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Abstract 

Geometrical frustration usually causes due to the lattice's geometry has become a subject of 

recent intensive experimental and theoretical work. The spin frustration found in triangular, 

pyrochlore, and kagome lattice geometry has a large degenerate ground state that suppresses 

long-range order (LRO) and capable of new quantum stated like spin liquid, spin nematic, and 

spin ice, etc. A large number of experimental and theoretical studies on the kagome 

antiferromagnet have been accomplished to explore the magnetism in it. The experimental 

investigation revealed that changing the spin moment from lower to higher value, spin liquid 

diminish which allows the compound to be long-range magnetic ordered. It has been reported 

that the long-range order is intrinsic in the classical Heisenberg spin system. Therefore, the 

evolution of magnetism in the higher spin moment (S = 5/2) classical system MgMn3(OH)6Cl2, 

which is the end classical spin compound in the transition metal hydroxyhalogenide series has 

become interesting in the scientific and technical point of views.
 

The synthesis, structural, and magnetic characterization of an S = 5/2 classical spin kagome 

compound MgMn3(OH)6Cl2 will be the subject of interest to know the ground state of this spin 

system. The white coloured polycrystalline MgxMn4-x(OH)6Cl2 compound has been successfully 

synthesized by selectively substituting the triangular-lattice plane Mn
2+

 with non-magnetic Mg
2+

. 

The compound crystallizes in rhombohedral structure in space group R-3m, in a similar crystal 

structure to the much-researched quantum spin liquid candidates herbertsmithite ZnCu3(OH)6Cl2 

and tondiite MgCu3(OH)6Cl2. The temperature dependant magnetic susceptibility reveals 

antiferromagnetic transition below TN ~ 8 K. The neutron powder diffraction experiment 

confirmed long-ranged magnetic order developed below TN ~ 8 K. The obtained value of critical 

exponent β = 0.35, agrees with a 3D Heisenberg spin system with 120° nearest-neighbor spin 

structure confined in the kagome plane with spin-vector chirality of q = +1 below the transition 

temperature (TN). Since the transition temperature in the MgxMn4-x(OH)6Cl2 compound lies 

between 7.6 - 8 K, present work suggests the intrinsic nature of long-range order in classical 

Heisenberg kagome antiferromagnet and provides a classical reference system to quantum 

kagome antiferromagnets. 
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Chapter-1 

Magnetism, Geometrical Frustration 

 

1.1. Introduction 

 

The phenomenon of magnetism in solids has received a lot of interest since ancient times 

because of scientific and technological importance. The advancement in the field of magnetism 

has started from the studies of strongly correlated electron system in which the collective 

interaction between the electrons is treated by quantum mechanical effect and provides the 

opportunity to find novel states of matter. The geometrical frustration which is supposed to arise 

due to lattice geometry of the crystal for which the coupling between the lattice and the spin 

makes it difficult for a system to gain the lowest possible energy states has been playing a central 

role to induce such novel states of matter. The competition between the lattice frustration and the 

exchange interaction in the frustrated system results in unconventional ground states like spin 

liquid, spin ice, and spin nematic, etc. [1-3]. Geometrical frustration is usually found in 3D-

pyrochlore lattice, triangular lattice, and kagome lattice geometry. The kagome lattice is suitable 

to understand the noble states like spin liquid in solids because of having large degenerate 

ground states in comparison to other lattice geometry. The constituents spin in the spin liquid are 

highly correlated but fluctuating strongly down to low temperature. The spin liquid can be 

classical and quantum, depending on the spin moment. The experimental observation of S = 1/2 

quantum spin kagome herbertsmithite [4-5] complies with the theoretical prediction for quantum 

spin liquid, whereas there is a discrepancy between the experimental results of S = 2 quasi-

classical spin kagome MgFe3(OH)6Cl2 [6] and theoretical prediction of classical kagome lattice, 

which lead us to explore the ground state of classical spin kagome to search the interlaying 

physics inside it. 
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1.2. Geometrical Frustration 

Geometrical frustration in a magnetic solid arises due to the geometry of the magnetic lattice and 

having different types of conflicting interaction [1], which results in a large number of ground 

state at zero temperature along with unusual thermal ordering. The simplest example of 

geometrical frustration in two-dimensional triangular lattices in which Ising spin resides in the 

vertices of the triangles as sketched in Fig.1.1 (a). The energy is minimized when each spin is 

aligned opposite to neighbors. Once the first two spins align anti-parallel, the third one is in 

frustration because it has two possible orientations of the spins, either up or down. The third spin 

cannot simultaneously minimize its interactions with the other two spins. Since this effect could 

occur for each spin, the ground state of this lattice geometry exhibits six-fold degeneracy, as 

depicted in Fig 1.1(a).  

 

(a)

 

 

 

Figure 1.1. (a) Ising spins at the vortices of triangular plaquettes along with six-fold degeneracy, 

(b) examples of compromise Heisenberg or XY 120º spin structure that form on triangular 

plaquettes.  

32

1 2 3 4 5 6

1

(b) 
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The spin system can also be frustrated with various types of conflicting interactions [1]. If we 

consider a chain of spins, whether the nearest neighbor (nn) interaction J1 is ferromagnetic and 

the next nearest neighbor (nnn) interaction J2 is antiferromagnetic nature. When ǀJ2ǀ˂˂J1, the 

ground state is ferromagnetic; every nearest neighbor (nn) is satisfied, but the next nearest 

neighbor (nnn) interaction does not satisfied. When ǀJ2ǀ exceeds a critical value, the 

ferromagnetic ground state will no longer valid; both the nn and nnn bonds are not completely 

satisfied. Therefore, the spin system is frustrated when the two interacting spins do not satisfy 

each other completely.  Apart from the Ising spin, XY and Heisenberg spin on the vertices of a 

triangular lattice form a ground state that is a compromise canted configuration of spins with the 

neighbors at 120º to one another [7], as depicted in Fig 1.1(b). Macroscopic ground state 

degeneracy forms in edge-sharing or vortex-sharing triangles. Moreover, the degeneracy depends 

on the nature of connectivity, whether it is edge-sharing or vertex-sharing. The low lattice 

connectivity reduces the constraint on individual spins and increases the number of degree-of-

freedom in the ground state. 

 Geometrical frustration is usually found in the lattice, which is composed of side-sharing 

triangles and of corner-sharing triangles. Pyrochlore, triangular, and kagome lattice geometry 

composed such triangles offer frustration. Geometrical frustration suppresses long-range order 

by reducing the transition temperature with respect to Curie-Weiss temperature (θCW). 

Frustration is quantified by the ratio of Curie –Weiss temperature to transition temperature by f = 

|θcw|/TN.  Ramirez A. P [8] has set up some criteria for geometrical frustration, which are 

presented in Table 1.1. 

 

Table 1.1. Criterions for a lattice system to be geometrically frustrated as set by Ramirez A.P.  

 

No. Frustration Index Type of frustration 

1. f = 1 Un-frustrated 

2. 1 ˂ f ˂ 10 Moderate frustration 

3. f  ˃ 10 Strong frustration 
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1.3. Geometrically Frustrated Lattices 

 

The connectivity of triangular units and lattice dimensionality are structural features to 

destabilize conventional magnetic order alongside the geometrical frustration of the triangular 

plaquettes. The ground state degeneracy is large (system with low connectivity, e.g., vertex-

sharing triangles) and magnetic order being destabilized for low-dimensionality systems. Based 

on the low connectivity and dimensionality, the frustrated system can be sub-divided into three 

groups, namely- pyrochlore lattice made up of vertex-sharing tetrahedra and the 2-dimensional 

triangular and kagome lattices which are made up of edge-sharing and vertex sharing triangles, 

respectively. Brief descriptions of all of them are given here. 

 

1.3.1. Pyrochlore-3D Frustrated Lattice 

 

The most studied family of 3-dimensional frustrated lattices exhibit general formula A2B2O7; A 

and B are rare-earth or transitional metal ion treated as a playground of geometrical frustration. 

The rare-earth pyrochlore structure is cubic in which A and B cation arranged in separate 

interpenetrating lattices of vortex-sharing tetrahedra as displayed in Fig. 1.2 (a). The A site is 

occupied by a rare earth element whose physical and chemical properties depend on its 4f 

electronic shell occupation [9-10]. The strong frustrated nearest neighbor (nn) interaction, next-

nearest neighbor (nnn) exchange interaction, Dzyaloshinskii–Moriya (DM) exchange, dipolar 

interaction, and magneto-elastic couplings all are associated to the development of spin-spin 

correlation, which results in the formation of novel magnetic effects like spin-liquid, spin-glass, 

or disordered spin-ice states, etc. [11-12].  
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(a)         (b) 

 

Figure 1.2. (a) Typical pyrochlore structure in which A (rare earth atom) and B (transition 

magnetic atom) site alternatively stack on each other forming complete pyrochlore lattice 

structure, (b) crystal structure of one of the representative pyrochlore compound Er2Ti2O7 in 

which erbium (Er) and titanium (Ti) atoms alternatively stack forming one other. Geometrical 

frustration is supposed to arise due to the unequal triangular arms of the octahedra of this 

compound. (Reproduced from [13]). 

 

The most studied pyrochlore Er2Ti2O7 compound, whose crystal structure is similar to Fig. 1.1(b) 

is considered to have a frustrated magnet and XY antiferromagnet [14].  The other rare-earth 

titanate family R2Ti2O7 displays a wide range of exotic magnetic ground states like spin liquid 

state [15-17]. The materials with pyrochlore structure have been found to be used as ionic 

conductors, electronic insulators, superconducting materials (e.g., Cd2Re2O7) [18], etc.  

 

1.3.2. Triangular Lattice Geometry 

 

Triangular lattice is the simplest geometrically frustrated system in two dimensions space that 

consists of edge-sharing triangles, which is depicted in Fig. 1.3 (a). Two spins can easily 

A

B

O
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accommodate two sides of the triangle while the third spin is frustrated. If this third spin is up, 

then two arrangements out of the three are compatible; but one is incompatible. This leads to a 

large degeneracy in the ground state along with non-zero entropy. Despite its lower degeneracy 

compared to the vertex-sharing geometries, the triangular lattice is predicted to host exotic 

physics, including unconventional phase transitions [19-21] and skyrmion spin structures.  

Quantum spin liquid state has been observed in triangular lattices k - (BEDT-TTF)2Cu2(CN)3, 

CsCeSe2, and CsYbSe2 [22-23] because of having exotic ground states. Moreover, long-range 

order has been suppressed in the high spin triangular lattice CsCoCl3 [24]. 

  

  

(a)          (b) 

 

Figure 1.3. Schematic view of (a) triangular lattice composed of edge-sharing triangles and (b) 

kagome lattice build with vortex-sharing triangles. 

 

1.3.3. Kagome Lattice Geometry 

 

The kagome lattice consists of vortex-sharing triangles rather than an edge-sharing triangle in 

two-dimensional triangular lattices, as depicted in Fig. 1.1 (b), which has been treated as the 

model systems to explore frustrated magnetism as the lattices' low-connectivity produces a 

macroscopically degenerate ground state predicted to prevent magnetic order at T = 0 [25]. They 

are also thought to exhibit many essential features of high-temperature superconductors [26].   
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Geometrical frustration can easily be understood in vortex sharing kagome lattice with respect to 

the edge-sharing triangular lattice. The spin arrangement of two adjacent triangles in triangular 

and kagome lattice is presented in Fig. 1.4 (a-c). All the upper triangles in Fig. 1.4 (a-c) exhibit 

spin chirality +1 (when the spin rotates clockwise with 120º spin steps). The neighboring triangle 

in the edge-sharing triangular lattice has to have chirality -1 (spin rotate anti-clockwise with 120º 

spin steps) to minimize total exchange energy. As a result, the spin configuration at the bottom 

triangle is unlikely determined. 

 On the other hand, the neighboring triangles [i.e., bottom triangle in Fig. 1.4 (b-c)] in the 

kagome lattice have two choices: chirality +1 or chirality -1 with identical minimized energies. 

Since two neighboring triangles in the kagome lattice share one common spin, the  

  

   

 

Figure 1.4. Spin arrangement in two neighboring, (a) edge-sharing triangles, (b-c) vortex-sharing 

triangles with chirality +1, and chirality -1. 

 

upper triangle spin configuration has less influence on the bottom triangle spin in compared to 

edge-sharing triangular lattice in which two neighboring triangles share two common spins. This 

discrepancy gave higher degeneracy (or strong frustration) in the kagome lattice compounds. The 

crystal structure of jarosite and herbertsmithite mineral has kagome lattice geometry, which has 

already displayed novel physical properties. 

 

+

-

+

+

+

-
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1.4. Exotic Ground States 

Magnetism in solids is the result of magnetic moments related to individual electrons [27-28]. 

The magnetic materials are usually classified as diamagnetic, paramagnetic, ferromagnetic, 

antiferromagnetic, and ferrimagnetic. The last three have been treated as ordered magnetism 

related to the exchange interaction. The disorder in solids is the consequence of geometrical 

frustration can lead to the formation of unconventional ground states that do not break the 

symmetry and have complex types of ordering, like, spin ice, spin-liquid (QSL), and spin 

nematic, which would be discussed here to introduce exotic ground state. 

