g(t) (4.5)

where

Cn−1 :=
y

[n−1]
ψ (δ1)

(n− 1)!
. (4.6)

Now apply the boundary conditions

y
(n−1)
ψ (δ2) = yδ2 (4.7)

we get(
1

ψ′(t)

d

dt

)n−1

y(t) =

n−2∑
κ=0

yκδ1
κ!

[
1

ψ′(t)

d

dt

]n−1

(ψ(t)− ψ(δ1))κ

+ Cn−1

[
1

ψ′(t)

d

dt

]n−1

(ψ(t)− ψ(δ1))n−1 +

[
1

ψ′(t)

d

dt

]n−1

Iα,ψδ1
g(t),

(4.8)

where κ = 0, 1, · · ·n− 2.

Note (1):
1

ψ′(t)

d

dt
(ψ(t)− ψ(δ1)) =

1

ψ′(t)
ψ′(t) = 1

and (
1

ψ′(t)

d

dt

)2

(ψ(t)− ψ(δ1))′ =
1

ψ′(t)

d

dt
(1) = 0.

In general [
1

ψ′(t)

d

dt

]n
(ψ(t)− ψ(δ1))m = 0 if m < n.

Note(2):

1

ψ′(t)

d

dt
(ψ(t)− ψ(δ1))n =

1

ψ′(t)
n(ψ(t)− ψ(δ1))n−1ψ′(t)

(
1

ψ′(t)

d

dt

)2

(ψ(t)− ψ(δ1))n = n(n− 1)(ψ(t)− ψ(δ1))n−2

(
1

ψ′(t)

d

dt

)3

(ψ(t)− ψ(δ1))n = n(n− 1)(n− 2)(ψ(t)− ψ(δ1))n−3
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(
1

ψ′(t)

d

dt

)m
(ψ(t)− ψ(δ1))n = n(n− 1)(n− 2) · · · (n−m+ 1)(ψ(t)− ψ(δ1))n−m

=
n(n− 1)(n− 2) · · · (n−m+ 1)(n−m)!

(n−m)!
(ψ(t)− ψ(δ1))n−m

=
n!

(n−m)!
[ψ(t)− ψ(δ1)]n−m,

if m = n,

[
1

ψ1

d

dt

]n
[ψ(t)− ψ(δ1)]n = n!.

Note (3): [
Iα,ψδ1

h(t)
][κ]

ψ
(t) = Iα−κδ1

h(t)

Or [
1

ψ′(t)

d

dt

]κ
Iα,ψδ1

h(t) = Iα−κδ1
h(t),

using note (1), (2), and (3) in equation (4.8), we have

y
(n−1)
ψ (t) = (n− 1)!Cn−1 + Iα−n+1

δ1
g(t),

apply the boundary conditions

y
[n−1]
ψ (δ2) = yδ2 ,

we have
Cn−1 =

1

(n− 1)!

[
yδ2 − I

α−n+1,ψ
δ1

g(δ2)
]
.

Substituting Cn−1 in equation (4.5), we get

y(t) =
n−2∑
κ=0

yκδ1
κ!

(ψ(t)− ψ(δ1))κ +
[ψ(t)− ψ(δ1)]n−1

(n− 1)!

[
yδ2 − I

α−n+1,ψ
δ1

g(δ2)
]

+ Iα,ψδ1
g(t)

y(t) =
n−2∑
κ=0

yκδ1 [ψ(t)− ψ(α))

κ!
+

yδ2
(n− 1)!

[ψ(t)− ψ(1))n−1

− [ψ(t)− ψ(δ1)]n−1

(n− 1)!

∫ δ2

δ1

(
ψ(δ2)− ψ(s)ψ′(s)

Γ(α− n+ 1)
g(s)ds+

∫ t

δ1

(ψ(t)− ψ(s))α−1

Γ(α)
ψ′(s)g(s)ds.

4.2 Numerical solutions of ψ-FDEs

Here are some numerical examples of how to approximate the numerical
solution of the linear and non-linear boundary value problems of ψ-FDEs
with our proposed method.
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4.2.1 Linear Boundary Value Problems

Example 4.2.1. Consider the non-homogeneous fractional boundary value problem
involving ψ-Caputo fractional derivative

Dα,ψ0 y(t) + ay(t) = g(t), t ∈ [0, 1], y(0) = 0, y(1) = y1. (4.9)

Where 1 < α ≤ 2. For g(t) = ψ(t) + aψ(t)α+1

Γ(α+2)
and y1 = 1

Γ(α+2)
, the boundary value

problem (3.1) has an exact solution y(t) = (ψ(t))α+1

Γ(α+2)
. The integral representation of

(4.9) is given by

y(t) = −aIα,ψ0 y(t) + aψ(t)α−1Iα,ψ0 y(1) + h(t) (4.10)

where
h(t) = Iα,ψ0 g(t)− ψ(t)α−1Iα,ψ0 g(1) +

(ψ(t))α−1

Γ(α + 2)
.

