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ABSTRACT 

Interfacial wave behavior and flow characteristics of falling liquid films on an inclined 

porous wall have been studied by means of a numerical simulation. Basic equations are 

discretized on a staggered grid fixed on a physical space. Using the Navier-Stokes and 

Darcy-Brinkman equations in the film and porous layer, respectively, the problem is reduced 

to study of the evolution equation for the free surface of the liquid film derived through a 

long-wave approximation. Interfacial boundary conditions are treated with an originally 

proposed method and the wave behavior can be calculated accurately. Small artificial 

perturbations given at the inflow boundary grow rapidly and then the amplitude of the waves 

approaches to developed waves. Calculations have been performed in the wide range of 

physical parameters, in particular for inclined porous wall. Also, compare the film thickness 

and the velocity profile between the solid substrate and the porous wall. 

 

Heat and mass transfer for liquid evaporation along a vertical plate covered with a thin 

porous layer has been investigated. The continuity, momentum, energy and mass balance 

equations, which are coupled nonlinear partial differential equations are reduced to a set of 

two nonlinear ordinary differential equations and solved analytically and numerically by 

using shooting technique in MATLAB. The effect of various parameters like the Froude 

number, the porosity, the Darcy number, the Prandtl number, the Lewis number and the 

other driving parameters on the flow, temperature and concentration profiles are presented 

and discussed. It is clearly viewed that the heat transfer performance is enhanced by the 

presence of a porous layer. The local Nusselt number and the local Sherwood numbers are 

computed and analyzed both numerically and graphically. 

Similarity solution of heat and mass transfer for the falling film flow on a porous medium 

in presence of heat generation or absorption has been modeled by Darcy-Brinkman 

equations and solved by using similarity technique. Heat generation, thermal radiation and 

chemical reaction effects are considered. By using appropriate transformations, the 

governing nonlinear partial equations are transformed into coupled nonlinear ordinary 

differential equations. Graphs are decorated to explore the influence of physical parameters 

on the non-dimensional velocity, temperature and concentration distributions. The local 

Nusselt number and the local Sherwood number are computed and analyzed numerically.  
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Effect of thermal radiation and chemical reaction on heat and mass transfer flow over a 

moving porous sheet with suction and blowing has been investigated. Thermal radiation and 

chemical reaction effects are considered. By using appropriate transformations, the 

governing nonlinear partial equations are transformed into coupled nonlinear ordinary 

differential equations. Graphs are decorated to explore the influence of physical parameters 

on the non-dimensional velocity, temperature and concentration distributions. The skin 

friction, the local Nusselt number and the local Sherwood number are computed and 

analyzed numerically. 
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                                             CHAPTER ONE                   

Introduction 

1.1 Background 

A falling film is the gravity flow of a continuous liquid film down a solid tube having one 

free surface. Flow of liquid in thin films is observed in numerous natural occurring 

phenomena and as well as in practical situation of importance. Due to number of peculiar 

characteristics, it is discussed in a separate class of flow. There are many researchers to 

investigate thin film behavior by using analytical, numerical and experimental techniques. 

Liquid film flows rise in a wide variety of applications in industry for distillation, 

refrigeration, chemical processing and air conditioning system, power generation and 

energy production facilities. Comprehensive literature reviews have been presented by 

Alekseenko et al. [1] and Chang [2]. As well known, the heat and mass transfer of the falling 

liquid film is enhanced by the interfacial waves. It is, therefore, important for explanation 

of the enhancement mechanism and for active use of the wave to clarify the wave behavior 

and flow dynamics.  

Actually, solid substrates are rarely smooth, and they often are rather rough or even porous. 

Such situations are present in the bio-chemical, pharmaceutical, environmental, energy, and 

food industries. Beavers and Joseph [3] was proposed a pioneering study involving flow at 

a fluid-porous interface. Saffmann [4] justified theoretically the flows in the fluid and porous 

layers are described by the Stokes and Darcy equations, respectively, a semiempirical 

velocity slip boundary condition, was proposed at the interface. It involved a dimensionless 

slip coefficient which depends on the local geometry of the interface explained by Beavers 

et. al. [5].  Jeong [6] has been studied the magnitude of the slip velocity on an idealized 

porous wall or for a fibrous porous structure. However, Neale and Nader [7], and Brinkman, 

[8] expressed the geometry of the interface is generally unknown, and an alternative model 

consists in using the Darcy–Brinkman equation in the porous layer. In this case, partial 

differential equations for each region are of the same differential order and continuity of 

both velocity and shear stress can be satisfied at the fluid-porous interface. 

 

There are many researchers have been studied instabilities of the interfacial waves 

intensively with linear, weakly nonlinear and full nonlinear stability analyses. Fulford [9], 
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Alekseenko et al. [1] and Chang and Demekhin [10] have been studied comprehensive 

reviews on wave dynamics. Instabilities of the interfacial waves have been studied 

intensively with linear, weak nonlinear and full nonlinear stability analyses. Interfacial 

waves can be developed by two ways: (i) disturbing the inlet flow rate or film thickness by 

periodic disturbance and (ii) by ambient noise (numeric random noise). Periodic disturbance 

in inlet generates periodic waves in the downstream region. The characteristics of these 

waves depend on frequency of inlet disturbance. On the other hand, natural waves are noise 

driven, and waves are selectively amplified as films flow downstream. Natural waves also 

evolve into solitary waves with fluctuating spacing because of amplification of ambient 

noise. 

In modeling the rough surface as a porous medium, Neogi and Miller [11] jointly eliminated 

the unboundedness near the contact line and provided a foot of the correct length scale. 

Davis and Hocking [12] and Starov et al. [13] is imposed continuity of pressure at the 

interface while boundary conditions for the velocity are described either by using the 

Beavers and Joseph slip condition Neogi and Miller [11] or by imposing continuity of 

velocity and shear stress. Davis and Hocking [12] and Starov et al. [13] have been performed 

a theoretical study in order to characterize the interface conditions for a thin film flow past 

a porous layer using Reynolds and Darcy equations in the film and the porous layer, 

respectively. Due to the nature of these equations, Bayada and Chambat [14] have been 

provided a normal condition for the pressure at the interface. Previously, J. P. Pascal [15, 

16] surface have been performed two stability analysis of fluid flow down an inclined 

isothermal porous. In both cases, Darcy’s law was used for momentum transport in the 

porous layer and therefore viscous diffusion at the interface is not included. The results that 

depend on the slip coefficient values show the destabilizing effect of the permeability. 

 

Wave formation in the falling film is closely related with the energy. Many energies in the 

falling film have a significant effect on hydrodynamics. Although a lot of papers is already 

published to discuss the wave dynamics and instability of falling film, however papers 

which explain the energy analysis of falling film is seldom. The disturbance kinetic energy 

of the film flow for a disturbance of arbitrary wave length and identified the various 

contributions to the disturbance kinetic energy which is analyzed by Kelly et al. [17]. Also, 

the disturbance kinetic energy of film flowing over oscillating plate using same equations 

which is discussed by Lin et al. [18] and Lin and Chen [19]. So, wave suppression were the 

main objectives of those studies. Although energy analysis of falling film is an important 
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issue which is required to be addressed more elaborately, however still a lacking in complete 

energy analysis of the falling film. This lacking motivated to do a complete analysis of 

various energies of the falling film with their wave dynamics. 

 

Fluid dynamics is a subject of widespread interest to researcher and it became an obvious 

challenge for the scientists, engineers as well as users to understand more about fluid 

motion. An important contribution to the fluid dynamics is the concept of boundary layer 

flow introduced first by L. Prandtl [20]. The concept of the boundary layer is the 

consequence of the fact that flows at high Reynolds numbers can be divided into unequally 

spaced regions. A very thin layer (called boundary layer) in the vicinity (of the object) in 

which the viscous effects dominate, must be taken into account, and for the bulk of the flow 

region, the viscosity can be neglected, and the flow corresponds to the in viscid outer flow. 

Although the boundary layer is very thin, it plays a vital role in the fluid dynamics. Boundary 

layer theory has become an essential study now-a-days in analyzing the complex behaviors 

of real fluids. The concept of boundary layer can be used to simplify the Navier-Stocks’ 

equations to such an extent that the viscous effects of flow parameters are evaluated, and 

these are useable in many practical problems (viz the drag on ships and missiles, the 

efficiency of compressors and turbines in jet engines, the effectiveness of air intakes for ram 

and turbojets and so on). 

Effective latent heat transfer mechanism widely utilized in industrial fields such as chemical 

distillation, air conditioning, cooling towers, drying, and desalination which is liquid film 

evaporation. With the liquid film exposed to a forced gas stream, the physical scheme 

consists of a thin liquid film flowing down along a heated plate. Because part of the liquid 

evaporates into the gas stream, liquid film evaporation possesses a high heat transfer 

coefficient, low feed rates and other inherent advantages. However, the transport 

phenomena involve the coupled heat and mass transfer at the liquid film–gas interface 

because the theoretical analysis of liquid film evaporation problem is inherently 

complicated. There are many researches with more rigorous treatments of the equations 

governing the liquid film and liquid–gas interface has been published. The evaporative 

cooling of liquid film through interfacial heat and mass transfer in a vertical channel was 

studied by Yan and Lin [21]. The numerical solution for convective heat and mass transfer 

along an inclined heated plate with film evaporation which presented by Yan and Soong 

[22]. The free convection boundary layer flow of a Darcy–Brinkman fluid induced by a 
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horizontal surface embedded in a fluid-saturated porous layer which is explained by Rees 

and Vafai [23] for the studies of heat and mass transfer for liquid film flow in porous 

medium. The fluid flow and heat transfer interfacial conditions between a porous medium 

and a fluid layer which is detailed analyzed by Alazmi and Vafai [24]. The coupled heat and 

mass transfer in a stagnation point flow of air through a heated porous bed with thin liquid 

film evaporation studied by Zhao [25]. Also, Zhao [25] assumed the liquid layer was very 

thin and stationary, and the air stream was idealized as the stagnation point flow pattern to 

achieve the analytical solution. 

 

Further the boundary layer effects caused by free convection are frequently observed in our 

environmental happenings and engineering devices. We know that if externally induced 

flow is provided and flows arising naturally solely due to the effect of the differences in 

density, caused by temperature or concentration differences in the body force field (such as 

gravitational field). This type is called `free convection’ or ‘natural convection’ flow. The 

density difference causes buoyancy effects and these effects act as ‘driving forces’ due to 

which the flow is generated. 

Khader and Megahed [26] are presented a numerical technique which is the implicit finite 

difference method to the search for the numerical solutions for the given equations. Their 

technique reduces the problem to a system of algebraic equations. Recently, M. 

Hasanuzzaman and A. Miyara [27] have been studied a possible similarity solution of 

unsteady natural convection laminar boundary layer flow of viscous incompressible fluid 

caused by a heated (or cooled) axi-symmetric slender body of finite axial length immersed 

vertically in a viscous incompressible fluid. Thus, it is imperative to reduce the number of 

variables from the system which reached in a stage of great extent. Similarity solution is one 

of the important means for the reduction of a number of independent variables with 

simplifying assumptions and finally the system of partial differential equations reduces to a 

set of ordinary differential equations successfully. A vast literature of similarity solution has 

appeared in the area of fluid mechanics, heat transfer, and mass transfer, etc. The similarity 

solutions in the context of mixed convection boundary layer flow of steady viscous 

incompressible fluid over an impermeable vertical flat plate were discussed by Ishak et al. 

[28]. Ramanaiah et al. [29] studied the similarity solutions of free, mixed and forced 

convection problems in a saturated porous media.  
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Suction (or blowing) is one of the useful means in preventing boundary layer separation. 

The effect of suction consists in the removal of decelerated particles from the boundary 

layer before they are given a chance to cause separation. The surface is considered to be 

permeable to the fluid, so that the surface will allow a non-zero normal velocity and fluid is 

either sucked or blown through it. In doing this however, no-slip condition 0=wu  at the 

surface (non-moving) shall continue to remain valid. Suction or blowing causes double 

effects with respect to the heat transfer. On the one hand, the temperature profile is 

influenced by the changed velocity field in the boundary-layer, leading to a change in the 

heat conduction at the surface. On the other hand, convective heat transfer occurs at the 

surface along with the heat conduction for 𝑣𝑊 ≠ 0 . A summary of flow separation and its 

control are found in Chang [30, 31]. The study of natural convection on a horizontal plate 

with suction and blowing is of huge interest in many engineering applications, for instance, 

transpiration cooling, boundary layer control and other diffusion operations. 

 

1.2 Objective of this present study 

In this thesis, we studied two types of studies which are numerical simulation as well as 

similarity analysis. 

First is numerical simulation: 

For numerical simulation, wavy falling liquid films are simulated with a finite difference 

method of which algorithm is based on MAC method. Although the adaptive grid has the 

advantage for the free boundary condition as mentioned before, an originally proposed 

advanced technique for the fixed grid is employed in the present simulation. Neglecting the 

interfacial shear stress is only an assumption for the present numerical simulation. Waves 

are generated by temporal periodic small-amplitude disturbances with a specific frequency 

at the flow inlet. Calculations have been performed in the wide range of physical parameters, 

in particular for vertical and slightly inclined films. The simulation code is developed by 

extending the previous work by Miyara [32] for hydrodynamics of wavy falling film. 

 

Second is similarity analysis: 

For similarity analysis, to find a possible similarity solution of heat and mass transfer for 

liquid evaporation along a vertical plate covered with a thin porous layer. We are attempted 
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to investigate the effects of several involved parameters on the velocity, temperature and 

concentration fields. The numerical results including the velocity, temperature and 

concentration fields are to be presented graphically for different selected values of the 

established dimensionless parameters. The local skin friction, local Nusselt number and the 

local Sherwood numbers are computed numerically and graphically as well as analyzed. 

 

To investigate the effect of heat generation or absorption, thermal radiation and chemical 

reaction on the velocity, temperature and concentration fields in the thin liquid film on a 

porous medium. Mathematical modelling is developed under the considerations of heat 

generation or absorption, thermal radiation and chemical reaction stratification effects. The 

effects of various emerging parameters on velocity, temperature as well as concentration 

fields are presented graphically. The local Nusselt number and the local Sherwood numbers 

are computed and analyzed both numerically and graphically. 

Also, to investigate the effect of thermal radiation and chemical reaction on heat and mass 

transfer flow over a moving porous sheet with suction and blowing. Under the consideration 

of thermal and chemical reaction stratification effects the Mathematical modelling is 

developed. The effects of various emerging parameters on the velocity, temperature and 

concentration fields are presented through graphically and tables. The local Nusselt number 

and the local Sherwood numbers are computed numerically and analyzed. 

1.3 Outline of the thesis 

This thesis is composed of Seven Chapters.  

Chapter One: An introduction of basic principles of boundary layer theory, natural 

convection flows, suction and blowing phenomena with historical review of earlier 

researches and background of our problem are presented in chapter one.  

Chapter Two: Chapter two provides the numerical simulation of wavy liquid film flowing 

along inclined porous wall. To observe the effect of various parameters on the film thickness 

along the downstream. Also, compared the film thickness and velocity between solid 

substrate and porous wall. 

Chapter Three: Chapter three also provides numerical simulation of wavy liquid film. In this 

chapter included energy equation. To observe the effect of the various parameters on the 
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film thickness along the downstream. Also, compared the velocity between solid substrate 

and porous wall. 

Chapter Four: In chapter four we constructed a physical model and corresponding governing 

equations with the boundary conditions. Then we used a similarity technique which is 

converted partial differential equations into ordinary differential equations. Under the 

considered condition, the numerical solutions with graphs has also given here for some 

selected values of the established parameters. Moreover, the local skin friction, the local 

Nusselt number and the local Sherwood numbers are computed numerically and analyzed. 

Chapter Five: To investigate the effect of heat generation or absorption, thermal radiation 

and chemical reaction on the velocity, temperature and concentration fields in the thin liquid 

film on a porous medium. Mathematical modelling is developed under the considerations 

of heat generation or absorption, thermal radiation and chemical reaction stratification 

effects. The effects of various emerging parameters on velocity, temperature as well as 

concentration fields are presented graphically. The local Nusselt number and the local 

Sherwood numbers are computed and analyzed both numerically and graphically. 

Chapter Six: In this chapter, we also developed a physical model and corresponding 

predicted governing equations with the boundary conditions. Also, the partial differential 

converted into the ordinary differential equations by using the similarity transform. The 

effect of thermal radiation, chemical reaction and other parameters on velocity, temperature 

and concentration, respectively. Moreover, the local skin friction, the local Nusselt number 

and the local Sherwood numbers are computed numerically and analyzed. 