 

 

 

 (a)                                                 (b)    

Figure 1.5. (a) spin ice and water ice, and (b) spinon moving in spin liquids. 

 

1.4.1. Spin Ice 

 

Spin ice is a substance that is similar to water ice in that it can never be completely frozen 

because of a lack of a single minimal-energy state. The spin degree of freedom of spin ice with 

frustrated interaction prevents it from freezing. The low-temperature properties are displayed by 

spin ice, particularly residual entropy, closely related to crystalline water ice. The magnetic 
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ordering of spin ice resembles the positional ordering of hydrogen atoms in conventional water 

ice, as shown in Fig. 5 (a). 

 

1.4.2. Spin Liquid (SL) 

 

The spin liquid is the state of matter that does not display any ordering down to zero temperature 

without breaking symmetry, characterized by their long-range quantum entanglement, 

fractionalized excitation, and absence of ordinary magnetic order. Moreover, strong 

antiferromagnetic interaction with spinion moving through the materials is found in the spin 

liquid state [29]. The movement of spinion in the spin liquid state is as presented Fig. 5(b). Spin 

liquid could be classical or quantum, depending on the spin moment [30]. Several experimental 

techniques have been used to identify the spin liquid state in materials. Since many theoretical 

works have been accomplished on spin liquids, practical spin liquid materials have not yet been 

found. Some of the materials having spin liquid ground states are k-(BEDT-TTF)2Cu2(CN)3 and 

Ba3CuSb2O9 [31-32]. 

 

1.4.3. Spin Nematic 

 

The molecules in the liquid crystal break the rotational symmetries of the space without breaking 

its translational symmetries. Similarly, the magnetic moments in the nematic spin phase break 

the spin-rotational symmetries without breaking the time-reversal symmetry [33-35]. The 

quadrupolar ordering may easily form a spin-nematic state in the materials. When complex order 

parameters break the spin-rotation symmetry, such spin-nematic phases are predicted to form 

from the interplay of various interactions, including geometric frustration [36], biquadratic 

exchange [37], competing anti-and ferromagnetic exchange [38], and bond based order 

parameters [39]. The nematic spin phase is found in the layered triangular-lattice magnet 

NiGa2S4 [40].  
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1.5. Phase transition and Magnetic Models 

 

The phase transition utilizes the Landau theory [41] of the second-order phase transition to 

describe the states of the system in which the concept of the order parameter is an important 

factor. The non-zero value of the order parameter corresponds ordered phase at a temperature 

below the transition temperature (TC), whereas the zero value of the order parameter offers a 

disordered phase above the transition temperature (TC). The order parameter is the spontaneous 

magnetization for ferromagnet- 

𝑚 =
1

𝑁
 𝑆𝑖

𝑖

                                                                   (1.1) 

In which, Si represents the spin at ith state, and N is the total number of sites present in the 

lattice.  

 

The staggered magnetization represents the ordered parameter for antiferromagnets- 

𝑚∗ =
1

𝑁
 𝑆𝑖𝑒

𝑖𝑘  .𝑟 

𝑖

                                                          (1.2) 

Where 𝑟  and 𝑘   are the position of spin and wave vector, respectively. 

The magnetic phase transition is described according to Landau's theory based on the assumption 

that the free energy of a system can be expanded in terms of the order parameter. The free energy 

of a simple and homogeneous system with a spatially uniform order parameter (m) can be written 

as- 

𝐹 = 𝐹0 + 𝑉(
1

2
𝑟𝑚2 +

1

4
𝑢𝑚4 +

1

6
𝑣𝑚6 −

𝑚𝐻

𝑘𝐵𝑇
+        (1.3) 

The coefficients r, u, and v are dimensionless, and V is the system's volume.  
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In the second-order phase transition, the order parameter's increment is continuous, starting from 

zero at the critical temperature. In the magnetic system, the first derivative of free energy with 

respect to order parameter (m) is continuous, i.e., 
𝛿𝐹

𝛿𝑚
= 0. Three solutions would be available 

after solving Eq. (1.3) using the condition  
𝛿𝐹

𝛿𝑚
= 0, which yields- 

𝑚 = 0                                                                                  (1.4) 

𝑚 = ± −𝑟/𝑢 = ±(
𝑟′𝑇𝐶

𝑢
)

1
2(1 −

𝑇

𝑇𝐶
)

1
2                         (1.5) 

Here, 𝑟 = 𝑟′(𝑇 − 𝑇𝐶) by expanding r in the vicinity of TC. The solution at Eq. (1.4) represents 

the disordered state at 𝑇 > 𝑇𝐶 ; whereas the solution at Eq. (1.5) corresponds to the behavior 

below TC. The free energy F (m) as a function of magnetization (m) and temperature (T) is 

plotted in Fig. 1.6 (a), whereas the change of magnetization (m) with respect to temperature 

depicted in Fig 1.6 (b). 

 

 

 

(a)                (b) 

Figure 1.6. (a) Free energy as a function of magnetization (m) and temperature (T), (b) 

magnetization is non-zero below the critical temperature. Reproduce from [42].  

F(m, T)

m

T<TC

T>TC
T=TC

m

T
TC
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The Fig 1.6 (a) clearly displayed F(m) have only one global minimum at 𝑇 > 𝑇𝐶; there are two 

degenerate non-trivial global minima at  𝑇 < 𝑇𝐶 ; whereas at 𝑇 = 𝑇𝐶  gives a large number of 

degenerate ground states that are fluctuating around the global minima m = 0. 

 The thermodynamic properties of a system could be represented by a set of power-law 

near the critical temperature (TC). The order parameter for magnetic systems (m), specific heat 

(C), susceptibilities (χ), and correlation length (ξ) are summarized as- 

𝑚 = 𝑚0ǀ1 −
𝑇

𝑇𝐶
ǀ𝛽                                                                 (1.6) 

𝜒 = 𝜒0ǀ1 −
𝑇

𝑇𝐶
ǀ−𝛾                                                                  (1.7) 

𝐶 = 𝐶0ǀ1 −
𝑇

𝑇𝐶
ǀ−𝛼                                                                  (1.8) 

𝜉 = 𝜉0ǀ1 −
𝑇

𝑇𝐶
ǀ−𝜈                                                                   (1.9) 

Here β, γ, α, and ν are treated as the critical exponent, which depends on the type of system 

giving valuable information about the nature of phase transition. The critical exponents have the 

values according to Landau theory-  

𝛽 =
1

2
,          𝛾 = 1,         𝛼 = 0,    𝑎𝑛𝑑 𝜈 =

1

2
                         (1.10)       

 

Based on the obtained values of critical exponent, the second-order continuous phase transitions 

are mainly dependent on the dimensionality of the order parameter (D), e.g., spin; dimensionality 

of the system (d), and type of forces, whether short or long-range. The mean-field model is 

suitable to describe the phase transitions when systems have high lattice dimensionality and 

long-range interactions. Magnetic order is less favorable for the systems with low lattice-

dimensionality because of increased entropy of magnetic defects [43]. For example, a 1-

dimensional lattice of spins can never order because a defect's energy cost remains constant, but 
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the entropy continues to increase. So as long as T > 0, the free energy is negative and a defect 

can occur spontaneously from anywhere in the system to prevent long-range magnetic order. 

Whether the dimensionality of lattice increased, the cost of energy for defects raises so that for d 

> 3, magnetic order is always possible. Unconventional phase transitions are possible in the case 

of intermediated = 2 system. There are three magnetic models for three different values of D, 

which are- 

Ising model: The coupling of spin points along the local z-direction. The spin at each lattice site 

could have spin state 'S' in one of the two states (+1, or -1). These spins are allowed to interact 

with their neighbors. Neighboring spins that agree have lower energy than those that disagree; 

the system tends to the lowest energy, but heat disturbs this tendency, thus creating the 

possibility of different structural phases. The two-dimensional square lattice Ising model is one 

of the models to show a phase transition. 

 

XY (D=2) model: In the XY model, the Hamiltonian of two interacting particles can be written 

as-  

𝐻 = −𝐽  (𝑆𝑖𝑥𝑆𝑗𝑥 + 𝑆𝑖𝑦 𝑆𝑗𝑦 )

𝑛𝑛

                                               (1.11) 

The z-component of spins coupling is less with respect to x, and y component so that the spins 

can confine to rotate in the plane [44] The Mermin-Wagner’s theorem for two dimensions 

displayed that continuous symmetry cannot be broken spontaneously at any finite temperature 

that suggests no ordered phase at low temperature. 

 

Heisenberg (D=3) model: The Heisenberg model is the extension of the Ising and XY model in 

3-dimensional space. The Hamiltonian of interacting spin is as 

 

𝐻 = −𝐽  (𝑆𝑖𝑥𝑆𝑗𝑥 + 𝑆𝑖𝑦 𝑆𝑗𝑦 + 𝑆𝑖𝑧𝑆𝑗𝑧 )

𝑛𝑛

                              (1.12) 
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Here Si, and Sj are the spin of two interacting particles. The spin retains O(3) symmetry and can 

point along any direction on the three–dimensional sphere. This system is applicable to isotropic 

magnetic systems. 

 

1.6. Most Researched Geometrical Frustrated Compounds 

 

Geometrical frustration has been extensively studied in jarosite and in transition metal 

hydroxyhalogenide compound M2(OH)3Cl (where M = d electron transition metal magnetic ions, 

like Cu
2+

, Ni
2+

, Co
2+

, Fe
2+

, and Mn
2+

; and X = halogen ions like Cl
-
, F

-
, and Br

-
, etc). A short 

overview of some of the developments in these model materials would be discussed here. 

  

1.6.1. Jarosite compounds 

 

The Jarosite exhibit the common name of an extensive family of compounds of the form 

AB3(OH)6(SO4)2, where A
+
 = Na, K, Rb, NH4, H3O, Ag, Tl, and B

3+
 = Fe, Cr, V. They are the 

most studied family of kagome lattice antiferromagnets and is related to geometrical frustration 

and novel magnetism ranging from classical (S = 5/2) to quantum (S = 3/1, 1) limit [7]. The 

crystal structure of jarosite composed of kagome planes of magnetically active ions (B
3+

) is 

bound together by SO4 tetrahedral units as well as interstitial A
+
 ions, as presented in Fig. 1.7. 

The large variety of compounds would be available by substitution of both the A and B sites 

leads to a library of possible structures that have been found to display a range of both 

conventional long-range magnetic order and more exotic unconventional orderings that are 

summarized in Table 1.2. 
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Figure 1.7. Typical crystal structure of jarosite AB3(OH)6(SO4)2, which crystallizes mostly into 

R-3m cell settings displayed in a-c and a-b plane. The violet sphere represents the divalent 

diamagnetic ion. 

 

 

Table 1.2. Summary of different types of orderings found in the jarosites. 

 

Formula θ (K) TC (K) Ordering  References 

NaFe3(OH)6(SO4)2 -825 61 k = 003/2, q = 0 [45]  

KFe3(OH)6(SO4)2 -828 65 k = 003/2, q = 0 [46]  

AgFe3(OD)6(SO4)2 -677 51 k = 003/2, q = 0 [7]  

KCr3(OH)6(SO4)2 -70 1.8 k = 000, q = 0 [47]  

NaV3(OH)6(SO4)2 +52 33 k = 003/2, q = 0 [48]  
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The most studied classical S = 5/2 spin Fe-jarosite crystallizes into R-3m hexagonal structure 

shows a magnetically ordered state at low temperature into 120° spin system q = 0 magnetic 

structure arises due to the propagation of triangular motif with the spin chirality = +1 [7,49].  The 

observation of this in-plane structure, as opposed to the   𝟑  ×  𝟑  structure predicted to be 

stabilized by quantum fluctuations and linear spin-wave theory [50-51]. Spin wave 

measurements on a single crystal indicate that the Dzyaloshinski–Moriya (D-M) interactions 

may be the dominant anisotropic interaction in KFe3(SO4)2(OH)6 [52-53]. The extensively 

studied semi-classical S = 3/2 spin KCr3(OH)6(SO4)2 jarosite is kagome antiferromagnet having 

magnetic transition ranging from 1.5–4 K [47, 54] depending on the crystal growth conditions. 

Neel order is still the dominant ground-state among the materials, but reduced saturation 

magnetizations have been seen, indicating strong quantum fluctuations [47].  The Rb
+
, NH

+
4 , 

Na
+
 analogous show similar behavior, though a small hysteresis in the magnetization at 2 K is 

indicative of a small ferromagnetic component, proposed to result from a canting of the 120° 

spin structure [55]. Long-range ordering still is absent in the hydronium Cr jarosite 

(H3O)Cr3(SO4)2(OH)6, similar to Fe jarosite. Quantum fluctuations are seen to suppress long-

range order down to 2.2 K, where only 5.4 % of the expected magnetic entropy is recovered [56].  