For numerical solution, we approximate y(t) as

y(t) = CT
mHm(t). (4.11)

Then
Iα,ψ0 y(t) = CT

mI
α,ψ
0 Hm(t) = CT

mP
α,ψ
m×mHm(t). (4.12)

Let ψ(t) = (ψ(t))α−1, we have

ψ(t)Iα,ψ0 y(1) = CT
mK

α,ψ
m×mHm(t), (4.13)

using equations (4.11), (4.12) and (4.13) in equation (4.9), to have:

CT
mHm(t) = −aCT

mP
α,ψ
m×mHm(t) + aCT

mK
α,ψ
m×mHm(t) + F T

mHm(t), (4.14)

where F T
mHm(t) is the approximation of h(t).

In Figure 4.1, numerical solutions, exact solutions, and the max absolute-error are
plotted for various choices of the function ψ(t) and α. The max absolute-error is also
shown in the Table 4.1 for various values of α and J . We discovered that as J increases,
the max absolute-error also decreases.

Example 4.2.2. In this example we analyze the ψ-fractional differential equation with
variable coefficients by the proposed method.

Dα,ψ0 y(t) + a(t)y(t) = h(t), where 2 ≤ α < 3 and t ∈ [0, 1], (4.15)

with the boundary conditions y(0) = 0, y′(0) = 0, y(1) = 0.
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Table 4.1. max absolute-error for different J and α values.

ψ(t) = t

α J = 5 J = 6 J = 7 J = 8

1.5 3.504635× 10−5 1.234185× 10−5 4.274255× 10−6 1.513357× 10−6

1.6 5.025384× 10−5 1.902764× 10−5 7.221228× 10−5 2.744912× 10−5

1.7 6.704913× 10−5 2.7187536× 10−5 1.103824× 10−5 4.482642× 10−6

1.8 7.817852× 10−5 3.393346× 10−5 1.474324× 10−5 6.404627× 10−6

1.9 6.675254× 10−5 3.148735× 10−5 1.458791× 10−5 6.812362× 10−6

ψ(t) = t2

2 + t
2

1.5 2.717725× 10−5 9.021482× 10−6 3.073846× 10−6 1.068451× 10−6

1.6 4.135072× 10−5 1.572354× 10−5 6.053439× 10−6 2.346431× 10−6

1.7 5.948473× 10−5 2.457804× 10−5 1.017341× 10−5 4.143252× 10−6

1.8 7.227815× 10−5 3.163172× 10−5 1.386834× 10−5 6.154427× 10−6

1.9 6.335346× 10−5 2.952634× 10−5 1.381907× 10−5 6.456180× 10−6

For numerical solution, we employ ψ-Haar wavelet method. Suppose

Dα,ψy(t) = CT
mHm(t). (4.16)

Using ψ-Caputo integral operator and the boundary conditions, we have

y(t) = CT
mP

α,ψ
m×mHm(t)− CT

mK
α,ψ
m×mHm(t). (4.17)

Substituting equations (4.16) and (4.17) in equation (4.15), we get

CT
m(Hm(t) + CT

mP̂
α,ψ
m×m(Hm(t)− CT

mK
α,ψ
m×mHm(t) = F T

m(t)Hm(t), (4.18)

where the following approximations are used

a(t)Iα,ψ0 Hm(t) = P̂α,ψ
m×mHm(t),

ψ(t)Iα,ψ0 Hm(1) = Kα,ψ
m×mHm(t)

h(t) = F T
m(t)Hm(t)

where
ψ(t) = a(t)(ψ(t))α−1.

One may verify that for

a(t) = e−9πψ(t), h(t) = e−9πψ(t)
(
(ψ(t))α−1 − (ψ(t))α

)
− Γ(α + 1)

the boundary value problem (4.15) has the exact solution as y(t) =
(

1
ψ(t)
− 1
)
(ψ(t))α.

For different choices of the function ψ(t) and α, numerical solutions, exact solution and
the maximum absolute error are plotted in the Figure 4.2. Also the maximum absolute
error is presented in the Table 4.2 for various J and α.
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Table 4.2. max absolute-error for ψ(t) = t3 and different J and α values.

α J = 5 J = 6 J = 7 J = 8

2.5 2.384237× 10−5 1.854308× 10−5 1.824315× 10−5 1.893752× 10−5

2.6 8.448743× 10−6 5.875834× 10−6 4.818904× 10−6 4.734526× 10−6

2.7 2.984073× 10−6 1.786233× 10−6 1.272453× 10−6 1.182537× 10−6

2.8 1.049082× 10−6 5.453306× 10−7 3.364195× 10−7 2.956827× 10−7

4.2.2 Non-linear Boundary value problems

Example 4.2.3. Consider the non-linear boundary value problem of fractional order
with ψ-Caputo fractional derivative:

Dα,ψ0 y(t) + a(t)y′2(t) + b(t)y(t)y′(t) = h(t), where 1 < α ≤ 2, and t ∈ [0, 1], (4.19)

subject to boundary conditions y(0) = 0, y(1) = 0. The exact solution of equation
(4.19) is given by y(t) = (ψ(t))α − (ψ(t))70−α. Where

h(t) = Γ(α + 1)− 71− α
71− 2α

(ψ(t))70−2α + a(t)(α(ψ(t))α−1 − (70− α)(ψ(t))69−α)2

+ b(t)(α(ψ(t))α−1 − (70− α)(ψ(t))69−α)((ψ(t))α − (ψ(t))70−α)

We first linearize the non-linear terms in equation (4.19) by using quasi-linearization
technique and then utilize ψ-Haar wavelet method for numerical solution.
Equation (4.19) in its linearized representation is given by:

Dα,ψ0 yr+1(t) + b(t)y′r(t)yr+1(t) + (2a(t)y′r(t) + b(t)yr(t))y
′
r+1(t)

= h(t) + a(t)y′2r (t) + b(t)yr(t)y
′
r(t), t > 0 and 1 < α ≤ 2,

(4.20)

having yr+1(0) = 0, yr+1(1) = 0 as the boundary conditions. The ψ-Haar wavelet
approach is applied to equation (4.20). Let

Dα,ψ0 yr+1(t) = CT
mHm(t). (4.21)

Employing Iα,ψ and the boundary conditions on (4.21), we have

yr+1(t) = Iα,ψCT
mHm(t) = CT

mP
α,ψ
m×mHm(t). (4.22)

y′r+1(t) = CT
mP

α−1,ψ
m×m Hm(t). (4.23)

Substituting (4.21), (4.22) and (4.23) in (4.20) we have,

CT
m

(
Hm(t) + b(t)y′r(t)P

α,ψ
m×mHm(t) + (2a(t)y′r(t) + b(t)yr(t))P

α−1,ψ
m×m Hm(t)

)
= h(t) + a(t)y′2r (t) + b(t)yr(t)y

′
r(t).

(4.24)
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In matrix notation, equation (4.24) can be written as:

CT
m

(
Hm(t)+b(t)y′r(t)P

α,ψ
m×mHm(t) + (2a(t)y′r(t)

+ b(t)yr(t))P
α−1,ψ
m×m Hm(t)

)
= F (t),

(4.25)

where F (t) = h(t) + a(t)y′2r (t) + b(t)yr(t)y
′
r(t).

The desired numerical solution is obtained by solving (4.25) for CT
m and substituting

the value of CT
m in equation (4.23). Table 4.3 shows the max absolute-error for several J

and α values. In Figure 4.3, the exact and approximate solutions for various selections
of the function ψ(t) are shown.

Table 4.3. Absolute error for various J and α values.

J α = 1.6 α = 1.7 α = 1.8 α = 1.9 α = 2.0

5 1.981467× 10−4 1.637253× 10−4 1.253471× 10−4 9.497683× 10−5 7.13125× 10−5

6 6.389746× 10−5 4.824637× 10−5 3.526588× 10−5 2.516453× 10−5 1.753205× 10−5

7 2.0568703× 10−5 1.435892× 10−5 9.874581× 10−6 6.624682× 10−6 4.413058× 10−6

8 6.6420531× 10−6 4.346458× 10−6 2.785478× 10−6 1.753052× 10−6 1.105386× 10−6

Example 4.2.4. Consider the fractional order non-linear Lane Emden boundary value
problem with ψ-Caputo fractional derivative

Dα,ψ0 y(t) +
2

ψ(t)
y′(t)− 6y2(t) = h(t), (4.26)

where 1 < α ≤ 2, and t ∈ [0, 1]. Subject to the boundary conditions

y(0) = 0, y(1) = 2.

For α = 2 and h(t) = 6 + 2
ψ(t)
− 6((ψ(t))2 + ψ(t))2, the exact solution of the problem

(4.26) is given by y(t) = (ψ(t))2 + ψ(t).
We first linearize the non-linear terms in equation (4.26) using the Quasilinearization
technique, and then use the ψ-Haar wavelet approach to determine the numerical
solution of the linearized FDE using the same procedure as in example 4.2.3.
The max absolute-error for various α and J values is shown in Table 4.4. In Figure
4.4, the exact and approximate solutions for various selections of α and their max
absolute-error are plotted.

4.3 Conclusion

Operational matrices approach has been applied for the fist time to ψ-FDEs
with boundary conditions. One of the major advantages of the technique is
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Table 4.4. max absolute error for ψ(t) = tan( t
2
) and different choices of α, J .