Chapter Seven: In chapter seven, the conclusions gained from this present work and brief 

descriptions for further works related to our present research are discussed.  
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                                             CHAPTER TWO                    

Numerical Simulation of Wavy Liquid Film Flowing 

Along an Inclined Porous Wall 

 

2.1 Introduction 

Waves generated on an interface of a thin falling liquid film down an inclined or vertical wall 

have been studied extensively because of the scientific interests and very wide application in 

the fields of engineering. Liquid layers flowing on a solid wall and possessing a free surface 

can be described by a film thickness evolution equation obtained through a long-wave 

approximation of the Navier–Stokes equations (Chang, [2] and Oron et al., [3]).  Most works 

consider a smooth solid impervious substrate and therefore a no-slip and no-penetration 

boundary conditions for the fluid velocity at the fluid/substrate interface is adopted. In that 

case, Benney [4] showed that past a critical Reynolds number the base flow is unstable to a 

long-wave instability. However, Benney-type equations even with stabilizing surface tension 

have only a limited validity range since they lead to blow-up of solutions in finite time, which 

is not the case when solving the full Navier–Stokes equations (Rosenau at el., [5] and 

Salamon at el., [6], Oraon and Gottlieb, [7] and Scheid at el., [8]). The hydrodynamic stability 

of a falling film on a porous substrate is a currently developing subject because of its 

application to several technology processes, for instance food manufacturing, and because of 

its relevance to geophysical problems, such as rill flows and surface waves over soil systems. 

Comprehensive literature reviews have been presented by Alekseenko et al. [1] and Chang 

[2]. As well known, the heat and mass transfer of the falling liquid film is enhanced by the 

interfacial waves. It is, therefore, important for explanation of the enhancement mechanism 

and for active use of the wave to clarify the wave behavior and flow dynamics. 

 

A pioneering study involving flow at a fluid-porous interface was performed by Beavers and 

Joseph [9]. The flows in the fluid and porous layers are described by the Stokes and Darcy 

equations, respectively, a semiempirical velocity slip boundary condition, justified 

theoretically by Saffmann [10], was proposed at the interface. It involved a dimensionless 

slip coefficient which depends on the local geometry of the interface (Beavers, [11]). 

Recently, the magnitude of the slip velocity has been studied on an idealized porous wall 
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(Jeong, [12]) or for a fibrous porous structure (James and Davis, [13] and Levy, [14]). 

However, the geometry of the interface is generally unknown, and an alternative model 

consists in using the Darcy–Brinkman equation in the porous layer (Neale and Nader [15], 

and Brinkman, [16]). In this case, partial differential equations for each region are of the 

same differential order and continuity of both velocity and shear stress can be satisfied at the 

fluid-porous interface. 

 Many researchers have been studied instabilities of the interfacial waves intensively with 

linear, weakly nonlinear and full nonlinear stability analyses. The linear analyses (Benjamin 

[17], Yin[18],  Bankoff [19], Penev at el. [20], Marschall and Lee [21],  Pierson and Whitaker 

[22], and Solorio and Sen [23], are, however, limited only to the initial stage of wave 

inception and the weakly nonlinear analyses (Benney [24], Lin[25], Gjevik [26], Nakaya and 

Takaki [27], Nakaya [28], Unsal and Thomas [29], and Pumir et al. [30]) are developed to 

study the evolution subsequent to wave inception. Although the full nonlinear solution 

(Pumir et al. [30] and Joo et al. [31]) based on the long-wave boundary layer equations has 

been obtained numerically, finite-amplitude permanent waves are assumed, and the stationary 

equations are solved in a frame of reference translating with the wave velocity. Three-

dimensional instabilities have been studied by Joo and Davis [32] and Chan et al. [33]. All 

the analytical studies, however, focus only on the wave instability and the evolution behavior, 

and the flow characteristics in the liquid film have not been discussed sufficiently. Two 

stability analysis of fluid flow down a inclined isothermal porous surface have been 

previously performed (Pascal [34], and Pascel [35],). In both cases, Darcy’s law was used for 

momentum transport in the porous layer and therefore viscous diffusion at the interface is not 

included. The results that depend on the slip coefficient values show the destabilizing effect 

of the permeability. 

The finite difference method is also widely used [36–40]. Most of researchers employed an 

adaptive grid fitted to the free surface because the adaptive grid has an advantage to apply 

easily the exact free boundary conditions. Nagasaki and Hijikata [36] employed the adaptive 

grid. They calculated variations from small amplitude sinusoidal disturbance to fully 

developed solitary wave, composed of a big wave and small waves, under the periodic 

boundary condition. They recognized the existence of a circulation flow in the big wave. In 

order to modify the temporal film thickness variation, a constant mean film thickness in the 

whole calculation region was applied. This method, however, seems to be impertinent to the 

falling film, because the mean film thickness under constant flow rate condition may be 

changed depending on the variation of the mean velocity. They mentioned the increase of the 
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mean flow rate with the development of the wave. Therefore, it is necessary to develop the 

alternative appropriate correction method for the temporal film thickness variation. Kiyata et 

al. [37] calculated variations of wave shape with the similar manner of Nagasaki and Hijikata 

[36]. They calculated the initial stage of wave evolution and compared the calculated wave 

evolution with the linear stability theory. Stuhlträger et al. [38], [39] solved a wavy 

condensate film with a self-modified MAC method under an outflow boundary condition 

proposed by Shapiro and O’Brien [41]. In their calculation, the velocity profile at the 

interface is approximated by a parabolic function and the interfacial boundary condition 

treated insufficiently. 

In the present study, wavy falling liquid films are simulated with a finite difference method of 

which algorithm is based on MAC method. Although the adaptive grid has the advantage for 

the free boundary condition as mentioned before, an originally proposed advanced technique 

for the fixed grid is employed in the present simulation. Neglecting the interfacial shear stress 

is only an assumption for the present numerical simulation. Waves are generated by temporal 

periodic small-amplitude disturbances with a specific frequency at the flow inlet. 

Calculations have been performed in the wide range of physical parameters, in particular for 

vertical and slightly inclined films. The simulation code is developed by extending the 

previous work by Miyara [40] for hydrodynamics of wavy falling film. 

 

2.2 Model and Governing Equations  

 

Figure 2.1: physical model and coordinates for a two-dimensional falling liquid film down an inclined 

porous wall. 
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We consider a two-dimensional incompressible Newtonian liquid fluid flowing over an 

inclined porous wall, saturated by the same liquid from the side of the substrate (Figure 2.1). 

Note that we consider a porous layer of a finite constant thickness d on a nonporous outer 

wall.  

The hydrodynamics of falling can be expressed by following continuity equation and Navier-

Stokes equations. 

Continuity equation 

𝜕𝑢′

𝜕𝑥′
+

𝜕𝑣′

𝜕𝑦′
                                                                                                                     (2.1) 

Navier-Stokes equations 

𝜌 (
𝜕𝑢′

𝜕𝑡′
+ 𝑢′

𝜕𝑢′

𝜕𝑥′
+ 𝑣′

𝜕𝑢′

𝜕𝑦′
) = −

𝜕𝑝′

𝜕𝑥′
+ 𝜇 (

𝜕2𝑢′

𝜕𝑥′2 +
𝜕2𝑢′

𝜕𝑦′2) + 𝜌𝑔 𝑠𝑖𝑛𝜃            (2.2) 

𝜌 (
𝜕𝑣′

𝜕𝑡′
+ 𝑢′

𝜕𝑣′

𝜕𝑥′
+ 𝑣′

𝜕𝑣′

𝜕𝑦′
) = −

𝜕𝑝′

𝜕𝑦′
+ 𝜇 (

𝜕2𝑣′

𝜕𝑥′2 +
𝜕2𝑣′

𝜕𝑦′2) − 𝜌𝑔 𝑐𝑜𝑠𝜃            (2.3) 

In the following, buoyancy will be neglected since we consider sufficiently thin films. The 

liquid film flow inside the porous substrate is described using the Darcy-Brinkman equation 

(Goyeau et al. [45], Whitaker, [46] and Bousquet et al., [47]). 

𝜕�̃�′

𝜕𝑥′
+

𝜕�̃�′

𝜕𝑦′
= 0                                                                                                             (2.4) 

𝜌

𝑏

𝜕�̃�′

𝜕𝑡′
= −

𝜕�̃�′

𝜕𝑥′
+ 𝜇𝑒𝑓𝑓 (

𝜕2�̃�′

𝜕𝑥′2 +
𝜕2�̃�′

𝜕𝑦′2) −
𝜇

𝐾
�̃�′ + 𝜌𝑔 𝑠𝑖𝑛𝜃                                (2.5) 

𝜌

𝑏

𝜕�̃�′

𝜕𝑡′
= −

𝜕�̃�′

𝜕𝑦′
+ 𝜇𝑒𝑓𝑓 (

𝜕2�̃�′

𝜕𝑥′2 +
𝜕2�̃�′

𝜕𝑦′2) − −
𝜇

𝐾
�̃�′ − 𝜌𝑔 𝑐𝑜𝑠𝜃                           (2.6) 

 

where �̃�′  and �̃�′ are the filtration velocities in the x and y-directions, k is the permeability, b 

is the porosity,  is the density, and 𝜇𝑒𝑓𝑓 represents the effective viscosity. Following 

Whitaker [46], the reduced viscosity is given by 
𝜇

𝜇𝑒𝑓𝑓
=

1

𝑏
. The flow in the porous wall is 

assumed to be slow enough to neglect inertial (Bousquet et al., [47]).  
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Definitions of dimensionless coordinates and variables are as follows: 

𝑥 =
𝑥′

𝛿0
,   𝑦 =

𝑦′

𝛿0
, 𝑡 =

𝜀𝑢0

𝛿0
𝑡′                                                                            (2.7) 

𝑢 =
𝑢′

𝑢0
,   �̃� =

�̃�′

𝑢0
,   𝑣 =

𝑣′

𝑢0
,   �̃� =

�̃�′

𝑢0
                                                                    (2.8) 

𝑝 =
𝑝′

𝜌𝑢0
2 , �̃� =

�̃�′

𝜌𝑢0
2 ,     ℎ =

ℎ′

𝛿0
                                                                         (2.9) 

where 𝛿0 is the mean thickness of the film and   is the ratio of the length scales 
𝛿0

𝐿
≪ 1,  , L 

denotes the characteristic length scale for a surface deformation, 
0


d

=  is the dimensionless 

thickness of the porous substrate. 

Above continuity equation and Navier-Stokes equations are converted into dimensionless by 

assuming constant physical properties. 

Continuity equation       

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                                             (2.10) 

Navier-Stokes equations 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+

1

𝑅𝑒0
(

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) +

1

𝐹𝑟𝑥0
                               (2.11) 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+

1

𝑅𝑒0
(

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) +

1

𝐹𝑟𝑦0
                               (2.12) 

 

While in the porous layer they take the form 

Continuity equation 

𝜕�̃�

𝜕𝑥
+

𝜕�̃�

𝜕𝑦
= 0                                                                                                             (2.13) 

Navier-Stokes equations 

1

𝑏

𝜕�̃�

𝜕𝑡
= −

𝜕�̃�

𝜕𝑥
+

1

𝑅𝑒0
(

𝜕2�̃�

𝜕2𝑥
+

𝜕2�̃�

𝜕2𝑦
) −

1

𝐷𝑎 𝑅𝑒0
�̃� +

1

𝐹𝑟𝑥0
                                 (2.14) 

1

𝑏

𝜕�̃�

𝜕𝑡
= −

𝜕�̃�

𝜕𝑦
+

1

𝑅𝑒0
(

𝜕2�̃�

𝜕2𝑥
+

𝜕2�̃�

𝜕2𝑦
) −

1

𝐷𝑎 𝑅𝑒0
�̃� +

1

𝐹𝑟𝑦0
                                 (2.15) 
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where 


 00

0Re
u

=  is the Reynolds number and 
2h

k
Da =  is the number representing the 

dimensionless permeability. Hence, the porosity is not necessarily related to the Darcy 

number and its influence on the stability of the film will be studied independently of the 

dimensionless permeability.  

The following relation between 0u  and 0  is given by: 

𝑢0 =
𝜌𝛿0

2 𝑠𝑖𝑛𝛼

2𝜇
                                                                                                         (2.16) 

From this above equation, the dimensionless parameters are satisfied the following relations: 

𝐹𝑟𝑥0 =
1

2
𝑅𝑒0,           𝐹𝑟𝑦0 =

1

2
𝑅𝑒0𝑡𝑎𝑛(𝜋 − 𝜃)                                                  (2.17) 

 

2.3 Boundary Conditions 

2.3.1 Wall Surface 

Boundary conditions of the velocity at the wall surface are given as follows: 

 

�̃� ≠ 0,      �̃� ≠ 0   at   𝑦 = 0                                                                                    (2.18) 

Pressure at the wall surface is obtained by substituting equation (2.18) into the Navier–Stokes 

equation of y-direction (2.15): 

𝜕�̃�

𝜕𝑦
=

1

𝑅𝑒0

𝜕2�̃�

𝜕2𝑦
+

1

𝐹𝑟𝑦0
                                                                                            (2.19) 

 

2.3.2 Interface 

With the following kinematic boundary condition, the temporal variation of the film 

thickness is calculated: 

𝜕ℎ

𝜕𝑡
= �̃� − �̃�

𝜕ℎ

𝜕𝑥
                                                                                                         (2.20) 

On the other hand, by integrating the continuity equation (2.13) between the limits y=0 to 

y=h.   

∫
𝜕�̃�

𝜕𝑥
𝑑ℎ + �̃�𝑦=ℎ = 0                                                                                               (2.21)

ℎ

0
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From the differential and integral calculus, 

   

𝜕

𝜕𝑥
∫ �̃�𝑑𝑦 = �̃�𝑦=ℎ

𝜕ℎ

𝜕𝑥

ℎ

0

+ ∫
𝜕�̃�

𝜕𝑥
𝑑𝑦

ℎ

0

                                                                        (2.22) 

 

Consequently, from equations (2.20)– (2.22) we obtain the following equation: 

𝜕

𝜕𝑥
∫ �̃�𝑑𝑦 +

𝜕ℎ

𝜕𝑡

ℎ

0

= 0                                                                                                (2.23) 

Because calculated film thickness of new time step does not satisfy mass conservation due to 

truncation error, a correction of the new film thickness is required.   

Including the effects of pressure, surface tension, and momentum, the force balance normal to 

the interface is obtained and the pressure at the interface is calculated with the following 

equations:       

𝑝 =
−

𝜕2ℎ
𝜕𝑥2

𝑊𝑒0  [1 + (
𝜕ℎ
𝜕𝑥

)
2

]

3
2

+
2

𝑅𝑒0 [1 + (
𝜕ℎ
𝜕𝑥

)
2

]

[
𝜕�̃�

𝜕𝑥
(

𝜕ℎ

𝜕𝑥
)

2

− (
𝜕�̃�

𝜕𝑦
+

𝜕�̃�

𝜕𝑥
)

𝜕ℎ

𝜕𝑥
+

𝜕�̃�

𝜕𝑦
]          (2.24) 

where 𝑊𝑒0 is the Weber number, defined as  

𝑊𝑒0

𝜌𝑢0
2𝛿0

𝜎
                                                                                                                  (2.25) 

By using equation (2.16), 𝑊𝑒0  can be rewritten as   

𝑊𝑒0 = 𝑅𝑒0

5
3  (

1

2
𝐾𝑎 𝑠𝑖𝑛𝛼)

1
3

                                                                                   (2.26) 

  

where 𝐾𝑎 is the Kapitza number, defined as    

𝐾𝑎 =
𝑔𝜇4

𝜌𝜎3
                                                                                                                  (2.27) 
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By neglecting the shear stress from the vapor phase, the force and momentum balance in the 

tangential direction becomes as follows:   

(
𝜕�̃�

𝜕𝑦
+

𝜕�̃�

𝜕𝑥
) [1 − (

𝜕ℎ

𝜕𝑥
)

2

] − 2
𝜕ℎ

𝜕𝑥
(

𝜕�̃�

𝜕𝑥
−

𝜕�̃�

𝜕𝑦
)                                                      (2.28) 

 

2.3.3 Inflow Boundary 

At the inflow boundary, the film thickness is disturbed with the following equation. 

ℎ = 1 + 𝐻 + 𝐹(𝑡)                                                                                                    (2.29) 

Two types of waves are modeled in this simulation: periodic force waves and natural waves. 

Periodic force waves are modeled by giving following periodic disturbance in the inflow 

boundary. 