 

1.6.2. Geometrically Frustrated Transition Metal Hydroxyhalogenide 

 M2(OH)3Cl compounds 

 

Since unconventional magnetic transitions have already been reported in the transition metal 

hydroxyhalogenide series of deformed pyrochlore compound M2(OH)3Cl, most of these 

compounds found originally in nature. These materials categories represent a complete series for 

spin ranging from S = 1/2 to S = 5/2. A brief description of each spin system has been discussed 

here to understand the magnetism inside this series.  
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S = 1/2 (Cu
2+

) spin Cu2(OH)3Cl 

 

The atacamite is halide mineral exhibit three polymorph like clinoatacamite, botallackite, and 

paratacamite, which are orthorhombic, monoclinic, and hexagonal structure, respectively as 

depicted in Fig. 1.8 (a-c). 

  

 

 

Figure 1.8. Polymorph of Cu2(OH)3Cl mineral; (a) atacamite crystallizes into Pnma space group 

(No.62), (b) botallackite crystallizes into P21/m space group (No. 11), and (c) paratacamite 

crystallizes into R-3 space group (No.148). Reproduce from [57-59]. 

 

Antiferromagnetic order with transition temperature TN = 9.0 K and TN = 7.2 K has been found in 

atacamite and botallackite crystal [60-61]. Moreover, the mineral clinoatacamite Cu2(OH)3Cl 

[62] has been found to display antiferromagnetic transition by TN = 18.1 K along with small 

entropy fall (0.05Rln2). The disordered spin glass-like state revealed as the temperature-

dependent susceptibility curve displayed an anomaly peak at around 6.2 K. The unusual 

transition in the clinoatacamite Cu2(OH)3Cl makes this quantum spin S = 1/2 (Cu
2+

) a 

playground to understand the geometrical frustration.  

 

 

 

Cu

Cl

O

Cu

Cl

Cu

Cl

O

(a) (b) (c) 
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S = 1 (Ni
2+

) spin Ni2(OH)3Cl 

 

The S = 1 spin Ni2(OH)3Cl compound crystallized in atacamite structure that has been found to 

demonstrate strong geometrical frustration with antiferromagnetic order with transition 

temperature below TN = 4 K [63]. Long-range order confirmed by neutron powder diffraction 

measurement, whether muon spin relaxation (μSR) experiment confirmed no ordering signature. 

The anomaly arises from neutron diffraction, and the muon spin relaxation (μSR) experiment of 

Ni2(OH)3Cl has explained according to the antiferromagnetic orders on the frustrated tetrahedral 

lattice as proposed by Tsuneishi et al. [64]  in which the squared Fourier amplitude orders but the 

amplitude itself fast fluctuating.  

 

S = 3/2 spin Co2(OH)3Cl 

 

Recently, S = 3/2 spin Co2(OH)3Cl compound has found to crystallize hexagonally shows 

ferromagnetic transition with Curie-Weiss temperature θCW = 7.8 K [65]. The susceptibility 

under Zero filled cooled (ZFC), and field-cooled (FC) condition divert below TC ~ 10 K, which 

indicates the coexistence of glassiness. Neutron diffraction measurement of Co2(OH)3Cl has 

estimated the possible magnetic structure in which spins on the triangular plane are 

ferromagnetically ordered. Those on the kagome plane are disordered shown in Fig 1.9.  

 

Figure 1.9. Possible magnetic structure of Co2(OH)3Cl in which the direction of the spin on the 

triangular lattice and kagome lattice plane is displayed. Reproduced from [65]. 

Kagome lattice plane 

Triangular lattice plane 
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S = 2 spin Fe2(OH)3Cl 

 

The deformed pyrochlore compound Fe2(OH)3Cl that was crystallized in rhombohedral structure, 

displayed antiferromagnetic transition with TN = 8.5K along with strong frustration [66]. The 

neutron diffraction experiment confirmed long-range antiferromagnetic order below TN = 9.0 K, 

whereas the proposed magnetic structure depicted in Fig. 1.10 suggests that out of the four Fe
2+

 

spins on a tetrahedron, the one spin on the triangular lattice plane is disordered while the other 

three spins on the kagome lattice plane have frozen moments. The magnetic phase separation and 

the spin fluctuations coexist with the long-range order makes S = 2 spin system interesting for 

understanding the magnetism in it.  

 

 

 

 

 

Figure 1.10. Proposed magnetic structure of Fe2(OH)3Cl as derived from neutron powder 

diffraction data in which spins on the kagome plane exhibit frozen moment whereas disordered 

in a triangular plane. Reproduced from [66]. 
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S = 5/2 spin Mn2Cl(OH)3 

 

The S = 5/2 spin atacamite Mn2Cl(OH)3 is the end member of M2(OH)3X material family 

crystallized with orthorhombic structure provides Curie-Weiss temperature (θCW) of -57.8 K.  

[67]. The effective magnetic moment per Mn
2+

 spin was estimated to be 5.42 μB, which is 

slightly smaller than the expected value of free Mn
2+

 ion suggests the result of the crystal field's 

influence. Moreover, glassiness nature below 2.7 K confirmed by zero field cool (ZFC) and field 

cool (FC) measurement. The specific heat measurement for Mn2(OH)3Cl confirmed two 

successive phase transitions at 3.4 K and 2.7 K, respectively, where the two peak positions 

slightly decrease in the applied magnetic field, supporting antiferromagnetic transition. 

 

1.7. Experimental Search of Spin Liquid 

 

In order to understand the geometrical frustration, kagome lattice antiferromagnets (KLA) are 

suitable candidates because of having four coordination numbers with respect to six coordination 

numbers in the triangular lattice [68]. Moreover, the kagome lattice compound has higher 

degeneracy with respect to 2D-triangular lattice compound and pyrochlore crystal, as discussed 

earlier. The search for quantum disorder ground state in two dimensional systems has been 

challenging to us. The doping of non magnetic ions in the 3D-deformed pyrochlore lattice [e.g. 

clinoatacamite Cu2(OH)3Cl] will lead to 2D-vortex sharing kagome lattice compound of general 

formula AM3(OH)6X2 [where, A = non-magnetic ion, M = transition metal ions, X = halogen 

ions]. The doped compound consists of one-quarter of the pyrochlore lattice sites are occupied 

by non-magnetic ion (A
2+

) and the remaining sites are occupied by magnetic (M
2+

) ion to form 

alternate stack layer of kagome lattice plane and triangular lattice plane. Moreover, the magnetic 

ion (M
2+

) at the John-Teller distorted O4Cl2 octahedra separated by a layer of non-magnetic (A
2+

) 

ion in O6 octahedra. Because of having extensive large degenerate ground state, the kagome 

lattice geometry is believed to exhibit spin liquid behavior both in quantum and classical limits.   
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 Herbertsmithite ZnCu3(OH)6Cl2 is the most researched S = 1/2 spin diamagnetic (Zn
2+

) ion 

substitute end member (x = 1) of atacamite family Cu4(OH)6Cl2 [4-5]. The substitution of Zn
2+

 

ion in the pyrochlore lattice results in kagome lattice S = 1/2 Cu
2+

 antiferromagnets in which 

kagome lattice plane stack on triangular lattice alternatively, as displayed in Fig 1.11. 

 

                  

Figure 1.11. Crystal structure of herbertsmithite in which kagome and triangular lattice stack 

alternately that has grown by selectively substitution of  Zn
2+

 ion in their parent pyrochlore type 

lattice. Reproduced from [69].  

 

Macroscopic ground state degeneracy of the theoretical kagome lattice has been found in 

herbertsmithite which lead to much purer kagome physics. Temperature-dependent susceptibility 

measurements displays absence of ordered ground state down to 2 K, while muon spin relaxation 

(μSR) and specific measurement extend this limit to 50 mK [4,70]. The intersite mixing of Cu
2+

 

and Zn
2+

 ion in kagome and triangular plane confirmed by neutron diffraction, 
17

O-NMR, and 

susceptibility measurements [71-73], which introduce a 3-dimensional exchange pathway in the 

kagome to triangular lattice plane. Moreover, electron spin resonance (ESR) measurements have 

shown a significant antisymmetric Dzyaloshinsky-Moriya (DM) component in the exchange 
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Hamiltonian [74]. Herbertsmithite is treated as the first practical quantum kagome 

antiferromagnet which displays spin liquid state. 

 A polymorph of Herbertsmithite called Kapellasite ZnCu3(OH)6Cl2 [75] that crystallizes 

with space group P-3m1 also contains kagome network displayed gapless spin liquid which 

offers unusual dynamic short-range correlations that persist down to 20 mK. Since many 

theoretical and experimental works have already been done on S = 1/2 kagome antiferromagnet, 

there are many unanswered questions still unclear regarding the intrinsic ground state of this spin 

system.  

 The S = 3/2 kagome antiferromagnets MgCo3(OH)6Cl2 and ZnCo3(OH)6Cl2  [76-77] were 

successfully synthesized by substituting Mg
2+

 and Zn
2+

 ions in the triangular planes of its parent 

compound Co2(OH)3Cl. The intersite mixing of Mg
2+

 and Co
2+

; Zn
2+

 and Co
2+

 in 

MgCo3(OH)6Cl2, and ZnCo3(OH)6Cl2, respectively, showed similar inter-site mixing of Zn
2+ 

and 

Cu
2+

 in herberthsmithite. The MgCo3(OH)6Cl2 and ZnCo3(OH)6Cl2 compound crystallized in 

hexagonal structure with R-3m symmetry; both showed short-range correlations with persistent 

spin fluctuations in the vicinity of the ordered state below T = 2.7 K.  

 The S = 2 spin quasi-classical kagome antiferromagnet MgFe3(OH)6Cl2 [6] has 

synthesized by solvothermal reaction whose crystal structure is similar to most researched 

kagome lattice herberthsmithite ZnCu3(OH)6Cl2 in which kagome plane and triangular plane 

stack in one another in the c-axis direction. The substitution of non-magnetic Mg
2+

 ion into its 

mother compound Fe2(OH)3Cl converts the compound from 3D to 2D materials. 

Antiferromagnetic order with transition temperature 9.9 K was observed, which reduces the 

frustration in comparison to its mother compound Fe2(OH)3Cl, which exhibit transition 

temperature by TN = 8.5 K. Long-range Heisenberg-like spin order was found to develop in this 

compound as revealed by neutron powder diffraction experiment, whereas parent compound 

Fe2(OH)3Cl displayed antiferromagnetic order along with spin fluctuation. The spin moment of 

Fe
2+

 ion, as depicted in Fig 1.12 confined in the kagome plane with spin vector chirality -1 by 

120º spin steps.  The S = 2 spin MgFe3(OH)6Cl2 is treated as a real system with a quasi-classical 
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Heisenberg spin that is considered as a reference system for quantum Heisenberg kagome 

antiferromagnets. 

 

 

Figure. 1.12: Proposed magnetic structure of MgFe3(OD)6Cl2 derived from neutron powder 

diffraction data which confirmed the spin confined in the kagome plane with spin vector chirality 

-1 by 120º spin steps. Reproduce from [6]. 

  

The spin liquid could be quantum spin liquid (QSL) and classical spin liquid (CSL) depending 

on the spin moment's value. The above discussion evident that quantum spin liquid (QSL), short-

range correlations with persistent spin fluctuation, and long-range order (LRO) have been found 

in ZnCu3(OH)6Cl2, MgCo3(OH)6Cl2, and MgFe3(OH)6Cl2 compound, respectively. There is a 

tendency from spin liquid to long-range order (LRO) with an increased magnetic moment. This 

observation is also supported by Merino et al. [78] 's theoretical report regarding the rapid 

diminishing of quantum fluctuation with increasing the spin moment of honeycomb lattices. 

 Almost all theoretical studies predicted an extremely high degeneracy of the ground 

states for a classical spin kagome antiferromagnet even at low temperatures. But experiential 

observation on classical spin kagome lattice provides spin liquid to long-range ordered (LRO) 
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state. Therefore, the classical spin kagome lattice's ground state has received intense interest to 

explore the unexpected LRO. The possible reason behind the unexpected long-range order 

(LRO) in the classical kagome lattice might be the followings-  

First, the q = 0 long-range order (LRO) with positive spin chirality at a high TN up to 65 K has 

already reported in the S = 5/2 kagome antiferromagnetic jarosite, i.e., in potassium jarosite 

KFe3(OH)6(SO4)2, plumbojarosite Pb0.5Fe3(OH)6(SO4)2, and argentojarosite AgFe3(OH)6(SO4)2, 

etc.[7,49,79]. The unexpected LRO might be arises in the spin system due to the presence of 

non-magnetic defects and weak ion anisotropy [49, 79]. Experimental evidence suggested an 

Ising nature for the jarosite compounds. 

 Second, the Dzyaloshinskii-Moriya interaction (DMI) as portrayed in Fig. 1.13 arises 

from the interplay of spin-orbit interaction and super-exchange interaction [80] acting between 

the excited state of one ion and the ground state of the other ion, which results in spin canting by 

a small angle. This interaction is usually found in antiferromagnets, resulting in a small 

ferromagnetic component perpendicular to the spin-axis of the antiferromagnets.  

 

 

Figure 1.13. The schematic view of spin canting between two magnetic ions allowing small 

ferromagnetism results Dzyaloshinskii–Moriya interaction (DMI).  
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The infinitesimally small Dzyaloshinskii-Moriya interaction (DMI) in the classical kagome 

lattice favors long-range order with q = 0 phase all-in all-out structure with 120º spin steps [81]. 