ζ = 0.5 and α = 0.75
α J = 5 J = 6 J = 7 J = 8

1.5 6.405136× 10−6 2.372232× 10−6 8.34561× 10−7 2.450634× 10−7

1.6 3.866363× 10−6 1.233445× 10−6 3.756732× 10−7 1.234257× 10−7

1.7 3.213574× 10−6 8.766463× 10−7 2.391531× 10−7 5.643642× 10−8

1.8 2.827468× 10−6 7.563442× 10−7 1.746525× 10−7 4.686534× 10−8

1.9 2.457272× 10−6 5.846783× 10−7 1.584563× 10−7 3.532453× 10−8

that it is a convenient and effective numerical scheme for solution of non-
linear ψ-FDEs. The operational matrices are sparse matrices, which help
to reduce the computational cost of the method. The numerical scheme
given in this study is based on ψ-Haar wavelet OMs of integration. For
linear and non-linear ψ-FDEs, these OMs are generated and successfully
used to solve two and multi-point boundary value problems. Other wavelet
bases, such as Gegenbauer, Chebyshev, and Legendre wavelet, can be used
with the proposed technique. The proposed method can be used to solve
ψ-fractional partial differential equations as well.
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Approximate solutions of equation (3.1) for different choices of ψ(t) and α.

Figure 4.1: Exact and Approximate solutions and the corresponding max absolute
error of equation (3.1) for ψ(t) = t and ψ(t) = (t2 + t)/2.
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Approximate solution of (4.15) for different choices of α and ψ

Figure 4.2: For equation (4.15). Exact and approximate solutions for ψ(t) = t and
ψ(t) = t3 and the corresponding max absolute error.
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For equation (4.19):Exact and Approximate solutions for different choices of ψ

Figure 4.3: For equation (4.19):Approximate solutions for different choices of α and
the max absolute error.
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Numerical solutions of (4.26) for ψ(t) = t and ψ(t) = tan( t
2
) for different values of α

Figure 4.4: exact and approximate solutions of (4.26) for ψ(t) = t and ψ(t) = tan( t
2
)

and the corresponding max absolute error.
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Chapter 5

Numerical Solution to ψ-Fractional
Partial Differential Equations
(ψ-FPDEs)

In this chapter we extended the ψ-Haar wavelet methods for boundary value
problems to develop a technique for numerical solutions of linear ψ-FPDEs.
This technique is based on our paper [60]

5.1 ψ-FPDEs with constant coefficients

In this section we discuss numerical solutions of linear FPDEs with constant
coefficients involving ψ-Caputo fractional derivative.

∂α,ψy(x, t)

∂tα,ψ
+ λ

∂β,ψy(x, t)

∂tβ,ψ
+ µy(x, t) = η

∂γ,ψy(x, t)

∂xγ,ψ
+ f(x, t), (5.1)

where 0 < α ≤ 2, 0 ≤ β ≤ 1, and 1 ≤ γ ≤ 2, and have non-homogeneous
boundary and initial conditions given by

y(x, 0) = ρ(x),
∂y(x, t)

∂t
|t=0 = σ(x), y(0, t) = ξ(t), y(1, t) = ζ(t). (5.2)

For 1 < α ≤ 2 and λ, µ, η > 0, the equation (5.1) reduces to the fractional
telegraph equation. For special cases, it includes the heat, wave, and Poisson
equations. The ψ-Haar wavelets technique provides numerical solutions. By
approximating ∂α,ψy(x,t)

∂tα,ψ
using two-dimensional Haar wavelets, we have:

∂α,ψy(x, t)

∂tα,ψ
= HT

m(x)Cm×mHm(t). (5.3)
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Operating both sides of equation (5.3) by Iα,ψt , we get:

y(x, t) = HT
m(x)Cm×m

(∫ t

0

ψ′(t)
(ψ(t)− ψ(s))α−1

Γ(α)
Hm(s)ds

)
+ p(x)t+ q(x). (5.4)

Applying the initial conditions y(x, 0) = ρ(x), ∂y(x,t)
∂t
|t=0 = σ(x), from equation

(5.2) we have q(x) = ρ(x) and p(x) = σ(x). Therefore equation (5.4) becomes

y(x, t) = HT
m(x)Cm×mP

α,ψ
m×mHm(t) + σ(x)t+ ρ(x). (5.5)

Applying ∂β,ψ

∂tβ,ψ
to equation (5.5), we obtain

∂β,ψy(x, t)

∂tβ,ψ
= HT

m(x)Cm×mP
α−β,ψ
m×m Hm(t) + σ(x)

t1−β

Γ(2− β)
. (5.6)

By substituting equations (5.3), (5.5) and (5.6) in equation (5.1), we have

η
∂γ,ψy(x, t)

∂xγ,ψ
= HT

m(x)Cm×mHm(t) + λHT
m(x)Cm×mP

α−β,ψ
m×m Hm(t)

+µHT
m(x)Cm×mP

α,ψ
m×mHm(t) + g(x, t)

= HT
m(x)

(
Cm×m(I + λPα−β,ψ

m×m + µPα,ψ
m×m +Gm×m)

)
Hm(t),

(5.7)

where

g(x, t) = σ(x)

(
λt1−β

Γ(2− β)
+ µt

)
+ µρ(x)− f(x, t) = HT

m(x)Gm×mHm(t).