𝐹(𝑡) = 𝜀 𝑠𝑖𝑛(2𝜋𝑓𝑡)                                                                                                (2.30) 

where   is the disturbance amplitude and f is the dimensionless frequency, defined as 

𝑓 =
𝑓′𝛿0

𝑢0
                                                                                                                    (2.31) 

f   is the frequency with dimension Hz. 

Nusselt solution is used to give an average film thickness and velocity profiles at inflow 

boundary. The amplitude of the disturbance wave is given as 𝜀 = 0.05 . The magnitude of the 

amplitude affects wave growth rate while effects on the fully developed waves are small. 

Natural waves are modeled by giving following random noise (white noise) in the inflow 

boundary in similar manner. 

𝐹(𝑡) = ∫ �̂�(𝜔) 𝑒𝑥𝑝(−𝑖𝜔𝑡)𝑑𝜔 = ∫|�̂�(𝜔)| 𝑒𝑥𝑝(𝑖𝛼(𝜔) − 𝑖𝜔𝑡)𝑑𝜔

∞

0

∞

0

           (2.32) 

 

where   is angular frequency and ( )  is the phase of the complex amplitude )(ˆ F . Eq. 

(2.32) is approximated with M frequency units of width M=  . Where   is some high 

frequency cutoff. 

𝐹(𝑡) = ∑|�̂�(𝜔)| 𝑒𝑥𝑝(𝑖𝛼(𝜔𝑘) − 𝑖𝑘 ∆𝜔𝑡)∆𝜔                                                  (2.33)

𝑀

𝑘=1
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The phase 𝛼𝑘 = 𝛼(𝜔𝑘) is taken from a random number generator from the range 𝛼𝑘 ∈

[0, 2𝜋] and |�̂�(𝜔)| can be arbitrarily specified. 

 

2.3.4 Outflow Boundary 

At outflow boundary, the following equations are employed for x-direction velocity �̃� and 

pressure �̃� 

𝜕�̃�

𝜕𝑥
= 0,

𝜕�̃�

𝜕𝑥
= 0                                                                                                (2.34) 

From the above equations, the continuity equation, and the wall boundary condition, y-

direction velocity �̃� becomes �̃� = 0. 

 

2.3.5 Initial Condition 

At t=0, the film thickness is one in the whole simulation region. Initial values of velocities 

and pressure are given from the Nusselt theory. 

 

2.4 Numerical Simulation Method 

2.4.1 Wall Surface and Film Inside 

 

The algorithm of the present calculation is based on the MAC method. Inside the liquid film 

and at the wall surface, the convection terms and the diffusion terms of the basic equations 

are discretized by the third-order upwind scheme and the second-order central-difference 

scheme, respectively. Near the film surface, where the third-order upwind scheme cannot be 

applied, the donor cell method is employed. 

 

 

2.4.2 Interface 

At the closest grid points to the interface, the donor cell method and the second-order central-

difference scheme are also employed. However, values at the grid points outside of the liquid 

film, which are shown as open symbols in Figure 2.2, are unknown, though they are 

necessary. The values of 1, +Jiu , which are at outside grid points, are extrapolated with the 

following scheme by using the values inside the film and the interfacial boundary condition, 

equation (2.28):  
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Where 
h

yu   is calculate from equation (2.28). The x-direction surface velocity isu ,  is 

obtained by interpolating from Jiu ,  and 1, +Jiu . Jiu ,1+  is extrapolated from Jiu ,  and u , which 

is calculated from isu ,  and 1, +isu . 

( ) ( )Jiv ,  is calculated from the following equation: 

 0
1,,,,1

=


−
−

+


−
+ 

































y

Ji
v

Ji
v

x

Ji
u

Ji
u

                                                  (2.36) 

Then y-direction surface velocity ( )isv ,  is interpolated from ( ) ( )Jiv ,  and ( ) ( )1, −Jiv . 

 

 

 

Figure 2.2. Staggered grid fixed on the physical space near the interface 
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2.4.3 Film Thickness 

The temporal film thickness variation is calculated from the kinematic boundary condition 

equation (2.20). Considering the movement of a particle which reaches a grid point (i) at new 

time step n+1 as shown in Figure 2.3, equation (2.20) may be rewritten and a new film 

thickness at the point (i) calculated with the following equation: 
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                                                                 (2.37) 

 

The calculated film thickness, however, does not satisfy the mass conservation at new time 

step because of the truncation error. Although Nagasaki and Hijikata (1989) corrected the 

film thickness with the constant volume condition, this method is inappropriate to the falling 

film since it causes increase of the mean flow rate. By using equation (21) derived from 

continuity equation, the correction value can be obtained as follows: 

 

x

th
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h
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Therefore, the new film thickness which satisfies the mass conservation is 

 

h
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1~1
                                                                                 (2.39) 
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1.0,100,03.0,503.00,100Re0 ===== bDaWe 

 

Figure 2.3: Temporal variation of film thickness 

 

2.5 Simulation Results and Discussions 

2.5.1 Effects of Wave Frequencies 

 

 

Figure 2.4. Developed waves generated by different inlet disturbance frequencies under the 

                     conditions of  
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Figure 2.4 shows wave shapes developed from different inlet disturbance frequencies. For all 

the conditions, the inlet disturbances quickly develop to saturated wave of which wave length 

and amplitude are almost constant along the downstream. In the case of low frequency, wave 

front is steeper than wave rear. On the other hand, high frequency wave is symmetry.   

 

2.5.2 Effects of Reynolds Numbers 
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 Figure 2.5 (a): Effects of Reynolds number  𝑅𝑒0 = 100  on the wave behavior                                        

with the fixed values of 𝑊𝑒0 = 0.503, 𝜀 = 0.03, 𝐷𝑎 = 100, 𝑓 = 0.02 and 𝑏 = 0.1 
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Figure 2.5 (c): Effects of Reynolds number  𝑅𝑒0 = 1000  on the wave behavior                                        

with the fixed values of 𝑊𝑒0 = 0.503, 𝜀 = 0.03, 𝐷𝑎 = 100, 𝑓 = 0.02 and 𝑏 = 0.1 

 

Figure 2.5 (b): Effects of Reynolds number  𝑅𝑒0 = 500  on the wave behavior                                        

with the fixed values of 𝑊𝑒0 = 0.503, 𝜀 = 0.03, 𝐷𝑎 = 100, 𝑓 = 0.02 and 𝑏 = 0.1 
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Influence of the Reynolds number Re0 on the wave shape are shown in Figure 2.5 (a), (b) and 

(c). The Reynolds number is changed from 100 to 1000, and the other parameters are 

constant. The wave peak height decreases with increase of𝑅𝑒0 . Also, the starting wave peak 

height decrease with the increase in Reynolds number Re0.  

 

2.5.3 Effects of Froude Numbers 

 

 

 

 

 

Figure 2.6 (a): Effects of Froude number 𝐹𝑟𝑦0 = −1 on wave behavior for 

𝑅𝑒0 = 100, 𝑊𝑒0 = 0.503, 𝜀 = 0.03, 𝐷𝑎 = 100, 𝑓 = 0.02 and 𝑏 = 0.1 
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Figure 2.6 (c): Effects of Froude number 𝐹𝑟𝑦0 = −100 on wave behavior 

for 𝑅𝑒0 = 100, 𝑊𝑒0 = 0.503, 𝜀 = 0.03, 𝐷𝑎 = 100, 𝑓 = 0.02 and 𝑏 = 0.1 

 

Figure 2.6 (b): Effects of Froude number 𝐹𝑟𝑦0 = −50 on wave behavior for 

𝑅𝑒0 = 100, 𝑊𝑒0 = 0.503, 𝜀 = 0.03, 𝐷𝑎 = 100, 𝑓 = 0.02 and 𝑏 = 0.1 
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Influence of the Froude number 𝐹𝑟𝑦0 on the wave shape are shown in Figure 2.6 (a), (b) and 

(c). The Froude number is changed from -1 to 100, all the other parameters are constants. The 

wave peak height decreases with decrease 𝐹𝑟𝑦0. The starting wave height increase with 

increase 𝐹𝑟𝑦0. 

 

2.5.4 Effects of Porosities 
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Figure 2.7 (a): Effects of porosity 𝑏 = 0.001  on wave behavior for 𝑅𝑒0 =

100, 𝑊𝑒0 = 0.503, 𝜀 = 0.03, 𝐷𝑎 = 100, 𝑓 = 0.02 and 𝐹𝑟𝑦0 = −0.5  

𝑏 = 0.001 
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𝑏 = 0.01 

Figure 2.7 (b): Effects of porosity 𝑏 = 0.01  on wave behavior for 𝑅𝑒0 =

100, 𝑊𝑒0 = 0.503, 𝜀 = 0.03, 𝐷𝑎 = 100, 𝑓 = 0.02 and 𝐹𝑟𝑦0 = −0.5  

 

𝑏 = 0.1 

Figure 2.7 (c): Effects of porosity 𝑏 = 0.1  on wave behavior for 𝑅𝑒0 =

100, 𝑊𝑒0 = 0.503, 𝜀 = 0.03, 𝐷𝑎 = 100, 𝑓 = 0.02 and 𝐹𝑟𝑦0 = −0.5  
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Influence of the porosity b on the wave shape are shown in Figure 2.7(a), (b) and (c). The 

porosity is changed from 0.001 to 0.1, and the other parameters are constant. The wave peak 

height increases with increase the porosity b. Also, the starting wave height increases with 

increase the porosity. Moreover, for the low porosity the wave front is steeper than the wave 

rear. 

 

2.5.5 Effects of Weber Numbers 

 

 

 

 

F
il

m
 t

h
ic

k
n
es

s,
 h

 

Downstream distance, x 

 

𝑊𝑒0 = 0.01 

Figure 2.8 (a): Effects of Weber numbers 𝑊𝑒0 = 0.01  on wave behavior for 

𝑅𝑒0 = 100, 𝜀 = 0.03, 𝐷𝑎 = 100, 𝑓 = 0.02, 𝑏 = 0.1 and 𝐹𝑟𝑦0 = −0.5  
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Effect of the Weber number 𝑊𝑒0on the wave shape are shown in Figure 2.8(a) and 2.8(b). 

The Weber number is changed from 0.01 to 0.503, all the other parameters are constants. 

From these figures, it is clearly shown that starting wave peak height increases with an 

increase of the Weber number along the downstream.  
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 Figure 2.8 (b): Effects of Weber numbers 𝑊𝑒0 = 0.503  on wave behavior for 

𝑅𝑒0 = 100, 𝜀 = 0.03, 𝐷𝑎 = 100, 𝑓 = 0.02, 𝑏 = 0.1 and 𝐹𝑟𝑦0 = −0.5  
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2.5.6 Comparison the Film Thickness between Solid Substrate and Porous  

          Wall 
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Figure 2.9 (a): Instantaneous film thickness for Solid substrate  

 

Figure 2.9 (b): Instantaneous film thickness for porous wall  
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Figure 2.9(a) showing the film thickness for the solid substrate and Figure 2.9(b) showing the 

film thickness for the porous wall. In the solid substrate, the capillary waves are observed. On 

the other hand, in porous wall, there is no capillary wave only the solitary waves are 

observed.  

2.5.7 Compare the Velocity Profiles between Solid Substrate and Porous  

          Wall 
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Figure 2.10 (b): Instantaneous velocity profile for Miyara’s simulation 

Figure 2.10 (a): Instantaneous velocity profile for solid substrate 
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Figure 2.10 (c): Instantaneous velocity profile for porous wall 

Figure 2.10 (d): Combine instantaneous velocity profile for solid substrate 

and porous wall 

Instantaneous velocity profile for solid substrate 

Instantaneous velocity profile for porous wall 
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Figure 2.10(a) showing the velocity profiles for solid substrate which is almost similar to 

velocity profiles from Miyara’s simulation in Figure 2.10(b). The parabolic velocity profiles 

with the calculated surface velocity us, the surface velocity calculated from the Nusselt theory 

as well as from the Miyara’s simulation. Figure 2.10(c) showing the velocity profile for the 

porous wall from the present simulation. Also, Figure 2(d) showing the combine velocity 

profile for solid substrate and porous wall. It is clearly seen that in porous region the velocity 

is little be differing from the solid substrate. After the porosity the velocity profile is 

parabolic which is similar to solid substrate.The box portion is the porosity which is showing 

in Figure 2.10(e). 

 

2.6 Conclusions 

A two-dimensional numerical simulation of wavy liquid film flowing along an inclined 

porous wall has been performed. We investigated the effect of several parameters on the film 

thickness. In solid substrate, a small disturbance generated at the inflow grows to a solitary 

wave consisting of a big-amplitude roll wave and the small-amplitude short capillary waves, 

where as in porous wall only the solitary waves are observed and in low frequency, wave 

front is steeper than wave rear. Moreover, symmetrical waves are observed in the case of 

high frequency. For the low porosity the wave front is steeper than the wave rear. The 

principal effect of the porous substrate on the film flow is to displace the liquid-porous 
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interface to an effective liquid-solid interface located at the lower boundary of the upper 

momentum boundary layer in the porous medium. 
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                                             CHAPTER THREE                    

Numerical Simulation of Wavy Liquid Film Flowing 

Along an Inclined Heated (Cooled) Porous Wall 

 

3.1 Introduction 

Liquid films on a vertical or inclined surface falling under the influence of gravity are 

important in numerous industrial applications, including absorbers, condensers, vertical 

tube evaporators, and falling film chemical reactors. In order to design these industrial 

equipment’s reliably the transport rates of heat and mass must be accurately predicted. 

However, before the heat and mass transport properties can be evaluated, the momentum 

transfer and the hydrodynamic characteristics of the falling liquid film must be fully 

understood so that the film thickness and velocity distribution that govern this viscous flow 

system can be modeled and predicted. Falling films are inherently unstable and this 

instability leads to formation of waves on film surface. Instabilities in liquid flow have been 

studied extensively by numerous researchers since the pioneering experiments by Kapitza 

and Kapitza [1]. Instabilities of the interfacial waves have been studied intensively with 

linear, weak nonlinear and full nonlinear stability analyses. Interfacial waves can be 

developed by two ways: (i) disturbing the inlet flow rate or film thickness by periodic wave 

and (ii) by ambient noise (numeric random noise). 

Through a long-wave approximation of the Navier–Stokes equations [2,3], liquid layers 

flowing on a solid wall and possessing a free surface can be described by a film thickness 

evolution equation obtained.  Most works consider a smooth solid impervious substrate and 

therefore a no-slip and no-penetration boundary conditions for the fluid velocity at the 

fluid/substrate interface is adopted. In that case, past a critical Reynolds number the base 

flow is unstable to a long-wave instability which is explained by Benney [4]. However, 

Benney-type equations even with stabilizing surface tension have only a limited validity 

range since they lead to blow-up of solutions in finite time, which is not the case when 

solving the full Navier–Stokes equations [5-8]. On the other hand, it is observed that a liquid 

layer resting on a heated smooth horizontal plate past a critical Marangoni number is 

unstable to either a short or to a long-wave Marangoni-driven instability [9-14]. In the latter 
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case when the layer is really shallow film rupture and the emergence of dry spots is the result 

of instability if disjoining pressure and other molecular surface forces are not considered 

[15-19].  Joo et. al. [20] are studied long-wave instabilities of the uniform film by deriving 

an evolution equation for two-dimensional disturbances. Moreover, Thiele and Knobloch 

[18] explained that depending on the small inclination of the plate the final structures may 

exhibit small or large amplitude, e.g., surface waves or sliding drops, respectively. 

Actually, solid substrates are rarely smooth, and they often are rather rough or even porous. 

Such situations are present in the bio-chemical, pharmaceutical, environmental, energy, and 

food industries. Beavers and Joseph [21] was performed a pioneering study involving flow 

at a fluid-porous interface. At the interface, Saffmann [22] was justified theoretically that 

the flows in the fluid and porous layers are described by the Stokes and Darcy equations, 

respectively, a semiempirical velocity slip boundary condition.  Beavers et. al. [23] involved 

a dimensionless slip coefficient which depends on the local geometry of the interface. Neale 

and Nader [24] and Brinkman [25] explained that the geometry of the interface is generally 

unknown, and an alternative model consists in using the Darcy– Brinkman equation in the 

porous layer.  In this case, partial differential equations for each region are of the same 

differential order and continuity of both velocity and shear stress can be satisfied at the fluid-

porous interface. Solutions are found to be similar to the one obtained by Beavers and 

Joseph, with an unknown parameter being the effective viscosity coefficient of the 

Brinkman correction term.  