 

 
 

Figure 1.14. (a) D vector is perpendicular to the kagome plane. The spins lie in the kagome 

plane, whether the sign of Dz selects the chirality, (b) the critical temperature as a function of D/J 

in the kagome plane represents the coplanar q=0 low-temperature magnetic structures. 

Reproduced from [81]. 

 

The q = 0 structure exhibit two chirality depending on the vector Dz sign as represented in Fig 

1.14 (a). In order to study the behavior of this system at finite temperature, Monte Carlo 

simulations have been performed on finite-size clusters with classical Heisenberg spins. The 

behavior of the critical temperature with respect to D/J is plotted in Fig. 1.14(b). At D = 0 in Fig. 

1.14 (b) corresponds to classical kagome lattice along with antiferromagnetic nearest neighbor 

(nn) exchange interactions. This system exhibits partial order, and the coplanar states are 

asymptotically selected as the temperature is lowered [82] (order by disorder). However, as soon 

as D has reached finite value, a phase transition occurs at finite temperature. The low-

temperature magnetic structure will be governed by DMI in the studied system. The critical 

temperature is almost linear in D, and only weakly dependent on the strength of the 

antiferromagnetic exchange interactions (J). Therefore, DMI has a first-order effect on a 
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degenerate ground state, while usually, DMI acts as a small perturbation on the 

antiferromagnetically ordered ground state, leading to second-order corrections. Moreover, the 

unexpected long-range order (LRO) found in jarosites has been predicted to arise due to the 

Dzyaloshinskii-Moriya interaction (DMI) [52-53].  

 Third, the unexpected long-range ordering can also be explained by the theoretical 

dipolar + Heisenberg interaction model proposed by Maksymenko et al.[83-84] that predicted a 

three-sublattice long-range order with a coplanar 120º spin structure. 

The formula can calculate the exchange interaction Je- 

𝐽𝑒 =
3𝑘𝐵𝜃𝐶𝑊

2𝑧𝐽(𝐽 + 1)
                                                                        (1.13) 

where, kB  = Boltzman’s constant, θCW = Curie-Weiss temperature, z = number of nearest 

neighbour (z = 4, for kagome lattice compounds), and J  = L + S = total angular momentum. 

The dipolar interaction energy (D) is calculated as- 

𝐷 =
𝜇𝑜

4𝜋

𝜇2

𝑅𝑛𝑛
3                                                                                  (1.14) 

where, Rnn = nearest neighbor distance, and μ = magnetic moment of the atoms in the compound.  

Extensive ground state degeneracy would be lifted when the ration of D/Je lies between0 <

𝐷 𝐽𝑒 < 5.67 , which results in three sub-lattices long-range 120 º orders Heisenberg spin 

confined in the kagome plane.  

 Moreover, extensive degeneracy without long-range order has been found in the first-

neighbor Heisenberg antiferromagnet on the kagome lattice even at T = 0 [82. 85]. A second-

neighbor Heisenberg coupling J2 leads to a q = 0 Néel order for J2 > 0 (antiferromagnetic 

interactions) or a 𝑞 =  3 +  3 order for J2 < 0 (ferromagnetic interactions) near T = 0 [86]. 

Extension of the J1 − J2 model to ferromagnetic nearest-neighbor coupling (J1 < 0) leads to a 

Néel long-range order near T = 0 for J2 ≥ −J1/3 with 12 noncoplanar sublattices and 
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incommensurate noncoplanar structures for J2 < −J1/3 [87]. More recently, the interplay of 

dipolar interactions and geometrical frustration has been discussed, and long-range ordering has 

been shown to be stabilized by consideration of both dipolar and nearest-neighbor interactions 

[83-84]. Conversely, the classical model for an Ising kagome antiferromagnet remains disordered 

even at T = 0 [88-89]. A more recent Monte Carlo simulation study has predicted long-range 

order for the classical dipolar Ising kagome antiferromagnet [90]. While the quantum 

fluctuations for a Heisenberg kagome antiferromagnet can lift the degeneracy and lead to order 

from the disorder at T = 0 [50], they fail to induce a magnetic order the Ising model at any 

temperature [91-92]. Despite these advancements, it is clear that the nature of the classical spin 

kagome at low-temperature states for both Heisenberg and Ising kagome antiferromagnets 

remains largely unknown.  

 

1.8. Motivation of the Present Research 

The theoretical studies predicted an extremely high degeneracy of the ground states for a 

classical spin kagome antiferromagnet even at T = 0. In the case of quantum spin system S = 1/2, 

there is a good agreement between the theoretical prediction and experimental observation. But, 

there is a large discrepancy between theoretical prediction and experimental result for the 

classical kagome antiferromagnets as compared to the quantum spin kagome system. The S = 5/2 

spin kagome antiferromagnet MgMn3(OH)6Cl2 is the end member of Mg
2+

 ion substituted 

deformed pyrochlore Mn2(OH)3Cl whose ground state is of considerable interest both as a 

classical kagome antiferromagnet as well as a reference system for the spin liquid kagome 

antiferromagnets ZnCu3(OH)6Cl2/MgCu3(OH)6Cl2. Therefore, the present research's specific 

objective is to explore the ground state of S = 5/2 classical spin kagome antiferromagnet 

MgMn3(OH)6Cl2. In order to realize this objective, the author would like to synthesize 

polycrystalline MgxMn4-x(OH)6Cl2 compound by solvothermal reaction process and allow the 

compounds for x-ray diffraction experiment, magnetic measurements, and neutron powder 

diffraction experiments. 
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1.9. Thesis Layout 

The present chapter discusses the magnetism and geometrical frustration in solids along with few 

exotic states like spin glass, spin liquid, etc. A brief literature review has been discussed, which 

will lead us to find the present research work's objective. 

 In the chapter-2, the experimental techniques that have been utilized to characterize the 

presently studied materials would be reviewed briefly. Among them, x-ray diffraction (XRD) 

technique, temperature depended on the magnetic measurement technique, and neutron powder 

diffraction technique is essential. A special emphasis would be given on magnetic measurement 

by Magnetic property measurement system (MPMS) based on Superconducting Quantum 

Interface Devices (SQUID) as well as on Time of Flight (TOF) neutron diffraction technique. 

Since the Rietveld refinement procedure generally refines the scattering data, a brief and clear 

idea on Rietveld based refinement will be intended to add in this chapter. Moreover, a brief 

discussion of simulated annealing representation analysis (SARAh) will be reviewed for 

estimating the proposed magnetic structure. 

 In chapter-3, the synthesis and magnetism of S = 5/2 (Mn
2+

) spin kagome lattice 

antiferromagnet MgxMn4-x(OH)6Cl2 has been discussed briefly. A clear and easy description of 

the compound synthesis and their characterization has been added here. The MgxMn4-x(OH)6Cl2 

compound's structural and magnetic measurements have added along with the results of the 

neutron diffraction experiment to find the crystal structure and proposed magnetic structure of 

MgMn3(OD)6Cl2 compound. 

Chapter-4 intends to conclude the present research works and suggested future work to put 

forward the present research. 
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Chapter-2 

Experimental Methods 

 

Different experimental techniques have been employed to explore the phase and magnetic 

characteristics of the geometrically frustrated compound, like x-ray diffraction (XRD), neutron 

powder diffraction technique, and magnetic property measurement technique based on 

superconducting quantum interface device (SQUID). Here, a brief description of the used 

experimental methods are given in the followings- 

 

2.1. Structural Characterization by X-ray Diffraction Technique 

 

The scattering technique is extensively employed to investigate the detailed structure of materials 

using energetic particles. Particle-materials interactions could be elastic or inelastic scattering 

whether incident particles' energy is equal to the scattered particles or unequal to each other, 

respectively. The most extensively used scattering techniques are x-ray diffraction (XRD) 

technique, neutron diffraction technique, and electron diffraction technique. The latter one is 

suitable to investigate gas-phase structures of compounds with sufficient volatility and molecular 

simplicity. In the present research, x-ray diffraction (XRD) would initially be employed to 

characterize the compound's structure. The x-ray diffraction technique is based on Bragg's law, 

which is briefly described here. 

 

2.1.1. Bragg’s Law of X-ray Diffraction 

 

The wavelength of x-ray (~10
-10

 – 10
-11

 m) is comparable to the interplanar distance (dhkl) of the 

crystal lattice in which the atoms are arranged periodically. The incident x-ray is scattered from 

the atoms that are residing on the crystal lattice plane giving rise to constructive interference 

when the path difference between the scattered and incident x-ray is an integral multiple of 

wavelength. The geometrical illustration of Bragg's law is presented in Fig. 2.1 giving the 

formula below [27]- 
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Figure 2.1. Bragg's law in which incident x-ray is scattered from crystal lattice giving rise to 

constructive interference. 

 

nλ = PQ + QR =2dhklSinθ                                    (2.1) 

 

Here, integer ‘n’ in the order of reflection, λ is the wavelength of x-ray, and θ is the angle 

between the incident beam and the normal to the reflecting lattice plane. By measuring θ, the 

interplanar spacing of the crystal can be determined as (for cubic crystal system)- 

 

𝑑ℎ𝑘𝑙 =  
𝑎

 ℎ
2 + 𝑘2 + 𝑙2

                                                    (2.2) 

 

 

Here, hkl are Miller indices.  In order to identify an unknown crystal structure, the powder 

diffraction pattern is recorded with the help of a diffractometer, and a list of d-value and the 

relative intensities of the diffraction line is prepared. These data are compared with the standard 

line pattern available for various compounds in the powder diffraction file (PDF) database. 

  In the present research, X-ray diffraction facilities of the Analytical Research Center for 

Experimental Sciences of Saga University, which used Cu Kα (λ=1.5406Å) source has been used 

for structural characterization. The x-ray data was measured from 10 to 65º at 1 deg./mins in 

Incident x-ray Scattered x-ray

Q

θ θ

θθdhkl
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continuous mode. The x-ray data was refined by the Rietveld refinement process with the 

calculated data. 

 

2.2. Neutron Powder Diffraction 

 

Neutron diffraction utilized the concept of neutron scattering to determine the atomic and/or 

magnetic structure of the materials. Because of the neutron's different scattering properties 

compared to x-ray, complementary information can be obtained from neutron diffraction. More 

specifically, the accurate position of light atoms such as hydrogen, deuterium, or lithium can 

easily be understood by neutron diffraction. 

 Since neutron has a magnetic moment that can easily interact with the magnetic moments found 

within a material that results in magnetic scattering that is superimposed upon the nuclear 

scattering in any magnetic material. A sample to be examined is placed in a beam of thermal, hot 

or cold neutrons to obtain a diffraction pattern that provides information of the structure of the 

material. The measurement principle of neutron diffraction is based on the Bragg’s equation 

similar to x-ray diffraction.  

2.2.1. Nuclear Bragg scattering 

Nuclear Bragg diffraction occurs from planes in a crystal separated by a distance d, as shown in 

Fig 2.2 (a). The scattering system can be defined as having a dimension (in direct space): 

𝒓 = 𝑛1𝒂 + 𝑛2𝒃 + 𝑛3𝒄                                                       (2.3) 

The incoming neutrons are considered as plane waves with wavelength of =
2𝜋

ǀ𝑘ǀ
 , where 𝑘𝑖 =

𝑘𝑓 = ǀ𝑘ǀ wave number. The form of Bragg’s law in case of neutron diffraction would be similar 

to Eq. (2.1) as for X-ray diffraction. 

 The reciprocal lattice that is displayed in Fig. 2.2(b) can be defined with respect to the 

direct space lattice as: 

𝒂∗ =
2𝜋

𝑣0
𝒃 × 𝒄,  𝒃∗ =

2𝜋

𝑣0
𝒄 × 𝒂,  𝒄∗ =

2𝜋

𝑣0
𝒂 × 𝒃           (2.4) 
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where a, b and c are unit vectors of the nuclear cell and v0 is the volume of the unit cell whose 

value as 𝑣0 = 𝒂. (𝒃 × 𝒄). The direct lattice and the reciprocal lattice are related as a Fourier 

transform pair. 

 

  

  (a) (b) 

Figure 2.2. (a) Nuclear Bragg’s diffraction in which incoming neutrons scattered from the nuclei 

within the crystal lattice, (b) representation of reciprocal space of crystal.  

  

In order to observe scattering, the scattering vector Q must be equal to a reciprocal lattice vector 

τ (i.e. 𝑄 = 𝑘𝑖 − 𝑘𝑓 = 𝜏) [93]. The intensity of the elastically scattered neutrons is given by: 

(
𝑑𝜎

𝑑𝛺
)𝑛𝑢𝑐 = 𝑁(

2𝜋

𝑣0
)3  𝛿 𝑄 − 𝜏 ǀ𝐹𝑁 𝑄 ǀ

2

𝜏

                (2.5) 

where, N is the number of unit cells and FN is known as the structure factor. So for a particular 

material, 𝐼𝑁∞ǀ𝐹𝑁(𝑄)ǀ
2
. The structure factor is given by: 

𝐹𝑁 𝑄 =  𝑏𝑗 exp⁡(2𝜋𝑖𝑸. 𝒓𝑗 )

𝑗

exp −𝑊𝑗                    (2.6) 

where the sum is over all j atoms and exp −𝑊𝑗   is the Debye-Waller factor, which takes into 

account the thermal motion of the atom.  