Applying Iγ,ψx on both sides of equation (5.7), we have

ηy(x, t) = Iγ,ψx HT
m(x)

(
Cm×m(I + λPα−β,ψ

m×m + µPα,ψ
m×m +Gm×m)

)
Hm(t)

+ xφ1(t) + φ2.

(5.8)

Implementing the conditions y(0, t) = ξ(t),we get φ2(t) = ξ(t) and y(1, t) = ζ(t)
gives

φ1(t) = Iγ,ψx HT
m(1)

(
Cm×m(I + λPα−β,ψ

m×m + µPα,ψ
m×m +Gm×m)

)
Hm(t)

+ ζ(t)− ξ(t).
(5.9)
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Substituting equation (5.9) in equation (5.8) we have

ηy(x, t) = HT
m(x)

(
(P γ,ψ

m×m)T − (Qγ,ψ
m×m)T

)
×
{
Cm×m(I + λPα−β,ψ

m×m + µPα,ψ
m×m +Gm×m)

}
Hm(t) + x(ζ(t)− ξ(t)) + ξ(t).

(5.10)

where

Iγ,ψx Hm(x) = P γ,ψ
m×mHm(x) = HT

m(x)(P γ,ψ
m×m)T

and

xIγ,ψx Hm(1) = Qγ,ψ
m×mHm(x).

From equation (5.5) and equation (5.10) we get the Sylvester equation(
(P γ,ψ

m×m)T − (Qγ,ψ
m×m)T

)(
Cm×m(I + λPα−β,ψ

m×m + µPα,ψ
m×m

)
− ηCm×mPα,ψ

m×m

= Sm×m −
(

(P γ,ψ
m×m)T − (Qγ,ψ

m×m)T
)
Gm×m,

(5.11)

where s(x, t) = x(ζ(t)− ξ(t)) + ξ(t)− η(σ(x)t+ %(t)) = HT
m(x)Sm×mHm(t). Solving

equation (5.11) for Cm×m and using equation (5.5) or equation (5.6) we can
get the solution of the problem (5.1)

5.2 ψ-FPDEs with variable coefficients

This section discusses the procedure for numerical solutions of the following
class of ψ-FPDEs.

∂γ,ψy(x, t)

∂tγ,ψ
− a(x)

∂α,ψy(x, t)

∂xα,ψ
+ b(x)

∂β,ψy(x, t)

∂xβ,ψ
+ d(x)y(x, t) = f(x, t), (5.12)

where 1 < α ≤ 2, 1 < β ≤ 2, 0 < γ ≤ 2 and with the initial conditions:

y(x, 0) = φ1(x),
y(x, t)

∂t
|t=0= ψ1(x), or y(x, 0) = φ1(x), y(x, 1) = ψ2(x) (5.13)

and boundary conditions:

y(0, t) = µ(t), y(1, t) = ν(t), (5.14)

Here, we present a numerical technique based on ψ-Haar wavelets opera-
tional matrices for ψ-fractional integration. We approximate ∂α,ψy(x,t)

∂xα,ψ
with

Haar wavelets as
∂α,ψy(x, t)

∂xα,ψ
= HT

m(x)Cm×mHm(t). (5.15)

52



Operating Iα,ψx on equation (5.15), we get

y(x, t) = Iα,ψx HT
m(x)Cm×mHm(t) + p(t)x+ q(t). (5.16)

Applying boundary conditions in equation (5.14), to equation (5.16), we
have

q(t) = µ(t), p(t) = −Iα,ψx HT
m(x)Cm×mHm(t) + ν(t)− µ(t). (5.17)

Therefore, equation (5.16) can be written as

y(x, t) =Iα,ψx HT
m(x)Cm×mHm(t)− xIα,ψx HT

m(x)Cm×mHm(t)

+ x(nu(t)− µ(t)) + µ(t).
(5.18)

Since Iα,ψx Hm(x) = Pα,ψ
m×mHm(x) and φ1(x)Iα,ψx Hm(x) = Qα,1

m×m, where φ1(x) = x.
Therefore (5.18) takes the form

y(x, t) =HT
m(x)(Pα,ψ

m×m)TCm×mHm(t)−HT
m(x)(Qα,1

m×m)TCm×mHm(t)

+ x(ν(t)− µ(t)) + µ(t).
(5.19)

Applying the ψ-Caputo operator ∂β,ψ

∂xβ
on (5.18), we have

∂β,ψy(x, t)

∂xβ
=Iα,ψx HT

m(x)Cm×mHm(t)− x1−β

Γ(2− β)
Iα,ψx HT

m(x)Cm×mHm(t)

+
x1−β

Γ(2− β)
(nu(t)− µ(t)) + µ(t).

(5.20)

For simplicity, we introduced some convenient notations.