 A theoretical study has been performed in order to characterize the interface conditions for 

a thin film flow past a porous layer using Reynolds and Darcy equations in the film and the 

porous layer, respectively. Due to the nature of these equations, Bayada and. Chambat [26] 

explained that the coupling only provided a normal condition for the pressure at the 

interface. Previously, Pascal ([27], [28]) have been performed the two-stability analysis of 

fluid flow down an inclined isothermal porous surface. In both cases, Darcy’s law was used 

for momentum transport in the porous layer and therefore viscous diffusion at the interface 

is not included. The results that depend on the slip coefficient values show the destabilizing 

effect of the permeability. Thiele et. al. [29] studied that the influence of a heated porous 

substrate on the stability of the liquid film flow. Their model is based on the Darcy–

Brinkman equation in the porous substrate and a stress jump condition is imposed at the 

fluid-porous interface. The simulation code is developed by extending the previous work by 

Miyara [30] for hydrodynamics of wavy falling film. 
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In this chapter, a finite difference method is used, and the fixed grid is employed. The 

difficulties to apply the exact interfacial boundary conditions in the fixed grid have been 

overcome by using newly proposed techniques. The algorithm of the calculation is based on 

the HSMAC method and it is improved. The continuity, Navier-Stokes and energy equations 

are solved simultaneously. In this simulation, we got some non-dimensional numbers. We 

also tried to show the effect of these numbers on the film thickness. 

 

3.2 Model and Governing Equations 

 

 

Figure 3.1: physical model and coordinates systems 

We consider a two-dimensional incompressible Newtonian liquid fluid flowing over an 

inclined porous wall, saturated by the same liquid from the side of the substrate (Figure 3.1). 

Note that we consider a porous layer of a finite constant thickness d on a nonporous outer 

wall.  

The hydrodynamics of falling can be expressed by following continuity equation and 

Navier-Stokes equations. 

Continuity equation 

𝜕𝑢′

𝜕𝑥′
+

𝜕𝑣′

𝜕𝑦′
                                                                                                                                       (3.1) 
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Liquid film 

Solid substrate Porous layer 
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Navier-Stokes equations 

𝜌 (
𝜕𝑢′

𝜕𝑡′
+ 𝑢′

𝜕𝑢′

𝜕𝑥′
+ 𝑣′

𝜕𝑢′

𝜕𝑦′
) = −

𝜕𝑝′

𝜕𝑥′
+ 𝜇 (

𝜕2𝑢′

𝜕𝑥′2 +
𝜕2𝑢′

𝜕𝑦′2) + 𝜌𝑔 𝑠𝑖𝑛𝜃                               (3.2) 

𝜌 (
𝜕𝑣′

𝜕𝑡′
+ 𝑢′

𝜕𝑣′

𝜕𝑥′
+ 𝑣′

𝜕𝑣′

𝜕𝑦′
) = −

𝜕𝑝′

𝜕𝑦′
+ 𝜇 (

𝜕2𝑣′

𝜕𝑥′2 +
𝜕2𝑣′

𝜕𝑦′2) − 𝜌𝑔 𝑐𝑜𝑠𝜃                              (3.3) 

𝜕𝑇′

𝜕𝑡′
+ 𝑢′

𝜕𝑇′

𝜕𝑥′
+ 𝑣′

𝜕𝑇′

𝜕𝑦′
= 𝛼 (

𝜕2𝑇′

𝜕𝑥′2 +
𝜕2𝑇′

𝜕𝑦′2)                                                                          (3.4) 

 

In the following, buoyancy will be neglected since we consider sufficiently thin films. The 

liquid film flow inside the porous substrate is described using the Darcy-Brinkman equation 

(Goyeau et al. [31], Whitaker, [32] and Bousquet et al. [33]). 

𝜕�̃�′

𝜕𝑥′
+

𝜕�̃�′

𝜕𝑦′
= 0                                                                                                                                (3.5) 

𝜌

𝑏

𝜕�̃�′

𝜕𝑡′
= −

𝜕𝑝′

𝜕𝑥′
+ 𝜇𝑒𝑓𝑓 (

𝜕2�̃�′

𝜕𝑥′2 +
𝜕2�̃�′

𝜕𝑦′2) −
𝜇

𝐾
�̃�′ + 𝜌𝑔 𝑠𝑖𝑛𝜃                                                   (3.6) 

𝜌

𝑏

𝜕�̃�′

𝜕𝑡′
= −

𝜕𝑝′

𝜕𝑦′
+ 𝜇𝑒𝑓𝑓 (

𝜕2�̃�′

𝜕𝑥′2 +
𝜕2�̃�′

𝜕𝑦′2) —
𝜇

𝐾
�̃�′ − 𝜌𝑔 𝑐𝑜𝑠𝜃                                                  (3.7) 

𝜕�̃�′

𝜕𝑡′
+ �̃�

𝜕�̃�′

𝜕𝑥′
+ �̃�

𝜕�̃�′

𝜕𝑦′
= 𝛼 (

𝜕2�̃�′

𝜕𝑥′2 +
𝜕2�̃�′

𝜕𝑦′2)                                                                             (3.8) 

 

where �̃�′  and �̃�′ are the filtration velocities in the x and y-directions, k is the permeability, 

b is the porosity,  is the density, and 𝜇𝑒𝑓𝑓 represents the effective viscosity. Following 

Whitaker [32], the reduced viscosity is given by 
𝜇

𝜇𝑒𝑓𝑓
=

1

𝑏
. The flow in the porous wall is 

assumed to be slow enough to neglect inertial (Bousquet et al., [33]).  

Definitions of dimensionless coordinates and variables are as follows: 

 

𝑥 =
𝑥′

𝛿0
,   𝑦 =

𝑦′

𝛿0
, 𝑡 =

𝜀𝑢0

𝛿0
𝑡′                                                                                               (3.9) 

𝑢 =
𝑢′

𝑢0
,   �̃� =

�̃�′

𝑢0
,   𝑣 =

𝑣′

𝑢0
,   �̃� =

�̃�′

𝑢0
     𝑇 =

𝑇′ − 𝑇𝑤
′

𝑇𝑠
′ − 𝑇𝑤

′
                                                       (3.10) 
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�̃� =
�̃�′ − 𝑇𝑤

′

𝑇𝑠
′ − 𝑇𝑤

′
, 𝑝 =

𝑝′

𝜌𝑢0
2 , 𝑝 =

𝑝′

𝜌𝑢0
2 ,     ℎ =

ℎ′

𝛿0
                                                                (3.11) 

where 𝛿0 is the mean thickness of the film and   is the ratio of the length scales 
𝛿0

𝐿
≪ 1,  , 

L denotes the characteristic length scale for a surface deformation, 
0


d

=  is the 

dimensionless thickness of the porous substrate. 

Above continuity equation and Navier-Stokes equations are converted into dimensionless 

by assuming constant physical properties. 

Continuity equation       

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                                                                (3.12) 

Navier-Stokes equations 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+

1

𝑅𝑒0
(

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) +

1

𝐹𝑟𝑥0
                                                  (3.13) 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+

1

𝑅𝑒0
(

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) +

1

𝐹𝑟𝑦0
                                                  (3.14) 

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

1

Pr 𝑅𝑒0
(

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
)                                                                         (3.15) 

 

While in the porous layer they take the form 

Continuity equation 

𝜕�̃�

𝜕𝑥
+

𝜕�̃�

𝜕𝑦
= 0                                                                                                                                (3.16) 

Navier-Stokes equations 

1

𝑏

𝜕�̃�

𝜕𝑡
= −

𝜕𝑝

𝜕𝑥
+

1

𝑅𝑒0
(

𝜕2�̃�

𝜕2𝑥
+

𝜕2�̃�

𝜕2𝑦
) −

1

𝐷𝑎 𝑅𝑒0
�̃� +

1

𝐹𝑟𝑥0
                                                   (3.17) 

1

𝑏

𝜕�̃�

𝜕𝑡
= −

𝜕𝑝

𝜕𝑦
+

1

𝑅𝑒0
(

𝜕2�̃�

𝜕2𝑥
+

𝜕2�̃�

𝜕2𝑦
) −

1

𝐷𝑎 𝑅𝑒0
�̃� +

1

𝐹𝑟𝑦0
                                                    (3.18) 

𝜕�̃�

𝜕𝑡
+ 𝑢

𝜕�̃�

𝜕𝑥
+ 𝑣

𝜕�̃�

𝜕𝑦
=

1

Pr 𝑅𝑒0
(

𝜕2�̃�

𝜕𝑥2
+

𝜕2�̃�

𝜕𝑦2
)                                                                         (3.19) 

 

 



44 
 

where 


 00

0Re
u

=  is the Reynolds number and 
2h

k
Da =  is the number representing the 

dimensionless permeability. Hence, the porosity is not necessarily related to the Darcy 

number and its influence on the stability of the film will be studied independently of the 

dimensionless permeability.  

The following relation between 0u  and 0  is given by: 

𝑢0 =
𝜌𝛿0

2 𝑠𝑖𝑛𝜃

2𝜇
                                                                                                                            (3.20) 

From this above equation, the dimensionless parameters are satisfied the following 

relations: 

𝐹𝑟𝑥0 =
1

2
𝑅𝑒0,           𝐹𝑟𝑦0 =

1

2
𝑅𝑒0𝑡𝑎𝑛(𝜋 − 𝜃)                                                                    (3.21) 

 

3.3 BOUNDARY CONDITIONS 

3.3.1 Wall Surface: 

Boundary conditions of the velocity at the wall surface are given as follows: 

 

�̃� = 0,      �̃� = 0 , �̃� = 0  at   𝑦 = 0                                                                                         (3.22) 

Pressure at the wall surface is obtained by substituting equation (3.22) into the Navier–

Stokes equation of y-direction (3.18): 

𝜕𝑝

𝜕𝑦
=

1

𝑅𝑒0

𝜕2�̃�

𝜕2𝑦
+

1

𝐹𝑟𝑦0
                                                                                                               (3.23) 

3.3.2 Interface: 

With the following kinematic boundary condition, the temporal variation of the film 

thickness is calculated: 

𝜕ℎ

𝜕𝑡
= �̃� − �̃�

𝜕ℎ

𝜕𝑥
                                                                                                                            (3.24) 

On the other hand, by integrating the continuity equation (3.16) between the limits y=0 to 

y=h.   

∫
𝜕�̃�

𝜕𝑥
𝑑ℎ + �̃�𝑦=ℎ = 0                                                                                                                 (3.25)

ℎ

0

 

From the differential and integral calculus, 
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𝜕

𝜕𝑥
∫ �̃�𝑑𝑦 = �̃�𝑦=ℎ

𝜕ℎ

𝜕𝑥

ℎ

0

+ ∫
𝜕�̃�

𝜕𝑥
𝑑𝑦

ℎ

0

                                                                                           (3.26) 

Consequently, from equations (3.24)– (3.26) we obtain the following equation: 

 

𝜕

𝜕𝑥
∫ �̃�𝑑𝑦 +

𝜕ℎ

𝜕𝑡

ℎ

0

= 0                                                                                                                   (3.27) 

Because calculated film thickness of new time step does not satisfy mass conservation due 

to truncation error, a correction of the new film thickness is required.  

   

Including the effects of pressure, surface tension, and momentum, the force balance normal 

to the interface is obtained and the pressure at the interface is calculated with the following 

equations:       

𝑝 =
−

𝜕2ℎ
𝜕𝑥2

𝑊𝑒0  [1 + (
𝜕ℎ
𝜕𝑥

)
2

]

3
2

+
2

𝑅𝑒0 [1 + (
𝜕ℎ
𝜕𝑥

)
2

]

[
𝜕�̃�

𝜕𝑥
(

𝜕ℎ

𝜕𝑥
)

2

− (
𝜕�̃�

𝜕𝑦
+

𝜕�̃�

𝜕𝑥
)

𝜕ℎ

𝜕𝑥
+

𝜕�̃�

𝜕𝑦
]       (3.28) 

where 𝑊𝑒0 is the Weber number, defined as  

𝑊𝑒0

𝜌𝑢0
2𝛿0

𝜎
                                                                                                                                  (3.29) 

By using equation (3.20), 𝑊𝑒0  can be rewritten as   

𝑊𝑒0 = 𝑅𝑒0

5
3  (

1

2
𝐾𝑎 𝑠𝑖𝑛𝜃)

1
3

                                                                                                      (3.30) 

  

where 𝐾𝑎 is the Kapitza number, defined as    

𝐾𝑎 =
𝑔𝜇4

𝜌𝜎3
                                                                                                                                    (3.31) 

 

By neglecting the shear stress from the vapor phase, the force and momentum balance in 

the tangential direction becomes as follows:   

(
𝜕�̃�

𝜕𝑦
+

𝜕�̃�

𝜕𝑥
) [1 − (

𝜕ℎ

𝜕𝑥
)

2

] − 2
𝜕ℎ

𝜕𝑥
(

𝜕�̃�

𝜕𝑥
−

𝜕�̃�

𝜕𝑦
)                                                                        (3.32) 
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3.3.3 Inflow Boundary: 

At the inflow boundary, the film thickness is disturbed with the following equation. 

ℎ = 1 + 𝐻 + 𝐹(𝑡)                                                                                                                      (3.33) 

Two types of waves are modeled in this simulation: periodic force waves and natural waves. 

Periodic force waves are modeled by giving following periodic disturbance in the inflow 

boundary. 

𝐹(𝑡) = 𝜀 𝑠𝑖𝑛(2𝜋𝑓𝑡)                                                                                                                   (3.34) 

where   is the disturbance amplitude and f is the dimensionless frequency, defined as 

𝑓 =
𝑓′𝛿0

𝑢0
                                                                                                                                       (3.35) 

f   is the frequency with dimension Hz. 

Nusselt solution is used to give an average film thickness and velocity profiles at inflow 

boundary. The amplitude of the disturbance wave is given as 𝜀 = 0.5. The magnitude of the 

amplitude affects wave growth rate while effects on the fully developed waves are small. 

Natural waves are modeled by giving following random noise (white noise) in the inflow 

boundary in similar manner.  

𝐹(𝑡) = ∫ �̂�(𝜔) 𝑒𝑥𝑝(−𝑖𝜔𝑡)𝑑𝜔 = ∫|�̂�(𝜔)| 𝑒𝑥𝑝(𝑖𝛼(𝜔) − 𝑖𝜔𝑡)𝑑𝜔

∞

0

∞

0

                             (3.36) 

 

where   is angular frequency and ( )  is the phase of the complex amplitude )(ˆ F . Eq. 

(3.36) is approximated with M frequency units of width M=  . Where   is some 

high frequency cutoff. 

𝐹(𝑡) = ∑|�̂�(𝜔)| 𝑒𝑥𝑝(𝑖𝛼(𝜔𝑘) − 𝑖𝑘 ∆𝜔𝑡)∆𝜔                                                                    (3.37)

𝑀

𝑘=1

 

The phase 𝛼𝑘 = 𝛼(𝜔𝑘) is taken from a random number generator from the range 𝛼𝑘 ∈

[0, 2𝜋] and |�̂�(𝜔)| can be arbitrarily specified. 

 

3.3.4 Outflow Boundary 

At outflow boundary, the following equations are employed for x-direction velocity �̃� and 

pressure 𝑝 

𝜕�̃�

𝜕𝑥
= 0,

 𝜕�̃�

𝜕𝑥
= 0,           

𝜕𝑝

𝜕𝑥
= 0                                                                                       (3.38) 
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From the above equations, the continuity equation, and the wall boundary condition, y-

direction velocity �̃� becomes �̃� = 0. 

 

3.3.5 Initial Conditions 

At t=0, the film thickness is one in the whole simulation region. Initial values of velocities 

and pressure are given from the Nusselt theory. 