 In scattering systems, there is a variable scattering length at different sites due to nuclear spins 

or isotopes. This results in the cross-section being separated into coherent and incoherent terms. 

2θ
d

ki kf

Q = τ

2θ

kf
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Coherent scattering depends on the correlation between the same nucleus' positions at different 

times and on correlations of different nuclei at different times. The result is interference effects. 

It also depends on the average scattering length, assuming no correlation between positions and 

scattering length. The coherent scattering is observed as intensity or Bragg peaks. They are either 

given as a function of 2θ, Q or d. These are related by: 

 

𝑄 =
2𝜋

𝑑
=

4𝜋𝑠𝑖𝑛𝜃

𝜆
                                                          (2.7) 

 

Incoherent scattering depends only on the correlation of the same nucleus' positions at different 

times, which does not give rise to interference effects. The incoherent scattering is due to the 

random distribution of deviations of the mean value's scattering lengths. 

 

2.2.2. Magnetic Scattering 

The total scattering from a sample as a Q's function by considering the magnetic scattering is 

given as the sum of nuclear and magnetic components: 

 

𝑑𝜎

𝑑𝛺𝑡𝑜𝑡
=

𝑑𝜎

𝑑𝛺𝑛𝑢𝑐
+

𝑑𝜎

𝑑𝛺𝑚𝑎𝑔
                                              (2.8) 

 

𝑑𝜎

𝑑𝛺𝑚𝑎𝑔
 has the same form as Eq. 2.5 but now k is introduced to describe the magnetic order. 

 

 (
𝑑𝜎

𝑑𝛺
)𝑚𝑎𝑔 = 𝑁(

2𝜋

𝑣0
)3   𝛿𝑘  𝑄 − 𝜏 − 𝑘 ǀ𝐹𝑀 𝑄 ǀ

2
𝜏                              (2.9)                      

k is known as the propagation vector of the magnetic structure or k-vector. At k =(0, 0, 0), the 

magnetic and nuclear Bragg peaks will lie on top of each other; whereas magnetic peaks appear 

at different positions to the nuclear peaks when k ≠ (0, 0, 0). For magnetic scattering from a 

particular system 𝐼𝑀∞ǀ𝐹𝑀(𝑄)ǀ
2
 where 𝐹𝑀(𝑄) is given by: 

 

𝐹𝑀 𝑄 = 𝐹(𝑄)  𝑚┴𝑗 exp(2𝜋𝑖𝑸. 𝒓𝒋)𝑗                           (2.10) 
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𝑚┴𝑗  is the magnetic component of the ordered moment perpendicular to Q on the j
th

 atom in the 

unit cell, and F(Q) is known as the magnetic form factor. The magnetic form factor arises due to 

the magnetic moment being spread out over an atom. The form factor is present for all magnetic 

systems regardless of the presence of magnetic ordering or otherwise. 

 Neutron diffraction can be categorized into elastic and inelastic scattering depending on the 

incident's energy and momentum and scattered neutrons. Now a day's constant wavelength and 

time of flight (TOF) neutron diffraction technique have been widely used.  

2.2.3. Time of Flight Neutron (TOF) Diffraction Technique 

 

Time of flight (TOF) neutron powder diffraction technique is treated as one of the standard 

techniques used for crystal and magnetic structure determination of polycrystalline materials 

with pulsed neutron sources [94]. The TOF diffractometer operates differently than constant 

wavelength (CW) diffractometer based on the standard Debye - Scherrer method. The Debye - 

Scherrer method for neutron was first developed and employed in the 1940’s [95]. Instead of 

measuring Bragg’s reflection by scanning a detector from low to high 2θ scattering angles, in the 

TOF technique, a neutron spectrum of scattered neutrons is measured at a constant scattering 

angle (2θo).  

 In the TOF experiments, the polychromic neutron beam coming from a moderator and 

scattered at a fixed scattering angle (2θ0) giving rise to constructive interference expressed by 

Bragg’s law- 

λhkl = 2dhklSinθ0                                                        (2.11) 

 

where λhkl, dhkl are neutron wavelength and interplanar distance of the crystal lattice, respectively. 

The neutron wavelength is determined, according to the de Broglie relation, by the neutron 

momentum, mV as: 

𝜆 =  
ℎ

𝑚𝑣
=  

ℎ𝑡

𝑚𝐿
                                                                       (2.12) 
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where, h is the Planck constant, v neutron velocity, m neutron mass, L a flight path, and t time of 

flight. 

 In time of flight (TOF) neutron diffraction technique, a pulse of neutrons with different 

wavelengths is produced, and the time elapsed by these neutrons to travels from source to the 

detector is measured. The neutron will gain or lose energy, resulting in the change of neutron's 

velocity, which will vary the arrival time of neutrons to the counters.  

 

 

 

Figure 2.3. Schematic view of the geometry of time of flight (TOF) spectroscopy in which L1, 

and L2 are the distance traversed by incident beam and scattered beam with velocities v1, and v2, 

respectively. 

 

𝑡 =  𝑡0 +
𝐿1

𝑣1
+

𝐿1

𝑣2
                                                              (2.13) 

 

The time of flight (TOF) is related to interplaner distance between two lattice planes (d) by the 

polynomial formula [96] of the following –  

 

𝑇𝑂𝐹 = 𝑡 = 𝐶0 + 𝐶1𝑑 + 𝐶2𝑑
2 +                                         (2.14) 

 

where, C1 and C2 are d-spacing dependants, and C0 is d-spacing independent parameters. The 

TOF diffractometer's performance depends on the resolution (Δd/d), which is a measure of the 

spread in the Bragg's reflection for a given d-spacing. The resolution of TOF pulse source 

depends on the uncertainty in time (Δt); uncertainty in angular degree (Δθ), and uncertainty in 

flight path (ΔL). 

resonant foil

L2

moderator

L1

E1, v1

detector

E2, v2

θ

sample
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The formula describes the resolution of a TOF diffractometer- 

 

𝛥𝑑

𝑑
= [(

𝛥𝑡

𝑡
)2 + (𝛥𝜃𝑐𝑜𝑡𝜃)2 + (

𝛥𝐿

𝐿
)2]

1
2                                (2.15) 

 

Since path uncertainties and angular uncertainties are independent of wavelength, the overall 

geometrical contribution to resolution is nominally constant when the scattering angle is fixed. 

The main contribution to Δt gives the moderation process of neutrons. 

  Using the TOF method, it is possible to reach a very high resolution in the diffraction of 

polycrystalline materials. Nowadays, high-resolution powder diffractometer (HRPD) is the best 

resolution neutron diffractometer in the world and is designed to achieve an optimal balance 

between the maximum practical resolution attainable Δd/d=4–5×10
−4

[97] and reasonable 

counting times. In the present research, the time of flight (TOF) neutron diffraction facilities of 

Super HRPD (BL-08), J-PARC, Japan will be used to perform neutron diffraction experiments. 

The super HRPD at J-PARC utilizes the H2 moderator giving a 0.1-0.15%, a 0.4-0.7%, and a 0.7-

3.0% resolution for higher-angle, 90-degree, and low-angle banks.  

  Around 1.7 gm of MgMn3(OD)6Cl2 powdered samples were poured into the vanadium 

cylinder (as shown in Fig. 2.4) in the glove box at the helium atmosphere to prevent surface 

oxidation.  The cylinder was indium sealed and allowed it in the cryostat to reach low 

temperatures. Neutron powder diffraction at Time of Flight (TOF) mode was carried out at 2.7 K 

and 20 K temperature.  

 

Table-2.1. Summary of values of C0, C1, and C2 for different data bank in BL-08 (Super HRPD) 

in J-PARC, Tokai. 

Data bank C0 C1 C2 

90º (QA) -5.075 34468.469 0.140 

Higher angle (BS) -5.407 47651.018 -1.167 

Lower angle (LA) -12.068 11657.862 -3.166 
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Figure 2.4. Photograph of mounted powder sample in vanadium cylinder for neutron diffraction 

experiment. 

 

The temperature-dependent measurement was also carried out to find the effect of temperature 

on the lattice constants. The Time of Flight (TOF) mode neutron diffraction provides data in 

three different bank namely, backscattered bank (BS) or higher angle bank, lower angle (LA) 

bank, and 90º bank or QA bank with different values of C0, C1, and C2 parameters as 

summarized in Table 2.1. The d-spacing of the present studied was calculated using the 

parameters from Table 2.2 which will finally results the scattering vector (Q) using the Eq. (2.7). 

 

 

2.3. Diffraction Data Analysis by Rietveld Refinement Process 

 

Rietveld refinement as introduced by Hugo Rietveld [98] is a process to characterize crystalline 

materials using diffraction data collected either by X-ray or neutron diffraction technique. A non-

linear least square technique is employed to refine crystal structure by fitting the observed 

diffraction pattern to the calculated diffraction pattern. It requires few initial approximations of 

several free parameters, like peak shape parameters, unit cell parameters, background 
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parameters, and coordinates of all atoms in the crystal structure. Moreover, this technique has 

been extensively used like ab initio crystal structure characterization, indexing, background 

subtraction, refinement of lattice parameters, refinement of crystal-structure parameters 

(fractional coordinates, occupancies, and atomic displacement parameters), refinement of 

magnetic-structure parameters (magnitudes and directions of magnetic moments), correction for 

preferred orientation, identification of impurity reflections, quantitative analysis of mixtures, 

determination of integrated intensities, full-widths at half-maximum intensities (FWHM), and 

peak positions, and determination of crystallite sizes and microstrains, etc.  

 A lot of Rietveld refinement software packages are currently available, including the 

freeware programs Reitan-FP [99], GSAS [100], and FullProf [101], Z-Rietveld [102]. The XRD 

data have been analyzed by the Rietan-FP program, while the neutron powder diffraction data is 

analyzed by both Z-Rietveld as well as FullProf suite software through this research work. 

 

2.4. Simulate Annealing Representation Analysis (SARAh) for Magnetic  

 Calculation 

 

Relation among magnetic moments of the non-primitive cell was calculated initially by 

comparing it with a known magnetic structure by trial and error basis. The Group theory 

argument provides us the easiest and potential way to calculate the symmetry allowed relation 

between the magnetic moments. The basis vector, which is the result of this calculation, simply 

describes the possible magnetic structure. The technique that employs Group theory for magnetic 

structure calculation is termed representation analysis (RA) [103-108]. Representation analysis 

(RA) is a technique based on the Landau theory of second-order phase transition that is 

associated with the decomposition of magnetic representation (Γ) of the little Group (Gk) into 

irreducible representation based on the FORTRAN77 based KAREP program [109]. 

 Recently, a large number of computer-aided software has been used to perform the calculations 

to complete magnetic symmetry analysis. Irreducible Representations (IR) can be understood 

using BASIREPS [110], KAREP [109], MODY [111], and SARAh [112].  Simulate annealing 
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representation analysis (SARAh) program is the combination of simulated annealing (SA), and 

representation analysis (RA) utilizes non-magnetic space group, and propagation vector (k), and 

atomic positions of the magnetic atoms as applied input parameters creates a powerful latest 

method for determination of possible magnetic structures. A unique feature of SARAh is that 

refinement is carried out in terms of the basis vector coefficients and so the symmetry of Gk is 

implicitly taken into account. 

 

2.5 Magnetic Property Measurement System (MPMS) Based on SQUID 

Superconducting Quantum Interface Device (SQUID) is the most sensitive as well as an 

effective magnetic property measurement system (MPMS) whose sensitivity range from micro-

tesla to picotesla levels [113]. The construction of SQUID based on Josephson effect in which 

electrical current density through a weak electrical contact between two superconductors, as 

depicted in Fig 2.5 (a) depends on the phase difference (Δφ) of the two superconducting wave 

functions. Moreover, the time derivative of Δφ is correlated with the voltage across this weak 

contact. In a superconducting ring with one or two weak contacts, Δφ is additionally influenced 

by the magnetic flux Φ through the ring. 

 These types of structures can be used to convert magnetic flux into an electrical voltage. 

This is the basic working principle of the SQUID magnetometer. The SQUID can be classified 

into rf-SQUID and dc-SQUID depending on the number of Josephson junctions. The dc-SQUID 

normally uses two Josephson junction, whether rf-SQUID employs a single Josephson junction. 

Moreover, dc-SQUID offers lower noise compared with rf-SQUID. 
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(a) (b) 

 

Figure 2.5. (a) Diagram of a dc SQUID in which current I enter and split into the two paths, each 

with currents i1 and i2. The thin barriers on each path are Josephson junctions, which together 

separate the two superconducting regions.  Φ represents the magnetic flux threading the dc 

SQUID loop, (b) Superconducting loop configuration of the pick-up coil gives rise to an output 

voltage as while the sample travels through it.  