φ2 =
b(x)x1−β

Γ(2− β)
,

φ3 = xd(x),

r(x, t) =
x1−β

Γ(2− β)
(nu(t)− µ(t)) + d(x)q(t) + (ν(t)− µ(t))xd(x),

s(x, t) = x(ν(t)− µ(t)) + µ(t) + ψ1(x)t+ φ1(x),

g(x, t) = x(ν(t)− µ(t))− µ(t) + (ψ2(x)− φ1(x))t+ φ1(x)

d(x)Iα,ψx Hm(x) = P̄α,ψ
m×mHm(x), b(x)Iα,ψx Hm(x) = P̄α,ψ

m×mHm(x).

Substituting equations (5.15), (5.18), and (5.20) in equation (5.12), we have

∂γ,ψy(x, t)

∂tγ,ψ
=

(
a(x)HT

m(x)−HT
m(x)(P̄α−β

m×m)T +HT
m(x)(Q2,α

m×m)T −HT
m(x)(P̄α

m×m)T

+HT
m(x)(Qα,3

m×m)T

)
Cm×mHm(t) +HT

m(x)Rm×mHm(t).
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Applying Iγ,ψx on previous equation, we get

y(x, t) =

(
a(x)HT

m(x)−HT
m(x)(Pα−β

m×m)T +HT
m(x)(Q2,α

m×m)T −HT
m(x)(P̄α

m×m)T

+HT
m(x)(Qα,3

m×m)T

)
Cm×mIγ,ψx Hm(t) +HT

m(x)Rm×mIγ,ψx Hm(t) + w(x)t+ ω(x).

Using the initial conditions, we get ω(x) = φ1(x) and w(x) = ψ1(x). Therefore

y(x, t) =

(
a(x)HT

m(x)−HT
m(x)(P̄α−β

m×m)T +HT
m(x)(Q2,α

m×m)T −HT
m(x)(P̄α

m×m)T

+HT
m(x)(Qα,3

m×m)T

)
Cm×mIγ,ψx Hm(t) +HT

m(x)Rm×mIγ,ψx Hm(t) + ψ1(x)t+ φ1(x).

(5.21)

Now, we employ the boundary conditions to get w(x) = φ1(x) and

v(x) =

[(
a(x)HT

mx−HT
mx(P̂α−β,ψ

m×m )T +HT
mx(Qα,ψ,2

m×m)T −HT
mx(P̄α,ψ

m×m)T

+HT
mx(Qα,ψ,3

m×m)T
)
Cm×m +HT

mxRm×m

]
Iγt Hm(1) + ψ2x− φ1(x).

(5.22)

Therefore, equation (5.21) becomes

y(x, t) =

[(
a(x)ψTM(x)−HT

m(x)(P̂α−β,ψ
m×m )T +HT

m(x)(Qα,ψ,2
m×m)T −HT

m(x)(P̄α,ψ
m×m)T

+HT
m(x)(Qα,ψ,3

m×m)T
)
Cm×m +HT

m(x)Rm×m

](
P γ
m×m −Q

γ
m×m

)
ψm(t)

+ (ψ2(x)− φ(x))t+ φ1(x).

(5.23)

Combining equations (5.19) and (5.21) gives the Sylvester equation(
(Pα,ψ

m×m)T − (Qα,ψ,1
m×m)T

)
Cm×m −

(
η

m
ψm×mAm×mH

T
m×m − (P̂α−β,ψ

m×m )− (P̄α,ψ
m×m)T

+ (Qα,ψ,2
m×m)T + (Qα,ψ,3

m×m)T
)
Cm×mP

γ
m×m = Rm×mP

γ
m×m + Sm×m,

(5.24)
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where Am×m := diag[(a(xi))], xi = 2i−1
2m

, i = 1, 2, 3, · · · ,m. Also, using equations
(5.19) and (5.23), we obtain the following matrix form:(

(Pα,ψ
m×m)T − (Qα,ψ,1

m×m)T
)
Cm×m −

(
η

m
ψm×mAm×mH

T
m×m − (P̂α−β,ψ

m×m )

− (P̄α,ψ
m×m)T + (Qα,ψ,2

m×m)T + (Qα,ψ,3
m×m)T

)
× Cm×m

(
P γ
m×m −Q

γ
m×m

)
= Rm×m

(
P γ
m×m −Q

γ
m×m

)
+Gm×m.

(5.25)

By solving equation (5.25) for Gm×m and substituting it into equation (5.19),
we get the approximate solution of problem (5.12).
To solve various ψ-FPDEs, we use the ψ-Haar wavelets technique. Addi-
tionally, we compared the graphical results obtained using the proposed
method with the exact solutions. For the first two examples we use the
technique discussed in the subsection 5.1 and for the other two examples
we follow the procedure discussed in subsection 5.2

Example 5.2.1. For example one, consider the time-fractional telegraph equation with
ψ-Caputo fractional derivative

∂α,ψy(x, t)

∂tα,ψ
+
∂α−1,ψy(x, t)

∂tα−1,ψ
+ y(x, t) =

∂2y(x, t)

∂x2

+
Γ(2α + 1)

Γ(α + 1)

(
1 +

ψ(t)

α + 1

)
(ψ(t))α,ψ cos(7x) + 50(ψ(t))2α cos(7x),

(5.26)

satisfying the initial and boundary conditions

y(x, 0) = 0,
∂y(x, t)

∂t
|t=0 = 0, y(0, t) = (ψ(t))2α, y(1, t) = 0.7539022(ψ(t))2α.