 

3.4 Simulation Results and Discussions  

3.4.1 Effect of Wave Frequencies 

 

 

 

Figure 3.2 shows wave shapes developed from different inlet disturbance frequencies. For 

all frequencies, the inlet disturbances quickly develop to saturated wave of which wave 

length and amplitude are almost constant along the downstream. Wave front is steeper than 

wave wear for the case of low frequency. In the case of high frequencies wave is almost 

symmetry.  
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Figure 3.2: Developed waves generated by different inlet disturbance frequencies under 

the conditions of 𝑅𝑒0 = 100, 𝑊𝑒0 = 0.503, 𝜀 = 0.03, 𝐷𝑎 = 100, 𝑏 = 0.01, 𝑃𝑟 = 100 
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3.4.2 Effect of Prandtl Numbers 

 

 

 

 

 

 

Figure 3.3 (a) and (b) represented the effect of various Prandtl number on the wave behavior 

and all other parameters are constants. From these two figures show that with an increase 

the Prandtl number the wave peak height increases along the downstream.     
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Figure 3.3 (b): Effects of Prandtl number Pr=100 on the wave behavior with the fixed 

values of 𝑊𝑒0 = 0.503, 𝜀 = 0.03, 𝑅𝑒0 = 100 , 𝐷𝑎 = 100, 𝑓 = 0.02 and 𝑏 = 0.01 

 

Figure 3.3 (a): Effects of  Prandtl number Pr=10 on the wave behavior with the fixed 

values of 𝑊𝑒0 = 0.503, 𝜀 = 0.03, 𝑅𝑒0 = 100 , 𝐷𝑎 = 100, 𝑓 = 0.02 and 𝑏 = 0.01 
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3.4.3 Effect of Reynolds Numbers 
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Figure 3.4 (a): Effects of Reynolds number 𝑅𝑒0 = 100 on the wave behavior with the fixed 

values of 𝑊𝑒0 = 0.503, 𝜀 = 0.03, 𝑃𝑟 = 100  , 𝐷𝑎 = 100, 𝑓 = 0.02 and 𝑏 = 0.01 

 

Figure 3.4 (b): Effects of Reynolds number 𝑅𝑒0 = 500 on the wave behavior with the fixed 

values of 𝑊𝑒0 = 0.503, 𝜀 = 0.03, 𝑃𝑟 = 100  , 𝐷𝑎 = 100, 𝑓 = 0.02 and 𝑏 = 0.01 
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Figure 3.4 (a), (b) and (c) represent the effect of various Reynolds number on the wave 

behavior and all other parameters are constants. With an increase the Reynolds number the 

wave height decreases along the downstream. 

3.4.4 Compare the Velocity Profiles between the Solid Substrate and the 

Porous Wall 
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Figure 3.5 (a): Instantaneous velocity profile for solid substrate 

Figure 3.4 (c): Effects of Reynolds number 𝑅𝑒0 = 500 on the wave behavior with the fixed 

values of 𝑊𝑒0 = 0.503, 𝜀 = 0.03, 𝑃𝑟 = 100  , 𝐷𝑎 = 100, 𝑓 = 0.02 and 𝑏 = 0.01 
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Figure 3.5 (b): Instantaneous velocity profile for porous wall 

Figure 3.5 (c): Combine instantaneous velocity profile for solid substrate and 

porous wall 
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3.5 Conclusions 

wave shapes developed from different inlet disturbance frequencies. For all frequencies, the 

inlet disturbances quickly develop to saturated wave of which wave length and amplitude 

are almost constant along the downstream. Wave front is steeper than wave wear for the 

case of low frequency. In the case of high frequencies wave is almost symmetry.  
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                                                      CHAPTER FOUR 

 

Similarity Solution of Heat and Mass transfer for Liquid 

Evaporation along a Vertical Plate Covered with a Thin 

Porous Layer 

 

4.1 Introduction 

Effective latent heat transfer mechanism widely utilized in industrial fields such as chemical 

distillation, air conditioning, cooling towers, drying, and desalination which is liquid film 

evaporation. With the liquid film exposed to a forced gas stream, the physical scheme 

consists of a thin liquid film flowing down along a heated plate. Because part of the liquid 

evaporates into the gas stream, liquid film evaporation possesses a high heat transfer 

coefficient, low feed rates and other inherent advantages. However, the transport 

phenomena involve the coupled heat and mass transfer at the liquid film–gas interface 

because the theoretical analysis of liquid film evaporation problem is inherently 

complicated.  

The problem based on simplified 1-D and 2-D mathematical models are usually examined 

in previous research. [1-4] was used the 1-D model to develop the governing conservation 

of mass, mass species, momentum and energy by the conservation laws to the control 

volumes of the liquid film and moist air. The heat and mass transfer characteristics in a wet 

surface heat exchanger which are analyzed by MaClaine-Cross and Bank [1,2]. The 

experimental data are 20% smaller than their results. A 1-D design methodology for a 

counter-current falling film evaporative cooler which is illustrated by Wassel and Mills [3]. 

The narrow flow passages were found to be more effective than conventional designs for 

the thermal performance of the evaporative condenser. Perez-Blanco and Bird [4] was 

formulated a 1-D model of heat and mass transfer in the evaporative cooling process that 

takes place in a single-tube exchanger. In advance 2-D model composition focused on heat 

and mass transfer in the gas stream, with the liquid film considered to be at rest and with a 

very thin constant thickness. For the gas stream, the vaporizing liquid film is treated as the 

boundary condition (Gebhart and Pera [5], Chen and Yuh [6] and the temperature 
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distributions across the film are assumed to be linear (Shembharkar and Pai [7], Baumann 

[8]).  There are many researches with more rigorous treatments of the equations governing 

the liquid film and liquid–gas interface have been published. The evaporative cooling of 

liquid film through interfacial heat and mass transfer in a vertical channel was studied by 

Yan and Lin [9]. The numerical solution for convective heat and mass transfer along an 

inclined heated plate with film evaporation which is presented by Yan and Soong [10]. The 

cooling characteristics of a wet surface heat exchanger with a liquid film evaporating into a 

countercurrent moist air flow which is numerically analyzed by Tsay [11]. Neglected inertia 

in the momentum equation and the normal convection term in the heat equation for liquid 

film flow, thus the liquid film flow is simplified to a 1-D momentum equation and 1-D (or 

2-D) heat equation which are studied the above [9-11]. Recently Mezaache and Daguenet 

[12] was studied the complete two-dimensional boundary layer model for the evaporating 

liquid and gas flows along an inclined plate. Recently, J.-S. Leu et al. [14] studied the effect 

of the porous layer on heat and mass transfer. Their parametric analyses focused on features 

such as gas inlet conditions and the structural properties of the porous material on the 

performance of liquid film evaporation. The free convection boundary layer flow of a 

Darcy–Brinkman fluid induced by a horizontal surface embedded in a fluid-saturated porous 

layer which is explained by Rees and Vafai [15] for the studies of heat and mass transfer for 

liquid film flow in porous medium. The fluid flow and heat transfer interfacial conditions 

between a porous medium and a fluid layer which is detailed analyzed by Alazmi and Vafai 

[16]. The coupled heat and mass transfer in a stagnation point flow of air through a heated 

porous bed with thin liquid film evaporation studied by Zhao [17]. Also, Zhao [17] assumed 

the liquid layer was very thin and stationary, and the air stream was idealized as the 

stagnation point flow pattern to achieve the analytical solution. Khader and Megahed [18] 

are presented a numerical technique which is the implicit finite difference method to the 

search for the numerical solutions for the given equations. Their technique reduces the 

problem to a system of algebraic equations. Recently, M. Hasanuzzaman and A. Miyara[19] 

have been studied a possible similarity solution of unsteady natural convection laminar 

boundary layer flow of viscous incompressible fluid caused by a heated(or cooled) axi-

symmetric slender body of finite axial length immersed vertically in a viscous 

incompressible fluid. 

The purpose of the present study is, therefore, to find a possible similarity solution of heat 

and mass transfer for liquid evaporation along a vertical plate covered with a thin porous 
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layer. We are attempted to investigate the effects of several involved parameters on the 

velocity temperature and concentration fields. The numerical results including the velocity 

and temperature fields are to be presented graphically for different selected values of the 

established dimensionless parameters. The local skin friction, local Nusselt number and the 

local Sherwood numbers are computed numerically and graphically as well as analyzed. 

4.2 Model and Governing Equations 

Figure 4.1 shows the physical model and the coordinates.  

 

 

 

4.2.1 Region of Liquid Film 

The order of magnitude analysis showed that the inertia terms in the momentum equation 

can be neglected as compared with the diffusion term which is under the assumption of thin 

liquid film. The transverse direction is much greater than in the longitudinal gradients of 

velocity and temperature. The momentum and energy boundary layer equations by 

including the non-Darcian models of boundary viscous and inertia effects are as follows: 

𝜕𝑢𝑙

𝜕𝑥
+

𝜕𝑣𝑙

𝜕𝑦
= 0                                                                                                                                (4.1) 

Figure 4.1: Physical model and coordinates system 
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0 = 𝜌𝑙𝑔 +
𝜇𝑙

𝑏

𝜕2𝑢𝑙

𝜕𝑦2
−

𝜇𝑙

𝐾
𝑢𝑙 −

𝜌𝑙𝐶

√𝐾
𝑢𝑙

2                                                                                         (4.2) 

𝑢𝑙

𝜕𝑇𝑙

𝜕𝑥
= 𝛼𝑒

𝜕2𝑇𝑙

𝜕𝑦2
                                                                                                                           (4.3) 

where the subscript “l” represents the variables of the liquid stream. b is the porosity, 𝜇𝑙 is 

the dynamic viscosity, K is the permeability of the porous medium, C is the flow inertia 

parameter [20], 𝜌𝑙 is density and    𝛼𝑒 is the effective thermal diffusivity. 

 

4.2.2 Region of Gas Stream 

The following two-dimensional laminar continuity, momentum, energy as well as 

concentration equations can be written as 

𝜕𝑢𝑔

𝜕𝑥
+

𝜕𝑣𝑔

𝜕𝑦
= 0                                                                                                                               (4.4) 

𝑢𝑔

𝜕𝑢𝑔

𝜕𝑥
+ 𝑣𝑔

𝜕𝑢𝑔

𝜕𝑦
= 𝜈𝑔

𝜕2𝑢𝑔

𝜕𝑦2
                                                                                                       (4.5) 

𝑢𝑔

𝜕𝑇𝑔

𝜕𝑥
+ 𝑣𝑔

𝜕𝑇𝑔

𝜕𝑦
= 𝛼𝑔

𝜕2𝑇𝑔

𝜕𝑦2
                                                                                                        (4.6) 

𝑢𝑔

𝜕𝜔

𝜕𝑥
+ 𝑣𝑔

𝜕𝜔

𝜕𝑦
= 𝐷

𝜕2𝜔

𝜕𝑦2
                                                                                                            (4.7) 

 

where the subscript “g” represents the variables of the gas stream. 𝜔 is the mass 

concentration, 𝜌 is the density, 𝜈 is kinematic viscosity, 𝛼𝑔 is the thermal diffusivity and D 

is the mass diffusivity of the gas. 

 

4.3 Boundary Conditions 

The appropriate boundary conditions for the present problem are: 

at wall  𝑦 = 0,     

 𝑢𝑙 = 0, 𝑇𝑙 = 𝑇𝑤                                                                                                                             (4.8)    

at free stream  𝑦 = ∞,                     

𝑢𝑔 = 𝑢𝑔,∞,      𝑇𝑔 = 𝑇𝑔,∞,   𝜔 = 𝜔∞                                                                                           (4.9)   

at interface 𝑦 = 𝑑, 

𝑢𝑖 = 𝑢𝑙,𝑖 = 𝑢𝑔,𝑖,   𝑇𝑖 = 𝑇𝑙,𝑖 = 𝑇𝑔,𝑖                                                                                             (4.10) 

𝑣𝑔,𝑖 = −
𝐷

1 − 𝜔𝑖
(

𝜕𝜔

𝜕𝑦
)

𝑖

                                                                                                              (4.11) 
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(𝜇𝑙

𝜕𝑢

𝜕𝑦
)

𝑙,𝑖

= (𝜇𝑔

𝜕𝑢

𝜕𝑦
)

𝑔,𝑖

= 𝜏𝑖                                                                                                    (4.12) 

𝜔 = 𝜔𝑖                                                                                                                                           (4.13) 

𝑞𝑡
′′ = −𝑘𝑙 (

𝜕𝑇𝑙

𝜕𝑦
)

𝑖

 and 𝑞𝑡
′′ = 𝑞𝑠

′′ + 𝑞𝑙
′′ = −𝑘𝑔 (

𝜕𝑇𝑔

𝜕𝑦
)

𝑖

+ 𝑚𝑣
′′ℎ𝑓𝑔                                      (4.14) 

The continuity of shear stress and energy balance at the gas-liquid interface are expressed 

by eqs. (4.11) and (4.12). From the wall the total heat flux  𝑞𝑡
′′ can be transferred to two 

modes: one is the sensible heat flux via gas temperature gradient 𝑞𝑔
′′ , the other is the latent 

heat flux via the liquid film vaporization 𝑞𝑠
′′. 

The interfacial evaporating mass flux during the calculated procedure is given by 

𝑚𝑣
′′ = 𝜌𝑔𝑣𝑔,𝑖 = −

𝜌𝑔𝐷

1 − 𝜔𝑖
(

𝜕𝜔

𝜕𝑦
)

𝑖

                                                                                             (4.15) 

And the mass concentration 𝜔𝑖 is expressed as 

𝜔𝑖 =
𝑀𝜈

𝑀𝑔

𝑝𝜈,𝑖

𝑝𝑔
                                                                                                                                (4.15) 

where 𝑝𝜈,𝑖 is the partial pressure of the saturated vapor at the gas-liquid interface. Bird et. 

al., [21] can be evaluated the inlet mass flow rate of the liquid film. 

𝑚𝑙,𝑖𝑛 =
𝜌𝑙𝑔

3𝜈𝑙
𝑑3𝑏3                                                                                                                        (4.16) 

 

4.4 Similarity Transformations 

The relation between stream functions and velocity components for the liquid film and the 

gas boundary layer which are defined, respectively, by 

𝑢𝑙 =
𝜕𝜓𝑙

𝜕𝑦
,   𝑣𝑙 = −

𝜕𝜓𝑙

𝜕𝑥
                                                                                                             (4.17) 

𝑢𝑔 =
𝜕𝜓𝑔

𝜕𝑦
,   𝑣𝑔 = −

𝜕𝜓𝑔

𝜕𝑥
                                                                                                          (4.18) 

are introduced. Eq. (4.1) and (4.4) are automatically satisfied. We introduce the independent 

variables 𝜂𝑙 and 𝜂𝑔, the dimensionless stream functions 𝐹𝑙(𝜂𝑙) and 𝐹𝑔(𝜂𝑔), the 

dimensionless temperatures 𝜃𝑙(𝜂𝑙) and  𝜃𝑔(𝜂𝑔), and the normalized concentration 𝜙(𝜂𝑔) 

as  

𝜂𝑙 = 𝑦 (
𝑢𝑔∞

𝜈𝑙𝑥
)

1
2

                                                                                                                            (4.19) 



60 
 

𝜂𝑔 = (𝑦 − 𝑑) (
𝑢𝑔∞

𝜈𝑔𝑥
)

1
2

                                                                                                               (4.20) 

𝐹𝑙(𝜂𝑙) =
𝜓𝑙

(𝜈𝑙𝑢𝑔∞𝑥)
1
2

                                                                                                                   (4.21) 

𝐹𝑔(𝜂𝑔) =
𝜓𝑔

(𝜈𝑔𝑢𝑔∞𝑥)
1
2

                                                                                                                (4.22) 

𝜃𝑙(𝜂𝑙) =
𝑇𝑖 − 𝑇𝑙

𝑇𝑖 − 𝑇𝑤
                                                                                                                        (4.23) 

𝜃𝑔(𝜂𝑔) =
𝑇𝑔∞ − 𝑇𝑔

𝑇𝑔∞ − 𝑇𝑖
                                                                                                                    (4.24) 

𝜙(𝜂𝑔) =
𝜔 − 𝜔∞

𝜔𝑖 − 𝜔∞
                                                                                                                     (4.25) 

Now,  

𝑢𝑙 =
𝜕𝜓𝑙

𝜕𝑦
=

𝜕

𝜕𝑦
{𝐹𝑙(𝜂𝑙)(𝜈𝑙𝑢𝑔∞𝑥)

1
2} 

= (𝜈𝑙𝑢𝑔∞𝑥)
1
2

𝜕

𝜕𝑦
{𝐹𝑙(𝜂𝑙)} 

= (𝜈𝑙𝑢𝑔∞𝑥)
1
2

𝜕

𝜕𝜂𝑙

{𝐹𝑙(𝜂𝑙)}
𝜕𝜂𝑙

𝜕𝑦
 

= (𝜈𝑙𝑢𝑔∞𝑥)
1
2𝐹𝑙

′(𝜂𝑙) (
𝑢𝑔∞

𝜈𝑙𝑥
)

1
2
 

= 𝑢𝑔∞𝐹𝑙
′(𝜂𝑙)                                                                                                                                  (4.26) 

 

𝑣𝑙 = −
𝜕𝜓𝑙

𝜕𝑥
= −

𝜕

𝜕𝑥
{𝐹𝑙(𝜂𝑙)(𝜈𝑙𝑢𝑔∞𝑥)

1
2} 

= −𝐹𝑙(𝜂𝑙)(𝜈𝑙𝑢𝑔∞)
1
2

𝜕

𝜕𝑥
{(𝑥)