 

The SQUID composed mainly three important parts: (i) a superconducting magnet to generate 

externally applied field (H), (ii) sample transporting system to produce a response as shown in 

Fig. 2.5 (b), and (iii) pick up coil to read the response. The sample space is coupled with some 

form of temperature control systems such as cryogenic cooling or sample heating. The 

superconducting magnet can be charged with a current that gives rise to a static, homogeneous, 

(dc) field. When the sample moves up and down by a sample transporting system through the 

superconducting pick-up coil which actually has four windings, an alternating magnetic flux 

generates in the pick-up coil, leading to an alternating output voltage of the SQUID device. This 

voltage is then amplified and read out by the magnetometer's electronics. Temperature-dependent 

magnetization measurement (M vs. T) at the constant magnetic field (H); and measurements of 

magnetization vs. the applied field (M vs. H) can easily be evaluated using a dc-SQUID 

magnetometer. These  

i2

I

i1

i1 = Icsinφ1 i2 = Icsinφ2

a

b

d

c
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Figure 2.6. Photograph of the magnetic property measurement system (MPMS) based on a 

superconducting quantum interface device installed at Low-Temperature Center, Applied 

Physics and Quantum Computation Science department in Kyushu University that was used to 

measure the present studied compounds.  

 

measurements can be used to determine the number of properties related to magnetic materials 

such as magnetic transition temperatures, saturation magnetization, Weiss temperature, etc. 

 In the current research, the SQUID facilities of Low-Temperature Center, Applied 

Physics and Quantum Computation Science Department in Kyushu University, as portrayed in 

Fig 2.6 was used to measure the magnetic measurement of the present studied compounds which 

could be able to measure low field like 5×10
−18

 T in the 2-300 K temperature range. The present 

studied samples were loaded into the gelatin capsule; after that, the capsule was inserted into a 

clear plastic straw, which was then mounted onto the brass sample rod. This configuration gives 

rise to the minimal background. The measurement was carried out at 2-300 K at H = 1.0 T along 

with Zero filled cool (ZFC) and Field cool (FC) conditions. 
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 Chapter-3 

Magnetism in Kagome Antiferromagnets MgxMn4-x(OH/D)6Cl2 

 

3.1. Synthesis and Characterization of MgxMn4-x(OH/D)6Cl2 compounds 

For nonmagnetic ion substitution into Mn4(OH)6Cl2, the Mg ion is more effective than Zn ion, 

which may be accounted for by its smaller ion radius. The MgCl2.6H2O and MnCl2.4H2O 

compound were mixed in a beaker with a molar ratio of Mg/Mn = 0.5 to 3 in water-ethanol 

solution at the nitrogen atmosphere. The NaOH was added with this mixture dropwise to control 

the pH of the solution. After mixing NaOH, the final solution was transferred to the 50 ml Teflon 

lined stainless steel autoclave and tighten very carefully. The autoclave was then allowed to heat 

at 150-200°C temperature for 120 hours in a muffle furnace (DMT-01, SHIMPO, Japan), as 

shown in Fig. 3.1 (a). After the end of heating, the final product was washed with ethylene glycol 

at a nitrogen atmosphere to remove the unreacted MgCl2 and NaCl content from the sample. The 

sample was dried at low pressure at around 100°C temperature in a vacuum (exposure to air or 

water containing oxygen would cause oxidation to change the powder to brownish color on the 

surface) at around 24 hours. Since site mixing seemed inevitable as well as known in 

herbertsmithite, MgxMn4-x(OH)6Cl2 compounds with the different ration of Mg/Mn were 

prepared to judge the effect of non-magnetic defects on the magnetism of MgMn3(OH)6Cl2.   The 

final compound was a white polycrystalline compound, as depicted in Fig. 3.1 (b). 

 As the background signal of hydrogen samples is expected to be very high in the neutron 

powder diffraction experiment, the deuterated sample MgMn3(OD)6Cl2 was synthesized from 

dried MgCl2, MnCl2, and NaOD in D2O-ethanol in the similar way of MgxMn4-x(OH)6Cl2 

compound. Room temperature powder x-ray diffraction (XRD) measurement was performed 

using a x-ray diffractometer (Cu Kα) at Analytical Research Center for Experimental 
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  (a) 

 

  (b) 

Figure 3.1. Photograph of (a) muffle furnace that was used to grow MgxMn4-x(OH)6Cl2 

compound, (b) polycrystalline powder of MgxMn4-x(OH)6Cl2 compound. 

 

Sciences in Saga University to investigate the crystal structure of the compounds. The observed 

x-ray diffraction (XRD) data was then analyzed using computer-aided program RIETAN-FP 

[101] based on the Rietveld refinement process.  

 The temperature-dependent DC susceptibility measurements were carried out using a 

commercial superconducting quantum interference device magnetometer (MPMS; Quantum 

Design) at H = 1.0 T field along with zero field cool (ZFC) and field cool (FC) condition at low-

temperature Center, Department of Applied Quantum Physics, Kyushu University, Japan. A 

neutron powder-diffraction experiment was performed on MgMn3(OD)6Cl2 using the super-high 

resolution powder diffractometer (Super-HRPD) in the time of flight (TOF) mode at J-PARC, 

Japan. The TOF neutron diffraction data was analyzed using the Rietveld analysis software for J-

PARC [102]. The collected neutron data were refined using the FULLPROF-suite software 

based on Rietveld refinement [101], assisted by the representation analysis program SARAh 

[112]. 
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3.2. Structural Characterization of MgxMn4-x(OH/D)6Cl2 compounds 

The crystal structural refinement of x-ray powder diffraction data was done by Rietan-FP 

program based on Rietveld analysis as exemplified in Fig. 3.2 showed that the kagome-lattice 

compounds MgxMn4−x(OH)6Cl2 were successfully synthesized by selectively replacing the Mn
2+

 

ions in the triangular-lattice planes of its parent compound Mn2(OH)3Cl. The parent compound 

Mn2(OH)3Cl crystallizes in orthorhombic structure with lattice constant a = 6.49 Å, b = 7.11 Å, 

and c = 9.52Å in space group Pnma, No. 62 [67,114], whereas the MgxMn4−x(OH)6Cl2 was found 

to crystallize in a rhombohedral structure with space group R-3m (No. 166). The structural data 

of one sample of Mg1.55Mn2.45(OH)6Cl2 are summarized in Table 3.1 and illustrated in Fig. 3.3. 

  

 

Figure 3.2: Powder x-ray diffraction pattern (red circles) for kagome lattice compound 

Mg1.55Mn2.45(OH)6Cl2 at room temperature and the result of Rietveld refinements showing the 

calculated (black solid line) pattern and the difference between the experimental and calculated 

data (thin violet solid line). The green bar represents the Bragg position of the present 

compound. 
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The triangular site (site 3b in the table) Mn ions were actually 98.0% replaced by Mg
2+

 ions; 

whereas 19.0% of the 9e kagome site Mn was also replaced. The 81% Mn
2+

 occupancy at the 

kagome site is higher than the percolation threshold for kagome (𝑝𝑐
𝑠𝑖𝑡𝑒 = 65%) [115]. As the 

non-magnetic defects may be an essential factor to influence the magnetism on the kagome 

lattice, we synthesized the compound using various conditions to produce various 

MgxMn4−x(OH)6Cl2 around the nominal MgMn3(OH)6Cl2, which all crystallized in an equivalent 

structure as summarized in Table 3.2 and compared x-ray diffraction (XRD) pattern are 

presented in Fig. 3.4. The Mg
2+

 ion prefers to occupy the octahedral triangular site of the present 

studied compound.  

  
 

 

 

 

Figure 3.3: Crystal structure of Mg1.55Mn2.45(OH)6Cl2 showing alternately stacked layer of the 

kagome and triangular lattice planes along c-axis direction, where yellow, violet, green, and red 

colored sphere represents Mg
2+

, Mn
2+

, Cl
-
, and O

2-
 ion, respectively.   
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Table 3.1. Crystal structural information of Mg1.55Mn2.45(OH)6Cl2 refined from x-ray diffraction 

at room temperature (site 9e and 3b correspond to kagome plane site and triangular site, 

respectively). 

 

 Chemical Formula Mg1.55Mn2.45 (OH)6Cl2 

 Cell Setting Rhombohedral 

 Space group R-3m (No.166) 

 a (Å) 7.15420(4) 

 c (Å) 14.80045(7) 

 𝛼 = 𝛽 = 90°, 𝛾 = 120°  

 Rwp (S) 9.6 (1.2) 

 Rp 6.9 

 Site Sym x y z g B 

Mg1 9e .2/m 0.5 0 0 0.19(1) 1.125(8) 

Mn1 9e .2/m 0.5 0 0 0.81(1) 1.125(8) 

Mg2 3b -3m 0 0 0.5 0.98(1) 1.428(3) 

Mn2 3b -3m 0 0 0.5 0.02(1) 1.428(3) 

Cl 6c 3m 0 0 0.2133(2) 1.0 1.975(2) 

O 18h .m 0.2015(3) 0.4030(6) 0.0730(2) 1.0 1.557(2) 
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For example, in the nominal formula of Mg0.90Mn3.10(OH)6Cl2, 66% of the triangular Mn were 

replaced by Mg, but only 8% of the kagome Mn were replaced. However, more Mg entered the 

kagome sites when Mn is heavily substituted. This situation is similar to that occurring in 

herbertsmithite ZnCu3(OH)6Cl2, (Mg/Zn)Co3(OH)6Cl2, and MgFe3(OH)6Cl2. Although an ideal 

perfect kagome lattice cannot be realized, we can get a probable conclusion by investigating the 

magnetism evolution in the MgxMn4−x(OH)6Cl2 samples with different degrees of substitution of 

the triangular lattice Mn and defects in the kagome lattice. 

 

 

 

Figure 3.4. Powder X-ray diffraction data of kagome lattice compound MgxMn4-x(OH)6Cl2 

( x = 0.9 ~ 1.62). 
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Table 3.2. Summary of MgxMn4-x(OH)6Cl2 compounds with varied total substitution rate x, 

substitution rate in kagome plane, and substitution rate in a triangular plane. 

 

Compound formula Total substitution rate 

x 

Substitution rate  

in kagome plane 

Substitution rate  

in triangular plane 

Mg0.90Mn3.10(OH)6Cl2 0.90 0.08(1) 0.66(1) 

Mg1.15Mn2.85(OH)6Cl2 1.15 0.10(2) 0.85(2) 

Mg1.27Mn2.73(OH)6Cl2 1.27 0.11(2) 0.94(1) 

Mg1.50Mn2.50(OH)6Cl2 1.50 0.18(2) 0.96(1) 

Mg1.55Mn2.45(OH)6Cl2 1.55 0.19(1) 0.98(1) 

Mg1.62Mn2.38(OH)6Cl2 1.62 0.21(3) 0.99(3) 

 

The local environments of Mg1.55Mn2.45(OH)6Cl2 around the kagome, and triangular sites are 

illustrated in Fig. 3.5. The Mn/Mg (Mn1) at kagome site is surrounded by four O
2−

 and two Cl
−
 

ions, whereas Mg/Mn (Mg2) in the triangular site is surrounded by six O
2−

 ions in the octahedral 

environment. Therefore, the selective replacement was enabled due to the different chemical 

environments for the Mn in the triangular lattice and kagome lattice planes. The bond lengths 

and bond angles around the Mn1, and Mn2 are listed in Table 3.3, which would help us to realize 

the superexchange mechanism in the present studied compound. The Mn1-O, and Mn1-Cl bond 

length around the kagome site are 2.174 Å and 2.724 Å, respectively; whereas the Mg-O bond 

length around the triangular site is 2.143 Å. In the kagome plane, each Mn
2+

 ion is bridged with 

another Mn
2+

 ion via O, or Cl ions, with angles of ∠Mn1-O-Mn1 = 110.7° and ∠Mn1-Cl-Mn1 = 

82.1°. Analogous to the herbertsmithite ZnCu3(OH)6Cl2, superexchange interactions should 

occur via the Mn1-O-Mn1 bridge, with possible additional coupling via Mn1-Cl-Mn1. The  
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 Figure 3.5. Local environment around the non-magnetic Mg
2+

 ion (yellow sphere) at the 

triangular site and the magnetic Mn
2+

 ion (violet sphere) at the kagome site. 

 

Table 3.3. The bond lengths and bond angles around the Mn1, and Mn2 in the 

Mg1.55Mn2.45(OH)6Cl2 compound for an easy view of superexchange interaction. 

 

 

Bond lengths (Å) Bond angles (º) 

Mn1-O : 2.174 ∠Mn1-O-Mn1 : 110.7 

Mn1-Cl : 2.724 ∠Mn1-Cl-Mn1 : 82.1 

Mg-O : 2.143 ∠Mn1-O-Mn2 : 96.4 
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kagome Mn1 and residual triangular Mn2 is double bridged via two Mn1-O-Mn2 bonds angled 

∠Mn1-O-Mn2 = 96.4°. These kinds of double bridges were seen in antiferromagnetic CuOHCl, 

as well as in LiNiO2 and NaNiO2 [116-119]. 