The exact solution for the problem (5.26) is given by: y(x, t) = (ψ(t))2α cos(7x). Exact
and approximate solutions of the problem (5.26) and their absolute error are plotted
in Figure 5.1. Also absolute error for problem (5.26) is given in Table 5.1 for various
choices of the parameters α, J, t and x.

Example 5.2.2. Consider the ψ-FPDE given by:

∂α,ψy(x, t)

∂tα,ψ
− λ∂

2y(x, t)

∂x2
=

(
(ψ(t))1−α

Γ(2− α)
− Γ(3α + 1)

Γ(2α + 1)
(ψ(t))2α

)
+ 144λψ(t)(1− (ψ(t))3α−1) sin(12x),

(5.27)

where 0 ≤ α ≤ 1, and with the initial and boundary conditions:

y(x, 0) = y(0, t) = 0, y(1, t) = −0.536573ψ(t)(1− (ψ(t))3α−1).
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Table 5.1. Absolute error for ψ(x) = sin(x)

t x α J = 3 J = 4 J = 5 J = 6 J = 7

0.25 0.20 1.5 3.3780× 10−3 7.4702× 10−4 2.4498× 10−5 8.0425× 10−6 2.6428× 10−6

0.50 1.6 2.1513× 10−3 6.5313× 10−4 1.9862× 10−5 6.0507× 10−6 1.8462× 10−6

0.80 1.7 2.0818× 10−3 5.8754× 10−4 1.6603× 10−5 4.6985× 10−6 1.3317× 10−6

0.50 0.20 1.8 2.0718× 10−3 5.4730× 10−4 1.4458× 10−5 3.8213× 10−6 1.0106× 10−6

0.50 1.9 2.0363× 10−3 5.3432× 10−4 1.3359× 10−5 3.3400× 10−6 8.3502× 10−7

0.80 2.0 2.0363× 10−4 5.3432× 10−4 1.3359× 10−5 3.3400× 10−6 8.3502× 10−7
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Figure 5.1: Approximate and exact solutions of equation (5.26) and their absolute
error.

The exact solution of problem (5.27) is given by

y(x, t) = sin(12x)ψ(t)(1− (ψ(t))3α−1).

Approximate and exact solution of the problem (5.27) and their absolute error are
plotted in Figure 5.2.

Also the maximum absolute error is presented in the Table 5.2.

Table 5.2. Maximum absolute error for ψ(x) = x2 and different values of J and α.

t x α J = 3 J = 4 J = 5 J = 6 J = 7

0.25 0.20 0.5 4.3007× 10−2 4.1167× 10−4 4.5672× 10−5 3.2361× 10−5 3.4349× 10−6

0.50 0.6 6.3553× 10−3 6.2332× 10−4 5.4130× 10−5 4.2321× 10−6 2.6340× 10−7

0.80 0.7 4.6571× 10−3 2.7212× 10−5 4.2014× 10−6 3.1478× 10−6 4.3216× 10−7

0.50 0.20 0.8 6.5786× 10−4 6.7634× 10−5 6.3132× 10−6 4.7324× 10−7 3.6210× 10−7

0.50 0.9 2.1714× 10−4 5.3452× 10−6 3.0884× 10−6 4.2703× 10−7 5.7381× 10−8

0.80 1.0 3.2738× 10−5 1.2753× 10−6 2.8801× 10−7 4.6721× 10−8 8.5382× 10−9

Example 5.2.3. Consider the linear fractional diffusion equation with ψ-Caputo deriva-
tive

∂y(x, t)

∂t
= a(x)

∂1.8,ψy(x, t)

∂x1.8,ψ
+ f(x, t), (5.28)
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Figure 5.2: Approximate and exact solutions of equation (5.27) and their absolute
error.

with initial and boundary conditions y(x, 0) = (ψ(x))2(1−ψ(x)) and (0, t) = 0, y(1, t) =
0 respectively.

For a(x) = Γ(1.2)(ψ(x))1.8 and f(x, t) = (6ψ(x)− 3)(ψ(x))2e−t, the problem (5.28)
has the exact solution y(x, t) = ((ψ(x))2 − (ψ(x))3)e−t. Numerical and exact solutions
using ψ-Haar wavelets technique and their absolute error for α = 1.8 and J = 5 are
shown in Figure 5.3.