1
2} − (𝜈𝑙𝑢𝑔∞𝑥)

1
2

𝜕

𝜕𝑥
{𝐹𝑙(𝜂𝑙)} 

= −𝐹𝑙(𝜂𝑙)(𝜈𝑙𝑢𝑔∞)
1
2

1

2
𝑥−

1
2 − (𝜈𝑙𝑢𝑔∞𝑥)

1
2

𝜕

𝜕𝜂𝑙

{𝐹𝑙(𝜂𝑙)}
𝜕𝜂𝑙

𝜕𝑥
 

= −
1

2
𝐹𝑙(𝜂𝑙)(𝜈𝑙𝑢𝑔∞)

1
2𝑥−

1
2 − (𝜈𝑙𝑢𝑔∞𝑥)

1
2𝐹𝑙

′(𝜂𝑙)𝐹𝑙
′(𝜂𝑙)

𝜕

𝜕𝑥
{𝑦 (

𝑢𝑔∞

𝜈𝑙𝑥
)

1
2

} 

= −
1

2
𝐹𝑙(𝜂𝑙)(𝜈𝑙𝑢𝑔∞)

1
2𝑥−

1
2 − (𝜈𝑙𝑢𝑔∞𝑥)

1
2𝐹𝑙

′(𝜂𝑙)𝑦 (
𝑢𝑔∞

𝜈𝑙
)

1
2

(−
1

2
𝑥−

3
2) 
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= −
1

2
𝐹𝑙(𝜂𝑙)(𝜈𝑙𝑢𝑔∞)

1
2𝑥−

1
2 +

1

2
(𝜈𝑙𝑢𝑔∞𝑥)

1
2𝐹𝑙

′(𝜂𝑙)𝜂𝑙 (
𝑢𝑔∞

𝜈𝑙𝑥
)

−
1
2

(
𝑢𝑔∞

𝜈𝑙
)

1
2

(𝑥−
3
2) 

= −
1

2
𝐹𝑙(𝜂𝑙)(𝜈𝑙𝑢𝑔∞)

1
2𝑥−

1
2 +

1

2
(𝜈𝑙𝑢𝑔∞)

1
2𝐹𝑙

′(𝜂𝑙)𝜂𝑙𝑥−
1
2 

=
1

2
(𝜈𝑙𝑢𝑔∞)

1
2𝑥−

1
2[𝜂𝑙𝐹𝑙

′(𝜂𝑙) − 𝐹𝑙(𝜂𝑙)]                                                                                     (4.27) 

 

𝜕𝑢𝑙

𝜕𝑥
=

𝜕

𝜕𝑥
{𝑢𝑔∞𝐹𝑙

′(𝜂𝑙)} 

= 𝑢𝑔∞

𝜕

𝜕𝜂𝑙

{𝐹𝑙
′(𝜂𝑙)}

𝜕𝜂𝑙

𝜕𝑥
 

= 𝑢𝑔∞𝐹′𝑙
′(𝜂𝑙)

𝜕

𝜕𝑥
{𝑦 (

𝑢𝑔∞

𝜈𝑙𝑥
)

1
2

} 

= 𝑢𝑔∞𝐹′𝑙
′(𝜂𝑙)𝑦 (

𝑢𝑔∞

𝜈𝑙
)

1
2

(−
1

2
𝑥−

3
2) 

= −
1

2
𝑢𝑔∞𝐹′𝑙

′(𝜂𝑙)𝜂𝑙 (
𝑢𝑔∞

𝜈𝑙𝑥
)

−
1
2

(
𝑢𝑔∞

𝜈𝑙
)

1
2

(𝑥−
3
2) 

= −
1

2

𝑢𝑔∞

𝑥
𝜂𝑙𝐹′

𝑙
′(𝜂𝑙)                                                                                                                    (4.28) 

 

𝜕𝑣𝑙

𝜕𝑦
=

𝜕

𝜕𝑦
{

1

2
(𝜈𝑙𝑢𝑔∞)

1
2𝑥−

1
2[𝜂𝑙𝐹𝑙

′(𝜂𝑙) − 𝐹𝑙(𝜂𝑙)]} 

=
1

2
(𝜈𝑙𝑢𝑔∞)

1
2𝑥−

1
2

𝜕

𝜕𝑦
[𝜂𝑙𝐹𝑙

′(𝜂𝑙) − 𝐹𝑙(𝜂𝑙)] 

=
1

2
(𝜈𝑙𝑢𝑔∞)

1
2𝑥−

1
2

𝜕

𝜕𝜂𝑙

[𝜂𝑙𝐹𝑙
′(𝜂𝑙) − 𝐹𝑙(𝜂𝑙)]

𝜕𝜂𝑙

𝜕𝑦
 

=
1

2
(𝜈𝑙𝑢𝑔∞)

1
2𝑥−

1
2[𝜂𝑙𝐹𝑙

′′(𝜂𝑙) + 𝐹𝑙
′(𝜂𝑙) − 𝐹𝑙

′(𝜂𝑙)] (
𝑢𝑔∞

𝜈𝑙𝑥
)

1
2
 

=
1

2

𝑢𝑔∞

𝑥
𝜂𝑙𝐹𝑙

′′(𝜂𝑙)                                                                                                                             (4.29) 

 

𝜕𝑢𝑙

𝜕𝑦
=

𝜕

𝜕𝑦
{𝑢𝑔∞𝐹𝑙

′(𝜂𝑙)} 

= 𝑢𝑔∞

𝜕

𝜕𝜂𝑙

{𝐹𝑙
′(𝜂𝑙)}

𝜕𝜂𝑙

𝜕𝑦
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= 𝑢𝑔∞

𝜕

𝜕𝜂𝑙

{𝐹𝑙
′(𝜂𝑙)} (

𝑢𝑔∞

𝜈𝑙𝑥
)

1
2
 

=
𝑢𝑔∞

3
2

(𝜈𝑙𝑥)
1
2

𝐹𝑙
′′(𝜂𝑙)                                                                                                                                  (4.30) 

 

𝜕2𝑢𝑙

𝜕𝑦2
=

𝜕

𝜕𝑦
{

𝑢𝑔∞

3
2

(𝜈𝑙𝑥)
1
2

𝐹𝑙
′′(𝜂𝑙)} 

=
𝑢𝑔∞

3
2

(𝜈𝑙𝑥)
1
2

𝜕

𝜕𝜂𝑙

{𝐹𝑙
′′(𝜂𝑙)}

𝜕𝜂𝑙

𝜕𝑦
 

=
𝑢𝑔∞

3
2

(𝜈𝑙𝑥)
1
2

𝜕

𝜕𝜂𝑙

{𝐹𝑙
′′(𝜂𝑙)} (

𝑢𝑔∞

𝜈𝑙𝑥
)

1
2
 

=
𝑢𝑔∞

3
2

𝜈𝑙𝑥
𝐹𝑙

′′(𝜂𝑙)                                                                                                                             (4.31) 

 

𝜕𝑇𝑙

𝜕𝑥
=

𝜕

𝜕𝑥
{𝑇𝑖 + (𝑇𝑤 − 𝑇𝑖)𝜃𝑙} 

= (𝑇𝑤 − 𝑇𝑖)
𝜕

𝜕𝑥
{𝜃𝑙} 

= (𝑇𝑤 − 𝑇𝑖)
𝜕

𝜕𝜂𝑙

{𝜃𝑙}
𝜕𝜂𝑙

𝜕𝑥
 

= (𝑇𝑤 − 𝑇𝑖)𝜃𝑙
′

𝜕

𝜕𝑥
{𝑦 (

𝑢𝑔∞

𝜈𝑙𝑥
)

1
2

} 

= (𝑇𝑤 − 𝑇𝑖)𝜃𝑙
′ 𝑦 (

𝑢𝑔∞

𝜈𝑙
)

1
2

(−
1

2
𝑥−

3
2) 

= −
1

2
(𝑇𝑤 − 𝑇𝑖)𝜃𝑙

′ 𝜂𝑙 (
𝑢𝑔∞

𝜈𝑙𝑥
)

−
1
2

(
𝑢𝑔∞

𝜈𝑙
)

1
2

(𝑥−
3
2) 

= −
1

2

𝜂𝑙

𝑥
(𝑇𝑤 − 𝑇𝑖)𝜃𝑙

′                                                                                                                 (4.32) 

 

𝜕𝑇𝑙

𝜕𝑦
=

𝜕

𝜕𝑦
{𝑇𝑖 + (𝑇𝑤 − 𝑇𝑖)𝜃𝑙} 
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=
𝜕

𝜕𝜂𝑙

{𝑇𝑖 + (𝑇𝑤 − 𝑇𝑖)𝜃𝑙}
𝜕𝜂𝑙

𝜕𝑦
 

= (𝑇𝑤 − 𝑇𝑖)𝜃𝑙
′ (

𝑢𝑔∞

𝜈𝑙𝑥
)

1
2

                                                                                                              (4.33) 

 

𝜕2𝑇𝑙

𝜕𝑦2
=

𝜕

𝜕𝑦
{(𝑇𝑤 − 𝑇𝑖)𝜃𝑙

′ (
𝑢𝑔∞

𝜈𝑙𝑥
)

1
2

} 

=
𝜕

𝜕𝜂𝑙
{(𝑇𝑤 − 𝑇𝑖)𝜃𝑙

′ (
𝑢𝑔∞

𝜈𝑙𝑥
)

1
2

}
𝜕𝜂𝑙

𝜕𝑦
 

= (𝑇𝑤 − 𝑇𝑖)𝜃𝑙
′′ (

𝑢𝑔∞

𝜈𝑙𝑥
)

1
2

(
𝑢𝑔∞

𝜈𝑙𝑥
)

1
2
 

=
𝑢𝑔∞

𝜈𝑙𝑥
(𝑇𝑤 − 𝑇𝑖)𝜃𝑙

′′                                                                                                                    (4.34) 

Using Eqs. (4.26)- (4.43), the mathematical problems defined in liquid film region Eqs. (4.1) 

-(4.3) are then transferred into the following set of ordinary differential equations: 

Now, Equ. (4.1) becomes 

𝜕𝑢𝑙

𝜕𝑥
+

𝜕𝑣𝑙

𝜕𝑦
 

= −
1

2

𝑢𝑔∞

𝑥
𝜂𝑙𝐹𝑙

′′(𝜂𝑙) +
1

2

𝑢𝑔∞

𝑥
𝜂𝑙𝐹𝑙

′′(𝜂𝑙) 

= 0 

Hence the continuity equation in liquid film region is satisfied. 

Again, Equ. (4.2) becomes 

0 = 𝜌𝑙𝑔 +
𝜇𝑙

𝑏

𝜕2𝑢𝑙

𝜕𝑦2
−

𝜇𝑙

𝐾
𝑢𝑙 −

𝜌𝑙𝐶

√𝐾
𝑢𝑙

2 

⇒ 0 = 𝜌𝑙𝑔 +
𝜇𝑙

𝑏

𝑢𝑔∞
2

𝜈𝑙𝑥
𝐹𝑙

′′′(𝜂𝑙) −
𝜇𝑙

𝐾
𝑢𝑔∞𝐹𝑙

′(𝜂𝑙) −
𝜌𝑙𝐶

√𝐾
𝑢𝑔∞

2 𝐹𝑙
′2(𝜂𝑙) 

⇒ 0 = 𝜌𝑙𝑔
𝜈𝑙𝑥

𝜇𝑙𝑢𝑔∞
2

+
1

𝑏
𝐹𝑙

′′′(𝜂𝑙) −
𝜇𝑙

𝐾

𝜈𝑙𝑥

𝜇𝑙𝑢𝑔∞
2

𝑢𝑔∞𝐹𝑙
′(𝜂𝑙) −

𝜌𝑙𝐶

√𝐾
𝑢𝑔∞

2
𝜈𝑙𝑥

𝜇𝑙𝑢𝑔∞
2

𝐹𝑙
′2(𝜂𝑙) 

⇒ 0 = 𝜌𝑙𝑔
𝜈𝑙𝑥

𝜇𝑙𝑢𝑔∞
2

+
1

𝑏
𝐹𝑙

′′′(𝜂𝑙) −
𝜇𝑙

𝐾

𝜈𝑙𝑥

𝜇𝑙𝑢𝑔∞
2

𝑢𝑔∞𝐹𝑙
′(𝜂𝑙) −

𝜌𝑙𝐶

√𝐾
𝑢𝑔∞

2
𝜈𝑙𝑥

𝜇𝑙𝑢𝑔∞
2

𝐹𝑙
′2(𝜂𝑙) 

⇒ 0 = 𝜌𝑙𝑔
𝜈𝑙𝑥

𝜇𝑙𝑢𝑔∞
2

+
1

𝑏
𝐹𝑙

′′′(𝜂𝑙) −
𝜇𝑙

𝐾

𝜈𝑙𝑥

𝜇𝑙𝑢𝑔∞
2

𝑢𝑔∞𝐹𝑙
′(𝜂𝑙) −

𝜌𝑙𝐶

√𝐾
𝑢𝑔∞

2
𝜈𝑙𝑥

𝜇𝑙𝑢𝑔∞
2

𝐹𝑙
′2(𝜂𝑙) 

⇒ 0 =
𝑔𝑥

𝑢𝑔∞
2

+
1

𝑏
𝐹𝑙

′′′(𝜂𝑙) −
𝜈𝑙𝑥

𝐾𝑢𝑔∞
𝐹𝑙

′(𝜂𝑙) −
𝑥𝐶

√𝐾
𝐹𝑙

′2(𝜂𝑙) 
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⇒ 0 =
𝑔𝑥

𝑢𝑔∞
2

+
1

𝑏
𝐹𝑙

′′′(𝜂𝑙) −
𝜈𝑙𝑥

𝐾𝑢𝑔∞
𝐹𝑙

′(𝜂𝑙) −
𝜈𝑙𝑥

𝐾𝑢𝑔∞

𝐶𝑢𝑔∞√𝐾

𝜈𝑙
𝐹𝑙

′2(𝜂𝑙) 

⇒ 0 =
1

𝐹𝑟2
+

1

𝑏
𝐹𝑙

′′′(𝜂𝑙) −
1

𝐷𝑎
𝐹𝑙

′(𝜂𝑙) −
Г

𝐷𝑎
𝐹𝑙

′2(𝜂𝑙)                                                           (4.35) 

 

And, Equ. (4.3) becomes 

𝑢𝑙

𝜕𝑇𝑙

𝜕𝑥
= 𝛼𝑒

𝜕2𝑇𝑙

𝜕𝑦2
 

⇒ −
1

2
𝑢𝑔∞𝐹𝑙

′(𝜂𝑙)
𝜂𝑙

𝑥
(𝑇𝑤 − 𝑇𝑖)𝜃𝑙

′ = 𝛼𝑒

𝑢𝑔∞

𝜈𝑙𝑥
(𝑇𝑤 − 𝑇𝑖)𝜃𝑙

′′ 

⇒ −
1

2
𝜂𝐹𝑙

′(𝜂𝑙)𝜃𝑙
′ =

𝛼𝑒

𝜈𝑙
𝜃𝑙

′′ 

⇒
1

𝑃𝑟𝑙 
𝜃𝑙

′′ +
1

2
𝜂𝐹𝑙

′(𝜂𝑙)𝜃𝑙
′ = 0                                                                                                   (4.36) 

𝐹𝑟 =
𝑢𝑔∞

√𝑔𝑥    
 is the Froude number, 𝐷𝑎 =

𝑢𝑔∞

𝜈𝑙𝑥
  is the Darcy number, Г =

𝐶√𝐾𝑢𝑔∞

𝜈𝑙
 is the 

dimensionless inertia coefficient of non-Darcy flow and 𝑃𝑟𝑙 =
𝜈𝑙

𝛼𝑒
 is the Prandtl number in 

liquid film region. 