 The refined lattice constants related to the substitution rate x in MgxMn4−x(OH)6Cl2 for x 

= 0.9–1.62 are plotted in Fig.3.6. More specifically, those in relation to the substitution rates in 

the triangular plane xtri and kagome plane xkag, respectively, in MgxtriMn1-xtriMg3xkagMn3(1-xkag) 

(OH)6Cl2 are presented. The tendency of the variation of lattice constant is well seen in the xtri. 

With substitution of Mn by smaller Mg, the c-axis length is slightly reduced till xtri = 0.85. 

Meanwhile, the a-axis length, which depends on the ions in the kagome plane, remains almost 

unchanged. When xtri exceeds 0.85, Mg also enters the kagome planes which will then effectively 

reducing the a-axis length. These consistent changes demonstrate the soundness of the structural 

analyses. 

 

Figure 3.6. Variation of lattice constants related to Mg substitution ratios of the total substitution 

x, kagome plane substitution xkag, and triangular plane substitution xtri in MgxMn4−x(OH)6Cl2. 
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Figure 3.7. X-ray diffraction pattern of MgMn3(OD)6Cl2 compared with the MgMn3(OH)6Cl2 

which depict almost similar patter except some impurity peaks. 

 

The deuterated kagome lattice compound MgMn3(OD)6Cl2 was synthesized to perform a neutron 

powder diffraction experiment. The x-ray diffraction data of MgMn3(OD)6Cl2 has compared with 

that of MgMn3(OH)6Cl2, which suggests that the MgMn3(OD)6Cl2 compound has successfully 

crystallized in rhombohedral structure with R-3m space group except some of the non-magnetic 

peaks (NaCl peaks) in the x-ray pattern.  

 

3.3. Temperature-dependent Magnetic Measurements of MgxMn4−x(OH)6Cl2  

 Compound 

The temperature dependence of dc susceptibility measurements taken at H = 1.0 T of all kagome 

lattice compounds, MgxMn4−x(OH)6Cl2 (x = 0.9–1.62) showed similar magnetic behaviors with 

slightly different TN values. The temperature dependence of dc susceptibility and inverse 

susceptibility of Mg1.50Mn2.50(OH)6Cl2 compound is shown in Fig. 3.8. This compound shows 

antiferromagnetic transition at TN = 7.9 K, which was much enhanced than that of its parent 

compound Mn2(OH)3Cl of TN1 = 3.4 K and TN2 = 2.7K [67]. All the kagome lattice compounds, 
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MgxMn4−x(OH)6Cl2 (x = 0.9–1.62) showed a low-temperature upturn in their susceptibility 

measurement similar to that observed in MgFe3(OH)6Cl2 [6], which is a common feature in 

geometrically frustrated systems reflecting spin fluctuations. The susceptibility curve also shows 

a small anomaly at ~40 K, which was suspected to be due to trace impurity of manganese oxides 

formed on the powder surface due to oxidation in air.  

 

 

 

Figure 3.8. Temperature-dependence of dc susceptibilities χ (Left axis, open red circles), inverse 

susceptibilities 1/χ (Right axis, open dark green squares) per mole Mn for Mg1.50Mn2.50(OH)6Cl2 

measured at H = 10 kOe. The solid line obeys the Curie-Weiss law, with Weiss temperature of 

θCW of approximately -50 K. The inset plot is an enlarged view of temperature dependence 

susceptibilities (χ) plot up to 14 K showing the antiferromagnetic transition. 
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Moreover, susceptibility measurements at zero-field cooled (ZFC) and field-cooled (FC) 

conditions confirmed that it agreed well with the TC = 40 K ferromagnetic Mn3O4 [120]. Though 

glassiness was found in the x = 0 compound Mn2(OH)3Cl, notable glassiness was not recognized 

in MgxMn4−x(OH)6Cl2 for x = 0.9–1.62, except the ZFC/FC diverging starting from 40 K due to 

suspected partial oxidation to ferromagnetic Mn3O4. 

 The Curie-Weiss temperature (θCW) was calculated by fitting the temperature-dependent 

inverse susceptibility curve using the following relation [121]- χ
-1

(T) = (T- θCW)/C; where C is 

the Curie constant. The Curie-Weiss temperature was estimated to be θCW = −50 K, showing a 

much reduced geometrical frustration index of f = θCW /TN ~ 6.3, compared to the f = 17 in 

Mn2(OH)3Cl. A similar tendency of reduced frustration from the pyrochlore parent compounds 

to kagome compounds was seen in MgFe3(OH)6Cl2 [6]. The estimated effective magnetic 

moment per Mn
2+

 ion to be 5.5 μB, which is slightly smaller than the spin only moment 𝜇𝑚𝑎𝑔
𝑐𝑎𝑙𝑐 . =

𝑔𝜇𝐵 𝑆(𝑆 + 1) = 5.92 𝜇𝐵 for S = 5/2 Mn
2+

. This value is close to the experimentally reported 

𝜇𝑚𝑎𝑔
𝑜𝑏𝑠 . = 5.6 − 6.1𝜇𝐵 for normal type Mn

2+
,  wherein the orbital contribution to the spin-only 

values for ions of the first transition period leads to somewhat smaller or larger effective 

magnetic moments.  

 The variation of transition temperature (TN) with respect to the substitution of Mg in 

MgxMn4-x(OD)6Cl2 (x= 0.90 – 1.62) is presented in Fig. 3.9, which reveals that the substitution 

range the TN was enhanced by more completely replacing Mn in the triangular plane with Mg. It 

is evident that the transition temperature (TN) slightly varied from 7.6–8.0 K, suggesting that the 

non-magnetic defects in the kagome site did not have a substantial effect on the ordering. 
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Figure. 3.9. Variation of transition temperature TN related to Mg substitution ratio of the total 

substitution x, kagome plane substitution xkag, and triangular plane substitution xtri in MgxMn4-

x(OD)6Cl2 (x = 0.9 to 1.62). 

 

3.4. Neutron powder diffraction measurements of MgMn3(OD)6Cl2 

 Compounds 

The neutron powder diffraction data measured at 20 K for Mg1.34Mn2.66(OD)6Cl2 and the results 

of  Rietveld refinement are presented in Fig. 3.10 and Table 3.4 in which the atomic position of 

deuterium (D) was added as compared to Table 3.1 for MgxMn4-x(OH)6Cl2. The 

Mg1.34Mn2.66(OD)6Cl2 compound crystallized in rhombohedral structure with space group R-3m 

analogous to MgMn3(OH)6Cl2 in which Mn
2+

 ion stake alternatively on kagome lattice plane and 

triangular lattice plane, respectively, as depicted in Fig. 3.11.  
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Figure 3.10. Neutron powder diffraction pattern (red circles) for MgMn3(OD)6Cl2 at 20 K and 

the result of Rietveld refinements showing the calculated (solid black line) pattern and the 

difference between the experimental and calculated data (thin violet solid line). The vertical 

green bars represent the Bragg positions of the present compound. The specimen contained some 

accidentally included NaCl due to insufficient washing during preparation, as indicated by the 

violet bars under the Bragg positions of MgMn3(OD)6Cl2. 

 

 

Figure 3.11: Crystal structure of MgMn3(OD)6Cl2 in which Mn
2+

 ion stacks alternatively on the 

kagome-and triangular lattice planes, respectively. The blue sphere confirms the position of 

deuterium (D) in the compound.  
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Table 3.4. Crystal structural information of kagome lattice compound Mg1.34Mn2.66(OD)6Cl2 

refined by Z-Rietveld based on Rietveld refinement of neutron powder diffraction at 20 K (site 

9e and 3b correspond to the kagome plane site and triangular plane site, respectively). 

 

 Chemical Formula Mg1.34Mn2.66(OD)6Cl2 

 Cell Setting Rhombohedral 

 Space group R-3m (No.166) 

 a (Å) 7.06973(4) 

 c (Å) 14.59632(2) 

 α = β= 90°, γ = 120°  

 Rwp (%) 4.9 

 Rp (%) 3.7 

 Site Sym x y z g B 

Mg1 9e .2/m 0.5 0 0 0.15(3) 0.6342(2) 

Mn1 9e .2/m 0.5 0 0 0.85(3) 0.6342(2) 

Mg2 3b -3m 0 0 0.5 0.89(7) 0.9592(7) 

Mn2 3b -3m 0 0 0.5 0.11(7) 0.9592(7) 

Cl 6c 3m 0 0 0.2180(3) 1.0 1.1016(4) 

O 18h .m 0.2079(1) 0.4158(2) 0.0719(1) 1.0 1.2140(4) 

D 18h .m 0.1424(2) 0.2848(4) 0.0975(1) 1.0 1.1413(4) 
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Figure 3.12. Temperature-dependence of lattice constant a (left axis, filled red circles) and the 

ratio of c/a for MgMn3(OD)6Cl2 (right axis, filled green squares). 

 

Neutron powder diffraction experiments were also performed at various temperatures to see the 

effect of change of temperature on the lattice constants. There was no structural transition occur 

except a prominent increase of the lattice constant ration c/a with decreasing temperature, as 

shown in Fig. 3.12. 

 Neutron powder diffraction pattern at 20 and 2.7 K, and their difference data are plotted 

in Fig. 3.13. Neutron data reveals that long-range antiferromagnetic order developed below 8 K 

in Mg1.34Mn2.66(OD)6Cl2 compound. The difference curve clearly demonstrates magnetic 

reflections appear at (0, 1, 1/2), (1, 0, 5/2), and (1, -1, 7/2) Bragg position with propagation 

vector k = (0, 0, 3/2). The critical exponent β was estimated to be β = 0.35(3) using the relation, I 

= I0(1 - T/TN)
2β

 [122-123] by fitting the temperature dependence of integrated intensities of the 

(0, 1, 1/2) Bragg reflection, wherein TN = 7.5(1) K. 
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Figure 3.13. Neutron powder-diffraction patterns of Mg1.34Mn2.66(OD)6Cl2 at 2.7 and 20 K. The 

inset plot depicts the integrated intensity change of the (0, 1, 1/2) magnetic peak with respect to 

temperature for Mg1.34Mn2.66(OD)6Cl2. The solid line is the power-law fit I = I0(1 − T/TN)
2β

.  

 

 

This value is close to the β =0.355(17) in its sister compound S=2 Heisenberge spin 

MgFe3(OH)6Cl2 [6]  The theoretical critical exponents of several spin models are β = 0.253 for 

SO(2)xZ2  in 3D, (n = 2), β = 0.125 for  2D Ising system, β = 0.365 for  3D Heisenberg spin 

system [124-127].  

 The SO(2)×Z2 spin model corresponds to the frustrated XY triangular lattice 

antiferromagnet, whereas the rest of the spin models are non frustrated systems. The critical 

exponents usually depend on the symmetry of interaction, the dimensionally of the system, and 

the existence of frustration. By comparing the present experimental critical exponent to the 

theoretical values taking into consideration the factor of frustration, the present system can be 

viewed as a Heisenberg spin system. The result of the present spin system could be compared to 

the small β of 0.19(1) in the S = 5/2 kagome antiferromagnet KFe3(OH)6(SO4)2, wherein two-

dimensional Ising symmetry due to the anisotropy was reported [128]. Therefore, unlike the 

present Heisenberg spin system of S = 5/2 MgMn3(OH)6Cl2, the S = 5/2 jarosites should be rather 

viewed as an Ising system. 
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3.4. Proposed Magnetic Structure Calculation in Kagome Plane of          

 MgMn3(OD)6Cl2 compound by SARAh 

Simulated annealing irreducible representation (SARAh) program [112] was used to derive all 

symmetric allowed magnetic structures. The possible magnetic structures for magnetic 

propagation vector k = (0, 0, 3/2) in the R-3m (No. 166) space group were found as- Гmag = 

Г1(A1g)+2Г3(A2g)+6Г5(Eg), in which Γi indicates irreducible representations (IR). There is one 

basis vector for Γ1, two basis vectors for Γ3, and six basis vectors for Γ5 in this structure.  

 Fifteen magnetic models with the combination of two basis vector given by 6C2=15 were 

verified for Γ5 irreducible representation giving a total of seventeen magnetic models, i.e., Γ1  and 

Γ2 each belong to one magnetic model and Γ5 has fifteen magnetic models. The calculated 

magnetic moments of Mn
2+ 

ion (Mn1) in kagome plane (i.e., at site Mn1_1, Mn1_2 Mn1_3) and 

fitting of observed neutron data with calculated data after Rietveld refinement are furnished in 

Table 3.5 and depicted in Fig. 3.14 (a-q). 