Table 5.3. Absolute error for t = 0.25, t = 0.5, different values of J , α and ψ(x) = x3

t x α J = 3 J = 4 J = 5 J = 6 J = 7

0.25 0.20 1.5 1.2733× 10−3 6.2471× 10−4 3.0934× 10−4 1.5391× 10−4 7.6766× 10−5

0.50 1.6 1.2910× 10−3 6.3216× 10−4 3.1273× 10−4 1.5552× 10−4 7.7551× 10−5

0.80 1.7 1.1161× 10−3 5.4369× 10−4 2.6824× 10−4 1.3321× 10−4 6.6382× 10−5

0.50 0.20 1.8 7.1349× 10−4 3.4173× 10−4 1.6710× 10−4 8.2612× 10−5 4.1071× 10−5

0.50 2.0 6.1030× 10−5 1.5258× 10−5 3.8146× 10−6 9.5367× 10−7 2.3841× 10−7
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Figure 5.3: Approximate and exact solutions of equation (5.28) and their absolute
error.

Example 5.2.4. Here we consider the convection-diffusion equation with ψ-Caputo
fractional derivative:

∂γ,ψy(x, t)

∂tγ,ψ
= −ax∂

α,ψy(x, t)

∂xα,ψ
+ bx

∂β,ψy(x, t)

∂xβ,ψ
+ f(x, t), (5.29)
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where 1 < α ≤ 2, 0 < β ≤ 1, 0 < γ ≤ 2 and with initial and boundary conditions:
y(x, 0) = y(x, 1) = 0 y(0, t) = 0, y(1, t) = 0. We solve this problem with a(x) =
Γ(β + 2)Γ(5− {α + β})ψ(x)β, b(x) = Γ(2β + 2− α)Γ(5− 2α)ψ(x)α, and

f(x, t) =(2πψ(x)2β+1 − ψ(x)4−α)ψ(t)1−γE2,2−γ(−(2πψ(t))2)

+

(
Γ(2β + 2)Γ(5− {α + β})− Γ(5− 2α)ψ(x)2β+1

+ Γ(5− 2α)(Γ(2β + 2− α)− Γ(β + 2))ψ(x)4−α
)

sin(2πψ(t)).

The exact solution of the problem (5.29) is

y(x, t) = (ψ(x)2β+1 − ψ(x)4−α) sin(2πψ(t)).

Exact and approximate solutions of problem 5.29 and their absolute error is plotted in
Figure 5.4. Also absolute error is given in Table 5.4. for various values of α, x and J
at t = 0.25 and t = 0.50.

Table 5.4. Absolute error for ψ(x) = x2

t x α J = 3 J = 4 J = 5 J = 6 J = 7

0.25 0.20 1.5 4.3854× 10−4 1.4252× 10−4 4.6203× 10−5 1.4996× 10−5 4.8789× 10−6

0.50 1.6 3.3031× 10−4 1.0001× 10−4 3.0183× 10−5 9.1122× 10−6 2.7562× 10−6

0.80 1.7 2.4252× 10−4 6.8593× 10−5 1.9314× 10−5 5.4339× 10−6 1.5301× 10−6

0.50 0.20 1.8 1.7673× 10−4 4.6930× 10−5 1.2396× 10−5 3.2674× 10−6 8.6081× 10−7

0.50 2.0 1.3575× 10−4 3.4133× 10−5 8.5580× 10−6 2.1426× 10−6 5.3605× 10−7
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Figure 5.4: Approximate and exact solutions of equation (5.29) and their absolute
error.

5.3 Conclusion

We developed and used the ψ-Haar wavelets operational matrix of integra-
tion of fractional order for the first time for numerical solution of ψ-FPDEs.
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The numerical results of the proposed method are compared to the exact
solutions and illustrated along with their absolute error in the figures. Fur-
thermore, the absolute errors are presented in tables, indicating that our
method agrees well with the exact solutions. The proposed method can
also be applied to other wavelet bases, such as Legendre, Chebyshev, and
Gegenbauer wavelets and can also be applied to nonlinear ψ-FPDEs.
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Chapter 6

Conclusion

Fractional differential equations are the best way to model many real-world
physical phenomena. Apart from modelling, solution strategies and their
repercussions are essential for determining critical points where a significant
divergence or bifurcation begins. As a result, high-precision solutions are
always required.The ψ-Caputo fractional derivatives give additional flexibil-
ity to mathematical models, and the ψ-Caputo derivative has the ability to
extract hidden features of real-world phenomena. We have derived the ψ-
Haar wavelet operational matrix of fractional order integration. This matrix
is successfully utilized to solve linear and nonlinear fractional differential
equations involving ψ-Caputo fractional derivative with initial and bound-
ary conditions. This method is simple and more convergent comparatively
to the other methods. We solved several linear and nonlinear initial and
boundary value problems using ψ-Haar wavelet operational matrix method.
We also extended this method to solve fractional partial differential equa-
tions involving ψ-Caputo fractional derivative with initial and boundary
conditions. Furthermore, we also performed error analysis from which we
found error bound. ψ-Haar wavelets technique can also be extended to
solve ψ-fractional nonlinear partial differential equations. The method may
be extended to other wavelet basis, including Legendre wavelets, Chebyshev
wavelets, and Gegenbauer wavelets.
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