Region of Gas Stream: 

𝑢𝑔 =
𝜕𝜓𝑔

𝜕𝑦
=

𝜕

𝜕𝑦
{𝐹𝑔(𝜂𝑔)(𝜈𝑔𝑢𝑔∞𝑥)

1
2} 

= (𝜈𝑔𝑢𝑔∞𝑥)
1
2

𝜕

𝜕𝑦
{𝐹𝑔(𝜂𝑔)}               

 = (𝜈𝑔𝑢𝑔∞𝑥)
1
2

𝜕

𝜕𝜂𝑔
{𝐹𝑔(𝜂𝑔)}

𝜕𝜂𝑔

𝜕𝑦
 

= (𝜈𝑔𝑢𝑔∞𝑥)
1
2𝐹𝑔

′(𝜂𝑔) (
𝑢𝑔∞

𝜈𝑔𝑥
)

1
2

 

= 𝑢𝑔∞𝐹𝑔
′(𝜂𝑔)                                                                                                                                (4.37) 

𝑣𝑔 = −
𝜕𝜓𝑙

𝜕𝑥
= −

𝜕

𝜕𝑥
{𝐹𝑔(𝜂𝑔)(𝜈𝑔𝑢𝑔∞𝑥)

1
2} 

= −𝐹𝑔(𝜂𝑔)(𝜈𝑔𝑢𝑔∞)
1
2

𝜕

𝜕𝑥
{(𝑥)

1
2} − (𝜈𝑔𝑢𝑔∞𝑥)

1
2

𝜕

𝜕𝑥
{𝐹𝑔(𝜂𝑔)} 

= −𝐹𝑔(𝜂𝑔)(𝜈𝑔𝑢𝑔∞)
1
2

1

2
𝑥−

1
2 − (𝜈𝑔𝑢𝑔∞𝑥)

1
2

𝜕

𝜕𝜂𝑔
{𝐹𝑔(𝜂𝑔)}

𝜕𝜂𝑔

𝜕𝑥
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= −
1

2
𝐹𝑔(𝜂𝑔)(𝜈𝑔𝑢𝑔∞)

1
2𝑥−

1
2 − (𝜈𝑔𝑢𝑔∞𝑥)

1
2𝐹𝑔

′(𝜂𝑔)
𝜕

𝜕𝑥
{(𝑦 − 𝑑) (

𝑢𝑔∞

𝜈𝑔𝑥
)

1
2

} 

= −
1

2
𝐹𝑔(𝜂𝑔)(𝜈𝑔𝑢𝑔∞)

1
2𝑥−

1
2 − (𝜈𝑔𝑢𝑔∞𝑥)

1
2𝐹𝑔

′(𝜂𝑔)(𝑦 − 𝑑) (
𝑢𝑔∞

𝜈𝑔
)

1
2

(−
1

2
𝑥−

3
2) 

= −
1

2
𝐹𝑔(𝜂𝑔)(𝜈𝑔𝑢𝑔∞)

1
2𝑥−

1
2 +

1

2
(𝜈𝑔𝑢𝑔∞𝑥)

1
2𝐹𝑔

′(𝜂𝑔)𝜂𝑔 (
𝑢𝑔∞

𝜈𝑔𝑥
)

−
1
2

(
𝑢𝑔∞

𝜈𝑔
)

1
2

(𝑥−
3
2) 

= −
1

2
𝐹𝑔(𝜂𝑔)(𝜈𝑔𝑢𝑔∞)

1
2𝑥−

1
2 +

1

2
(𝜈𝑔𝑢𝑔∞)

1
2𝐹𝑔

′(𝜂𝑔)𝜂𝑔𝑥−
1
2 

=
1

2
(𝜈𝑔𝑢𝑔∞)

1
2𝑥−

1
2[𝜂𝑔𝐹𝑔

′(𝜂𝑔) − 𝐹𝑔(𝜂𝑔)]                                                                                (4.38) 

 

𝜕𝑢𝑔

𝜕𝑥
=

𝜕

𝜕𝑥
{𝑢𝑔∞𝐹𝑔

′(𝜂𝑔)} 

= 𝑢𝑔∞

𝜕

𝜕𝜂𝑔
{𝐹𝑔

′(𝜂𝑔)}
𝜕𝜂𝑔

𝜕𝑥
 

= 𝑢𝑔∞𝐹′𝑔
′ (𝜂𝑔)

𝜕

𝜕𝑥
{(𝑦 − 𝑑) (

𝑢𝑔∞

𝜈𝑔𝑥
)

1
2

} 

= 𝑢𝑔∞𝐹′𝑔
′ (𝜂𝑔)𝑦 (

𝑢𝑔∞

𝜈𝑔
)

1
2

(−
1

2
𝑥−

3
2) 

= −
1

2
𝑢𝑔∞𝐹′𝑔

′ (𝜂𝑔)𝜂𝑙 (
𝑢𝑔∞

𝜈𝑔𝑥
)

−
1
2

(
𝑢𝑔∞

𝜈𝑔
)

1
2

(𝑥−
3
2) 

= −
1

2

𝑢𝑔∞

𝑥
𝜂𝑔𝐹′

𝑔
′

(𝜂𝑔)                                                                                                                  (4.39) 

 

𝜕𝑣𝑔

𝜕𝑦
=

𝜕

𝜕𝑦
{

1

2
(𝜈𝑔𝑢𝑔∞)

1
2𝑥−

1
2[𝜂𝑔𝐹𝑔

′(𝜂𝑔) − 𝐹𝑔(𝜂𝑔)]} 

=
1

2
(𝜈𝑔𝑢𝑔∞)

1
2𝑥−

1
2

𝜕

𝜕𝑦
[𝜂𝑔𝐹𝑔

′(𝜂𝑔) − 𝐹𝑔(𝜂𝑔)] 

=
1

2
(𝜈𝑔𝑢𝑔∞)

1
2𝑥−

1
2

𝜕

𝜕𝜂𝑔
[𝜂𝑔𝐹𝑔

′(𝜂𝑔) − 𝐹𝑔(𝜂𝑔)]
𝜕𝜂𝑔

𝜕𝑦
 

=
1

2
(𝜈𝑔𝑢𝑔∞)

1
2𝑥−

1
2[𝜂𝑔𝐹𝑔

′′(𝜂𝑔) + 𝐹𝑔
′(𝜂𝑔) − 𝐹𝑔(𝜂𝑔)] (

𝑢𝑔∞

𝜈𝑔𝑥
)

1
2
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=
1

2

𝑢𝑔∞

𝑥
𝜂𝑔𝐹𝑔

′′(𝜂𝑔)                                                                                                                           (4.40) 

𝜕𝑢𝑔

𝜕𝑦
=

𝜕

𝜕𝑦
{𝑢𝑔∞𝐹𝑔

′(𝜂𝑔)} 

= 𝑢𝑔∞

𝜕

𝜕𝜂𝑔
{𝐹𝑔

′(𝜂𝑔)}
𝜕𝜂𝑔

𝜕𝑦
 

= 𝑢𝑔∞

𝜕

𝜕𝜂𝑔
{𝐹𝑔

′(𝜂𝑔)} (
𝑢𝑔∞

𝜈𝑔𝑥
)

1
2

 

=
𝑢𝑔∞

3
2

(𝜈𝑔𝑥)
1
2

𝐹𝑔
′′(𝜂𝑔)                                                                                                                         (4.41) 

 

𝜕2𝑢𝑔

𝜕𝑦2
=

𝜕

𝜕𝑦
{

𝑢𝑔∞

3
2

(𝜈𝑔𝑥)
1
2

𝐹𝑔
′′(𝜂𝑔)} 

=
𝑢𝑔∞

3
2

(𝜈𝑔𝑥)
1
2

𝜕

𝜕𝜂𝑔
{𝐹𝑔

′′(𝜂𝑔)}
𝜕𝜂𝑔

𝜕𝑦
 

=
𝑢𝑔∞

3
2

(𝜈𝑔𝑥)
1
2

𝜕

𝜕𝜂𝑔
{𝐹𝑔

′′(𝜂𝑔)} (
𝑢𝑔∞

𝜈𝑔𝑥
)

1
2

 

=
𝑢𝑔∞

2

𝜈𝑔𝑥
𝐹𝑔

′′′(𝜂𝑔)                                                                                                                                (4.42) 

 

𝜕𝑇𝑔

𝜕𝑥
=

𝜕

𝜕𝑥
{𝑇𝑔∞ + (𝑇𝑖 − 𝑇𝑔∞)𝜃𝑔} 

= (𝑇𝑖 − 𝑇𝑔∞)
𝜕

𝜕𝑥
{𝜃𝑔} 

= (𝑇𝑖 − 𝑇𝑔∞)
𝜕

𝜕𝜂𝑔
{𝜃𝑔}

𝜕𝜂𝑔

𝜕𝑥
 

= (𝑇𝑖 − 𝑇𝑔∞)𝜃𝑔
′

𝜕

𝜕𝑥
{(𝑦 − 𝑑) (

𝑢𝑔∞

𝜈𝑔𝑥
)

1
2

} 

= (𝑇𝑖 − 𝑇𝑔∞)𝜃𝑔
′  (𝑦 − 𝑑) (

𝑢𝑔∞

𝜈𝑔
)

1
2

(−
1

2
𝑥−

3
2) 
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= −
1

2
(𝑇𝑖 − 𝑇𝑔∞)𝜃𝑔

′  𝜂𝑔 (
𝑢𝑔∞

𝜈𝑔𝑥
)

−
1
2

(
𝑢𝑔∞

𝜈𝑔
)

1
2

(𝑥−
3
2) 

= −
1

2

𝜂𝑔

𝑥
(𝑇𝑖 − 𝑇𝑔∞)𝜃𝑔

′   

 

 

𝜕𝑇𝑔

𝜕𝑦
=

𝜕

𝜕𝑦
{𝑇𝑔∞ + (𝑇𝑖 − 𝑇𝑔∞)𝜃𝑔} 

=
𝜕

𝜕𝜂𝑔
{𝑇𝑔∞ + (𝑇𝑖 − 𝑇𝑔∞)𝜃𝑔}

𝜕𝜂𝑔

𝜕𝑦
 

= (𝑇𝑖 − 𝑇𝑔∞)𝜃𝑔
′ (

𝑢𝑔∞

𝜈𝑔𝑥
)

1
2

                                                                                                           (4.43) 

 

𝜕2𝑇𝑔

𝜕𝑦2
=

𝜕

𝜕𝑦
{(𝑇𝑖 − 𝑇𝑔∞)𝜃𝑔

′ (
𝑢𝑔∞

𝜈𝑔𝑥
)

1
2

} 

=
𝜕

𝜕𝜂𝑔
{(𝑇𝑖 − 𝑇𝑔∞)𝜃𝑔

′ (
𝑢𝑔∞

𝜈𝑔𝑥
)

1
2

}
𝜕𝜂𝑔

𝜕𝑦
 

= (𝑇𝑖 − 𝑇𝑔∞)𝜃𝑔
′′ (

𝑢𝑔∞

𝜈𝑔𝑥
)

1
2

(
𝑢𝑔∞

𝜈𝑔𝑥
)

1
2

 

=
𝑢𝑔∞

𝜈𝑔𝑥
(𝑇𝑖 − 𝑇𝑔∞)𝜃𝑔

′′                                                                                                                  (4.44) 

 

𝜕𝜔

𝜕𝑥
=

𝜕

𝜕𝑥
{𝜔∞ + (𝜔𝑖 − 𝜔∞)𝜙} 

=
𝜕

𝜕𝜂𝑔

{𝜔∞ + (𝜔𝑖 − 𝜔∞)𝜙}
𝜕𝜂𝑔

𝜕𝑥
 

= (𝜔𝑖 − 𝜔∞)𝜙′
𝜕

𝜕𝑥
{(𝑦 − 𝑑) (

𝑢𝑔∞

𝜈𝑔𝑥
)

1
2

} 

= (𝜔𝑖 − 𝜔∞)𝜙′(𝑦 − 𝑑) (
𝑢𝑔∞

𝜈𝑔
)

1
2

(−
1

2
𝑥−

3
2) 

= −
1

2
(𝜔𝑖 − 𝜔∞)𝜙′𝜂𝑔 (

𝑢𝑔∞

𝜈𝑔𝑥
)

−
1
2

(
𝑢𝑔∞

𝜈𝑔
)

1
2

(𝑥−
3
2) 
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= −
1

2

𝜂𝑔

𝑥
(𝜔𝑖 − 𝜔∞)𝜙′                                                                                                              (4.45) 

 

𝜕𝜔

𝜕𝑦
=

𝜕

𝜕𝑦
{𝜔∞ + (𝜔𝑖 − 𝜔∞)𝜙} 

=
𝜕

𝜕𝜂𝑔

{𝜔∞ + (𝜔𝑖 − 𝜔∞)𝜙}
𝜕𝜂𝑔

𝜕𝑦
 

= (𝜔𝑖 − 𝜔∞)𝜙′ (
𝑢𝑔∞

𝜈𝑔𝑥
)

1
2

                                                                                                           (4.46) 

 

𝜕2𝜔

𝜕𝑦2
=

𝜕

𝜕𝑦
{(𝜔𝑖 − 𝜔∞)𝜙′ (

𝑢𝑔∞

𝜈𝑔𝑥
)

1
2

} 

= (𝜔𝑖 − 𝜔∞)𝜙′′ (
𝑢𝑔∞

𝜈𝑔𝑥
)

1
2

(
𝑢𝑔∞

𝜈𝑔𝑥
)

1
2

 

= (𝜔𝑖 − 𝜔∞)𝜙′′ (
𝑢𝑔∞

𝜈𝑔𝑥
)                                                                                                            (4.47) 

 

Again, using Eqs. (4.37)- (4.47), the mathematical problems defined in liquid film region 

Equs. (4.4) -(4.7) are then transferred into the following set of ordinary differential 

equations: 

Now, Equ. (4.4) becomes 

𝜕𝑢𝑔

𝜕𝑥
+

𝜕𝑣𝑔

𝜕𝑦
 

= −
1

2

𝑢𝑔∞

𝑥
𝜂𝑔𝐹′

𝑔
′

(𝜂𝑔) +
1

2

𝑢𝑔∞

𝑥
𝜂𝑔𝐹′

𝑔
′

(𝜂𝑔) 

= 0 

Hence the continuity equation in gas stream region is satisfied. 

 

Again, Equ. (4.5) becomes 

𝑢𝑔

𝜕𝑢𝑔

𝜕𝑥
+ 𝑣𝑔

𝜕𝑢𝑔

𝜕𝑦
= 𝜈𝑔

𝜕2𝑢𝑔

𝜕𝑦2
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⇒ 𝑢𝑔∞𝐹𝑔
′(𝜂𝑔) {−

1

2

𝑢𝑔∞

𝑥
𝜂𝑔𝐹′

𝑔
′

(𝜂𝑔)}

+
1

2
(𝜈𝑔𝑢𝑔∞)

1
2𝑥−

1
2[𝜂𝑔𝐹𝑔

′(𝜂𝑔) − 𝐹𝑔(𝜂𝑔)] ×
𝑢𝑔∞

3
2

(𝜈𝑔𝑥)
1
2

𝐹𝑔
′′(𝜂𝑔)

= 𝜈𝑔  
𝑢𝑔∞

2

𝜈𝑔𝑥
𝐹𝑔

′′′(𝜂𝑔)            

⇒ −
1

2

𝑢𝑔∞
2

𝑥
𝜂𝑔𝐹′

𝑔
′

(𝜂𝑔)𝐹𝑔
′(𝜂𝑔) +

1

2

𝑢𝑔∞
2

𝑥
𝜂𝑔𝐹′

𝑔
′

(𝜂𝑔)𝐹𝑔
′(𝜂𝑔) −

1

2

𝑢𝑔∞
2

𝑥
𝐹𝑔(𝜂𝑔)𝐹𝑔

′′(𝜂𝑔)

=  
𝑢𝑔∞

2

𝑥
𝐹𝑔

′′′(𝜂𝑔)   

⇒ −
1

2

𝑢𝑔∞
2

𝑥
𝐹𝑔(𝜂𝑔)𝐹𝑔

′′(𝜂𝑔) =  
𝑢𝑔∞

2

𝑥
𝐹𝑔

′′′(𝜂𝑔) 

⇒ −
1

2
𝐹𝑔(𝜂𝑔)𝐹𝑔

′′(𝜂𝑔) =  𝐹𝑔
′′′(𝜂𝑔) 

⇒ 𝐹𝑔
′′′(𝜂𝑔) +

1

2
𝐹𝑔(𝜂𝑔)𝐹𝑔

′′(𝜂𝑔) =  0                                                                                       (4.48) 

 

and, Equ. (4.6) becomes  

𝑢𝑔

𝜕𝑇𝑔

𝜕𝑥
+ 𝑣𝑔

𝜕𝑇𝑔

𝜕𝑦
= 𝛼𝑔

𝜕2𝑇𝑔

𝜕𝑦2
 

⇒ 𝑢𝑔∞𝐹𝑔
′(𝜂𝑔) {−

1

2

𝜂𝑔

𝑥
(𝑇𝑖 − 𝑇𝑔∞)𝜃𝑔

′  }

+
1

2
(𝜈𝑔𝑢𝑔∞)