 

(a). Γ1(φ1) 

Figure 3.14 (a). Rietveld refinement of difference data between 2.7 K and 20 K for Γ1(φ1). The 

inset photograph shows the spin arrangement of Mn
2+

 ion in kagome plane. 
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(b). Γ3(φ2+ φ3) 

 

(c). Γ5(φ4+ φ5) 

 

(d). Γ5(φ4+ φ6) 

 

(e). Γ5(φ4+ φ7) 

Figure 3.14 (b-e). Rietveld refinement of difference data between 2.7 K and 20 K for Γ3(φ2+ φ3), 

Γ5(φ4+ φ5), Γ5(φ4+ φ6), and Γ5(φ4+ φ7), respectively. The inset photograph shows the spin 

arrangement of Mn
2+

 ion in kagome plane. 
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(f). Γ5(φ4+φ8) 

 

(g). Γ5(φ4+φ9) 

 

(h). Γ5(φ5+φ6) 

 

(i). Γ5(φ5+φ7)

Figure 3.14 (f-i). Rietveld refinement of difference data between 2.7 K and 20 K for Γ5(φ4+ φ8), 

Γ3(φ4+ φ9), Γ5(φ5+ φ6), Γ5(φ5+ φ7), respectively. The inset photograph shows the spin 

arrangement of Mn
2+

 ion in kagome plane. 
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 (j). Γ5(φ5+φ8) 

 

 (k). Γ5(φ5+φ9) 

 

 (l). Γ5(φ6+φ7) 

 

(m). Γ5(φ6+φ8) 

Figure 3.14 (j-m). Rietveld refinement of difference data between 2.7 K and 20 K for Γ5(φ5+ φ8), 

Γ3(φ5+φ9), Γ5(φ6+φ7), Γ5(φ6+φ8), respectively. The inset photograph shows the spin arrangement 

of Mn
2+

 ion in kagome plane. 
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(n). Γ5(φ6+φ9) 

 

(o). Γ5(φ7+φ8) 

 

 (p). Γ5(φ7+φ9) 

 

(q) Γ5(φ8+φ9) 

Figure 3.14 (n-q). Rietveld refinement of difference data between 2.7 K and 20 K for Γ5(φ6+ φ9), 

Γ3(φ7+ φ8), Γ5(φ7+ φ9), and Γ5(φ8+ φ9), respectively. The inset photograph shows the spin 

arrangement of Mn
2+

 ion in kagome plane. 
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Table 3.5. Summary of magnetic moments of Mn
2+

 in kagome plane at three different sites, 

namely Mn1_1, Mn1_2, and Mn1_3 and magnetic reliable R-factor (Rmag) for all calculated 

magnetic structure of MgMn3(OD)6Cl2 compound. 

 

Calculated 

Magnetic 

Model 

Magnetic moment (μB) of Mn
2+

 ion at three different 

positions in kagome plane  

 

Rmag 

Mn1_1 Mn1_2 Mn1-3 

Γ1(φ1) 4.735 4.735 4.735 12.7 

Γ3(φ2+φ3) 4.488 4.488 4.488 53.2 

Γ5(φ4+φ5) 4.492 1.237 4.492 46.7 

Γ5(φ4+φ6) 2.444 0.879 2.444 50.2 

Γ5(φ4+φ7) 1.088 1.498 2.587 74.4 

Γ5(φ4+φ8) 0.948 1.499 0.758 45.4 

Γ5(φ4+φ9) 1.930 3.860 1.930 49.7 

Γ5(φ5+φ6) 3.235 0.934 3.235 45.0 

Γ5(φ5+φ7) 1.364 0.476 1.241 44.6 

Γ5(φ5+φ8) 4.023 5.087 2.106 47.1 

Γ5(φ5+φ9) 3.805 3.632 3.805 47.3 

Γ5(φ6+φ7) 5.987 0.0 5.987 46.0 

Γ5(φ6+φ8) 3.690 3.860 3.690 47.3 

Γ5(φ6+φ9) 4.492 3.611 0.881 29.8 

Γ5(φ7+φ8) 2.642 4.880 2.642 45.7 

Γ5(φ7+φ9) 1.554 2.769 1.554 47.5 

Γ5(φ8+φ9) 1.903 3.486 1.903 45.0 
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The best results of each irreducible representations (Γi) are compared in Fig 3.15. Out of 15 

magnetic models for Γ5, only Γ5(φ6+φ9 ) has the lowest magnetic reliable factor of Rmag = 29.8, 

as shown in Table 3.5. However, as shown in Fig. 3.15 the fitting is inconsistent to the 

experimental data, and it unreasonably produced different magnetic moments of 4.5, 3.6, and 

0.88 μB for three crystallographically equivalent Mn ions in the kagome plane. The Γ3(φ2+φ3) 

produced a very poor fitting (Rmag = 53.2) with equivalent magnetic moments of 4.5 μB for the 

three Mn ions. The previously reported chirality −1 structures, as described for MgFe3(OD)6Cl2 

[6] gave even poorer fitting. The best-fitting was obtained with the irreducible representation 

Γ1(φ1) with a small Rmag = 12.7 and an equivalent 4.7μB for the three Mn ions in the kagome 

lattice plane.  

 

 

Figure 3.15. Observed magnetic reflections (red circles), calculated intensities (black solid line), 

and the difference between the experimental and calculated data (blue solid line) for: (a) Γ1(φ1), 

(b) Γ3(φ2+ φ3), and (c) Γ3(φ6+ φ9) in Mg1.34Mn2.66(OD)6Cl2. The green bars represent the 

magnetic Bragg-peak positions. 
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Apparently, the Γ1(φ1) with a 120° nearest-neighbor spin ordering confined on the kagome lattice 

plane, as visualized in Fig. 3.16 should represent the spin structure in Mg1.34Mn2.66(OD)6Cl2. 

The direction of the spin vector in the individual triangles is related to the chirality of the 

spin, which is a necessary parameter in the kagome lattice antiferromagnets. The chirality vector 

is roughly defined by the relation [125] 𝑲 =  
2

3 3
 [ 𝑺1 × 𝑺2 +  𝑺2 × 𝑺3 +  𝑺3 × 𝑺1 ; where 

S1, S2, and S3 are the spins of the corner of the elemental triangle. The chirality is +1 or -1 when 

the spin rotates clockwise or counter clockwise by 120° step. The spin arrangement of Γ1(φ1) has 

a spin chirality of +1 (clockwise). Since Г1(φ1) structure shows improved fitting along with 

good magnetic moment 4.7 μB for Mn
2+

 ion, therefore it can be concluded that the possible 

magnetic structure of the present studied compound composed with  +1 spin-vector chirality by 

120° spin steps.  

 

 

 

                   

 

Figure 3.16. Illustration of the magnetic structures of Γ1(φ1), Γ3(φ2+ φ3), and Γ3(φ6+ φ9) along c - 

direction derived for  MgMn3(OD)6Cl2.  

 

Γ1(φ1)  

 

Γ3(φ2+ φ3)  

 

Γ5(φ6+ φ9)  
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3.6. General Discussions 

The 120° spin ordering at a relatively high TN = 8 K in Mg1.34Mn2.66(OD)6Cl2 is similar to that in 

its sister compound S =2 MgFe3(OD)6Cl2 at TN = 9.9K, though the latter has an opposite spin 

vector chirality −1. The long-range ordering exhibit in the present spin system at such high 

transition temperatures distinctly differ from those predicted for classical Heisenberg models by 

most theoretical investigations. Although Mg and Mn intermixing exists in the present 

MgxMn4−x(OH)6Cl2 system, we tend to conclude that long-range ordering is intrinsic for the 

nominal MgMn3(OH)6Cl2 for reasons described below.  

 First, all kagome antiferromagnets MgxMn4−x(OH)6Cl2 (x = 0.9–1.62) crystallized with 

different Mg/Mn site intermixing showed similar magnetism, which suggests that the defects did 

not affect the ordering in MgMn3(OH)6Cl2.  

 Second, the ordering in the present Heisenberg spin system MgxMn4−x(OH)6Cl2 is 

strikingly different from the S = 3/2 Ising kagome antiferromagnets ZnCo3(OH)6Cl2 and 

MgCo3(OH)6Cl2, which have similar intermixing patterns but show partial spin liquid magnetism 

[76-77]. All of these results are consistent and support the intrinsic nature of the magnetic 

ordering in MgMn3(OH)6Cl2 compound. 

 For a classical Heisenberg kagome antiferromagnet, most theoretical works predict a 

large ground state degeneracy or particular spin arrangements near T = 0. The Dzyaloshinskii-

Moriya (DM) interaction may lead to ordering with the q = 0 phase with the all-in all-out 

structure [81], which was previously proposed to account for the unexpected LRO in jarosites. 

Both planar and weak ferromagnetic (along the axis perpendicular to the kagome plane) 

structures are obtained theoretically, which indeed agree with the experimentally observed 

results in jarosites. However, the Mn spin anisotropy in the present system appeared small. In 

addition, the magnetization of the samples did not show a DM-type weak-ferromagnetic property 

for T < TN. Therefore, that kind of DM effect is considered to be absent. The high value of TN = 

8 K might be appears from order from disorder theories [50, 83-84]. Besides, these models 

predicted tripled-unit-cell spin structures, which are different from that in MgxMn4−x(OH)6Cl2. 
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The present regular kagome lattice system could be compared to the so-called kagome–triangular 

(KT) lattice of layered fluoride NaBa2Mn3F11 [129]. In the latter, a kagome type array of regular 

triangles composed of Mn
2+

 ions (spin 5/2) deforms much so as to generate a large next-nearest 

neighbor interaction J2 in addition to the nearest-neighbor interaction J1. This kagome-triangular 

(KT) lattice compound showed a long-range order (LRO) at 2.0 K, which is shown to be in good 

consistency with the unique noncoplanar magnetic orders predicted by the extended J1 − J2 

model [87]. Indeed, the critical role of the next-nearest-neighbor interaction in inducing magnetic 

order in this kind of KT lattices has also been demonstrated in a triangular spin tube material 

CsCrF4, wherein ferromagnetic kagome bond, single-ion anisotropy, and DM interaction play 

key roles in the selection of the ground state [130]. 

 The present spin system could also be compared with the dipolar+Heisenberg interaction 

model as proposed by Maksymenko et al. [84] that predicted three-sublattice long-range order 

with coplanar 120° spin structure. The main exchange interaction Je can be estimated 

approximately to be Je = −2.14 K from the Curie-Weiss temperature θCW using the mean-field 

theory by 𝐽𝑒 =
3𝑘𝐵𝛩𝑐𝑤

2𝑧𝐽 (𝐽+1)
,  where z is the number of nearest neighbors. The dipolar interaction 

energy D is estimated to be 0.46 K for the Mn
2+

 spin using the relation, 𝐷 =
𝜇0

4𝜋

𝜇2

𝑅𝑛𝑚
3 , where Rnm = 

0.358 nm. The long-range order in the present MgxMn4−x(OH)6Cl2 compounds with D/Je = ~ 

0.21 may be qualitatively explained by the dipolar+Heisenberg interactions model. However, the 

high TN near 8 K seems not to be readily explainable. Most probably, dipolar+multiple 

Heisenberg interactions, including some inter kagome-plane couplings, would better describe the 

magnetic order in MgMn3(OH)6Cl2. Especially, both MgFe3(OH)6Cl2 of spin chirality−1 and 

MgMn3(OH)6Cl2 of spin chirality +1 has an ordering wave vector k = (0, 0, 3/2), suggesting 

weak interplane superexchange interactions. 
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Chapter-4 

Conclusions 

In order to explore the ground state of the classical spin kagome antiferromagnet, the S = 5/2 

classical kagome antiferromagnet MgMn3(OH)6Cl2 has successfully synthesized using 

solvothermal reaction process. This kagome lattice compound crystallizes in rhombohedral 

structure with space group R-3m, in a similar crystal structure to the much researched quantum 

spin liquid candidate herbertsmithite ZnCu3(OH)6Cl2. The substitution of non-magnetic Mg
2+

 ion 

into the parent compound of deformed pyrochlore Mn2(OH)3Cl results 2D kagome lattice 

geometry, which displayed increased transition temperature TN = 8.0 K with respect to 

Mn2(OH)3Cl whose transition temperature at TN1 = 3.4 K and TN2 = 2.7 K. The increment of 

transition in the present spin system significantly reduce magnetic frustration with respect to its 

parent compound of deformed pyrochlore Mn2(OH)3Cl. Moreover, all the compounds present in 

MgxMn4-x(OH)6Cl2 (x = 0.9 - 1.62) displayed transition temperature between 7.6 - 8.0 K despite 

different Mg/Mn sites intermixing, suggesting that the defects did not affect the magnetic 

ordering in the present system. A long-range coplanar magnetic order developed below 

approximately 8 K in Mg1.34Mn2.66(OD)6Cl2 as revealed by neutron powder diffraction 

experiment. This clearly shows that the magnetic ordering in the classical spin kagome 

Mg1.34Mn2.66(OD)6Cl2 is strikingly different from its Cu variant of the quantum Heisenberg 

antiferromagnet ZnCu3(OH)6Cl2 in the same material series of magnetic transition metal 

hydroxyhalogenide. The experimentally obtained critical exponent β = 0.35 agrees with the 

three-dimensional Heisenberg spin system with a 120º nearest-neighbor spin structure confined 

in the kagome plane and spin-vector chirality of q = +1 below transition temperature (TN). 

Recently, J. Merino et al. [78] reported theoretically rapid diminishing of quantum fluctuation 

with increasing the spin moment for honeycomb lattice. Our experimental verification of the 

magnetic ordering of S = 5/2 Heisenberg spin on a regular kagome lattice, and the previously 

reported S = 2 Heisenberg kagome antiferromagnet MgFe3(OH)6Cl2, provides simple real 

systems for further theoretical and experimental studies on classical kagome antiferromagnets. 
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