1
2𝑥−

1
2[𝜂𝑔𝐹𝑔

′(𝜂𝑔) − 𝐹𝑔(𝜂𝑔)] × (𝑇𝑖 − 𝑇𝑔∞)𝜃𝑔
′ (

𝑢𝑔∞

𝜈𝑔𝑥
)

1
2

= 𝛼𝑔

𝑢𝑔∞

𝜈𝑔𝑥
(𝑇𝑖 − 𝑇𝑔∞)𝜃𝑔

′′        

⇒ −
1

2

𝜂𝑔

𝑥
(𝑇𝑖 − 𝑇𝑔∞)𝑢𝑔∞𝐹𝑔

′(𝜂𝑔)𝜃𝑔
′ +

1

2

𝜂𝑔

𝑥
(𝑇𝑖 − 𝑇𝑔∞)𝑢𝑔∞𝐹𝑔

′(𝜂𝑔)𝜃𝑔
′

−
1

2𝑥
(𝑇𝑖 − 𝑇𝑔∞)𝑢𝑔∞𝐹𝑔(𝜂𝑔)𝜃𝑔

′ = 𝛼𝑔

𝑢𝑔∞

𝜈𝑔𝑥
(𝑇𝑖 − 𝑇𝑔∞)𝜃𝑔

′′  

⇒ −
1

2𝑥
(𝑇𝑖 − 𝑇𝑔∞)𝑢𝑔∞𝐹𝑔(𝜂𝑔)𝜃𝑔

′ = 𝛼𝑔

𝑢𝑔∞

𝜈𝑔𝑥
(𝑇𝑖 − 𝑇𝑔∞)𝜃𝑔

′′ 

⇒ −
1

2
𝐹𝑔(𝜂𝑔)𝜃𝑔

′ =
𝛼𝑔

𝜈𝑔
𝜃𝑔

′′ 

⇒ −
1

2
𝐹𝑔(𝜂𝑔)𝜃𝑔

′ =
𝛼𝑔

𝜈𝑔
𝜃𝑔

′′ 
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⇒
1

2
𝜃𝑔

′′ +
1

2
𝐹𝑔𝜃𝑔

′ = 0 

⇒ 𝜃𝑔
′′ +

1

2
𝑃𝑟𝑔𝐹𝑔𝜃𝑔

′ = 0                                                                                                            (4.49)   

 

 

Then Equ. (4.7) becomes, 

𝑢𝑔

𝜕𝜔

𝜕𝑥
+ 𝑣𝑔

𝜕𝜔

𝜕𝑦
= 𝐷

𝜕2𝜔

𝜕𝑦2
 

⇒ 𝑢𝑔∞𝐹𝑔
′(𝜂𝑔) {−

1

2

𝜂𝑔

𝑥
(𝜔𝑖 − 𝜔∞)𝜙′}

+
1

2
(𝜈𝑔𝑢𝑔∞)

1
2𝑥−

1
2[𝜂𝑔𝐹𝑔

′(𝜂𝑔) − 𝐹𝑔(𝜂𝑔)](𝜔𝑖 − 𝜔∞)𝜙′ (
𝑢𝑔∞

𝜈𝑔𝑥
)

1
2

= 𝐷(𝜔𝑖 − 𝜔∞)𝜙′′ (
𝑢𝑔∞

𝜈𝑔𝑥
) 

⇒ −
1

2

𝜂𝑔𝑢𝑔∞

𝑥
𝐹𝑔

′(𝜂𝑔)𝜙′ +
1

2

𝜂𝑔𝑢𝑔∞

𝑥
𝐹𝑔

′(𝜂𝑔)𝜙′ −
1

2

𝑢𝑔∞

𝑥
𝐹𝑔(𝜂𝑔)𝜙′ = 𝐷

𝑢𝑔∞

𝜈𝑔𝑥
𝜙′′ 

⇒ −
1

2
𝐹𝑔(𝜂𝑔)𝜙′ =

1

𝐿𝑒
𝜙′′ 

⇒ 𝜙′′ + −
1

2
𝐿𝑒𝐹𝑔(𝜂𝑔)𝜙′ = 0                                                                                                  (4.50) 

 

Subject to the boundary conditions:  

𝐹𝑙
′ = 0, 𝐹𝑙 = 0, 𝜃𝑙 = 1                    at   𝜂𝑙 = 0                                                        (4.51) 

𝐹𝑔
′ = 1,      𝜃𝑔 = 0, 𝜙 = 0                       at    𝜂𝑔 → ∞                                                     (4.52) 

The liquid film thickness d corresponds to 𝜂𝑙𝑖 which must be a constant for enabling the 

similarity transformation. Consequently, the compatibility conditions (4.10)- (4.14) are 

transferred as  

at   𝜂𝑙 = 𝜂𝑙𝑖  , or ηg = 0 : 

(𝐹𝑙
′)𝑖 = (𝐹𝑔

′)
𝑖
                                                                                                                        (4.53) 

(𝜃𝑙)𝑖 = 0                                                                                                                              (4.54) 

(𝜃𝑔)
𝑖

= 1                                                                                                                             (4.55) 

(𝐹𝑔)
𝑖

=
2

𝑃𝑟𝑔𝐿𝑒

𝜔𝑖 − 𝜔∞

1 − 𝜔𝑖
𝜙𝑖

′                                                                                                       (4.56) 

(𝐹𝑔
′′)

𝑖
= 𝑅(𝐹𝑙

′′)𝑖                                                                                                                          (4.57)                                                                                                                
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𝜙 = 1                                                                                                                             (4.58) 

(𝜃𝑙
′)𝑖 =

𝑃𝑟𝑙

𝑃𝑟𝑔
(

𝜈𝑔

𝜈𝑙
)

1
2

[
𝑇𝑖 − 𝑇𝑔∞

𝑇𝜔 − 𝑇𝑖
(𝜃𝑔

′ )
𝑖

+
𝐻

𝐿𝑒

𝜔𝑖 − 𝜔∞

(1 − 𝜔𝑖)(𝑇𝜔 − 𝑇𝑖)
(𝜙′)𝑖]                                 (4.59) 

where 𝑃𝑟𝑔 =
𝜈𝑔

𝛼𝑔
 is the Prandtl number in gas stream region, 𝑅 = (

𝜌𝑙𝜇𝑙

𝜌𝑔𝜇𝑔
)

1

2
 , 𝐿𝑒 =

𝜈𝑔

𝐷
 is the 

Lewis’s number. 

 

4.5 Flow Parameters 

The physical quantities of interest are the local Nusselt number 𝑁𝑢𝑥  and local Sherwood 

number   𝑆ℎ𝑥     which are given by:  

𝑁𝑢𝑥 = −
𝑥

𝑇𝑤 − 𝑇𝑖

𝜕𝑇𝑙

𝜕𝑦
│𝑦=0 

= −
𝑥

𝑇𝑤 − 𝑇𝑖

(𝑇𝑤 − 𝑇𝑖) (
𝑢𝑔∞

𝜈𝑙𝑥
)

1
2

  𝜃𝑙
′(0)      

= (
𝑢𝑔∞𝑥

𝜈𝑙
)

1
2

  𝜃𝑙
′(0) 

=
1

𝑅𝑒𝑥

1
2

𝜃𝑙
′(0)                                                                                                                                 (4.60) 

 

And 

𝑆ℎ𝑥 = −
𝑥

𝜔𝑖 − 𝜔∞

𝜕𝜔

𝜕𝑦
│𝑦=𝑑 

= −
𝑥

𝜔𝑖 − 𝜔∞

(𝜔𝑖 − 𝜔∞)𝜙′ (
𝑢𝑔∞

𝜈𝑔𝑥
)

1
2

 

= − (
𝑢𝑔∞𝑥

𝜈𝑔
)

1
2

 𝜙′(0) 

= −
1

𝑅𝑒𝑥

1
2

𝜙′(0)                                                                                                                             (4.61) 

where 𝑅𝑒𝑥 =
𝜈𝑙

𝑥 𝑢𝑔∞
 is the local Reynolds number. 
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4.6 Numerical Simulations and Discussions 

By using the shooting technique in MATLAB, the set of ordinary differential equations 

(4.35)- (4.36) and (4.48)- (4.50) with the boundary conditions (4.51)- (4.59) are solved 

numerically. Here the velocity, temperature and concentration are determined as a function 

of coordinate η. To get the solution of differential equations 4.35)- (4.36) and (4.48)- (4.50) 

with the boundary conditions (4.51)- (4.59), we have adopted a numerical technique based 

on MATLAB. In this simulation, we got some non-dimensional numbers such as the Darcy 

number Da, Froude number Fr, Prandtl number Pr and Lewis number Le. We tried to show 

the effect of these above parameters on velocity, temperature and concentration are plotted 

in the figures 4.2-4.8. To observe the effect of Darcy number Da, the other parameters are 

constants. Similarly, we observed the effect of the parameters Fr, Pr, Le by taking the rest 

parameters are constants, respectively.   

 

4.6.1 Effect of Froude Number Fr on Velocity and Temperature Profiles                                                                                                                                                                           

 

 

 

 

 

 

 

 

 

 

 

(a) 

Figure 4.2: (a) Velocity profiles for different values of Froude number Fr with fixed 

values 𝑃𝑟𝑙 = 10, 𝐷𝑎 = 0.05, 𝑏 = 0.8, Г = 0.5 
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Figure 4.2(a) and (b) demonstrates the effect of the Froude number Fr on the velocity and 

temperature profiles. It is stated from Fig. 4.2(a) that the velocity decreases as the Froude 

number increases along the similarity variable 𝜂𝑙. Also, with an increase the Froude number 

the temperature decreases which are shown in Fig. 4.2(b). Due to gravitational effect, with 

an increase of the gravitational force the velocity decrease and enhancing the temperature. 

 

4.6.2 Effect of porosity 𝒃 on Velocity and Temperature Profiles 

 

From Fig. 4.3(a) and 4.3(b), illustrate the effect of the porosity 𝑏 on the velocity and 

temperature profiles, respectively. From Fig. 4.3(a), the results show that the velocity 

decreases along the surface within an increase of the porosity. Also, as the porosity increase 

the temperature increase which are shown in Fig. 4.3(b). This is due to fact that porosity 

produce a resistive type of force which causes a reduction in the fluid velocity as well as 

enhancing the temperature. 

 

 

 

Figure 4.2: (b) Temperature profiles for different values of Froude number Fr with fixed 

values 𝑃𝑟𝑙 = 10, 𝐷𝑎 = 0.05, 𝑏 = 0.8, Г = 0.5 

 

(b) 
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4.6.3 Effect of Dimensionless Inertia Coefficient of Porous Medium Г on 

Velocity and Temperature Profiles 

 

The effect of dimensionless inertia coefficient of porous medium Г on the velocity and 

dimensionless temperature are shown in Fig. 4.4(a) and 4.4(b), respectively. From Fig. 

4.4(a), it is observed that the velocity decreases with the increase of dimensionless inertia 

Figure 4.3: (a) Velocity profiles, and (b) Temperature profiles for different values 

of porosity , 𝑏 with fixed values 𝑃𝑟𝑙 = 10, 𝐷𝑎 = 0.05, 𝐹𝑟 = 0.1, Г = 0.5 

 

(a) 

(b) 
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coefficient of porous medium Г. The temperature is reduced for the increasing value of 

dimensionless inertia coefficient of porous medium Г is shown in Fig. 4.4(b). 

 

 

 

 

 

 

 

 

Figure 4.4: (b) Temperature profiles for different values of dimensionless inertia coefficient 

of porous medium Г with fixed values 𝑃𝑟𝑙 = 10, 𝐷𝑎 = 0.05, 𝐹𝑟 = 0.1, 𝑏 = 0.8 

 

(a) 

(b) 

Figure 4.4: (a) Velocity profiles for different values of dimensionless inertia coefficient of 

porous medium Г with fixed values 𝑃𝑟𝑙 = 10, 𝐷𝑎 = 0.05, 𝐹𝑟 = 0.1, 𝑏 = 0.8 
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4.6.4 Effect of Darcy Number Da on Velocity and Temperature Profiles 

 

The effect of the Darcy number Da against 𝜂𝑙  on the velocity field and temperature field are 

shown in Figure 4.5(a) and (b), respectively. From Fig. 4.5(a), it is revealed that the velocity 

increases as the Darcy parameter increase. With an increase the Darcy number the 

temperature decreases along 𝜂𝑙 which shown in Fig. 4.5(b). 

 

 

 

 Figure 4.5: (a) Velocity profiles and (b) Temperature profiles for different values 

of Darcy number Da with fixed values 𝑃𝑟𝑙 = 0.1, 𝐹𝑟 = 0.1, 𝑏 = 0.8, Г = 0.5 

 

(a) 

(b) 
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4.6.5 Effect of Prandtl Number 𝑷𝒓𝒍 (for Liquid Film) on Temperature 

Profiles 

 

 

 

 

 

The variation of the dimensionless temperature against 𝜂𝑙 for various values of the Prandtl 

number 𝑃𝑟𝑙 are displayed in Fig.4.6. Fig. 4.6 shown that the temperature decreases with the 

increase of the Prandtl number 𝑃𝑟𝑙 . This is because in gas stream region a fluid with large 

Prandtl number possesses large heat capacity and hence augments the heat transfer. 

 

 

 

 

 

 

 

 

 

Figure 4.6: Temperature profiles for different values of Prandtl number 𝑃𝑟𝑙 

with fixed values  𝐷𝑎 = 0.05, 𝐹𝑟 = 0.1, 𝑏 = 0.8, Г = 0.5 
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4.6.6 Effect of Prandtl Number 𝑷𝒓𝒈 (for Gas Region) on Temperature 

Profiles 

 

 

 

For the gas stream region, Fig. 4.7 demonstrates the effect of the Prandtl number 𝑃𝑟𝑔 on the 

dimensionless temperature against 𝜂𝑔. It is observed that the temperature decreases with the 

increase of the Prandtl number 𝑃𝑟𝑔. This is because in gas stream region a fluid with large 

Prandtl number possesses large heat capacity and hence augments the heat transfer. 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Temperature profiles for different values of Prandtl number 𝑃𝑟𝑔 
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4.6.7 Effect of Lewis Le on Concentration Profiles 

The variation of the dimensionless temperature against 𝜂𝑔 for various values of the Lewis 

number Le are displayed in Fig. 4.8. It is observed that the concentration decreases with the 

increase of the Lewis number Le. This is because that with decreases the mass diffusivity 

the concentration decreases along 𝜂𝑔. 

 

 

 

 

4.6.8 Variation of Flow Parameters 

 

Figure 4.9 illustrates the effect of Prandtl number 𝑃𝑟𝑙 on the local Nusselt number 𝑁𝑢𝑥 

along the local Reynolds number 𝑅𝑒𝑥. The Prandtl number 𝑃𝑟𝑙 =
𝜈𝑙

𝛼𝑒
 represents the relative 

extent of the temperature field. The local Nusselt number increase with an increase the 

Prandtl number along the local Reynold number. This due to fact that for increasing the 

Prandtl numbers larger heat transfer rate is achieved. The Lewis number 𝐿𝑒 =
𝛼𝑔

𝐷
 , is 

a dimensionless number defined as the ratio of thermal diffusivity to mass diffusivity. With 

an increase the Lewis number the local Sherwood number decrease along the local Reynolds 

number. This is because that for increasing the Lewis number smaller mass flow rate is 

achieved which is shown in Fig. 4.10. 

Figure 4.8: Concentration profiles for different values of Lewis number Le 

 

https://en.wikipedia.org/wiki/Dimensionless_number
https://en.wikipedia.org/wiki/Thermal_diffusivity
https://en.wikipedia.org/wiki/Mass_diffusivity
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Figure 4.9: Variation of local Nusselt number 𝑁𝑢𝑥 with 𝑅𝑒𝑥 for various 

Prandtl number 𝑃𝑟𝑙 
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Figure 4.10: Variation of local Sherwood number 𝑆ℎ𝑥 with 𝑅𝑒𝑥 for 

various Lewis number 𝐿𝑒 
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4.7 Conclusions 

In this research, the analytical and numerical solutions of the considered problems which 

have been obtained by using similarity solution technique in MATLAB. Similarity 

transformations were used to convert the partial differential equations describing the 

problem into a system of ordinary differential equations. In liquid film region, with an 

increase of the gravitational force the velocity decrease and enhancing the temperature. 

Also, a fluid with large Prandtl number possesses small heat capacity, and hence reduce the 

heat transfer. The velocity decreases with an increase of the porosity. This is due to fact that 

the porous medium produces a resistive type of force which causes a reduction in the fluid 

velocity. Where as in gas stream region, large Prandtl fluids possess lower thermal 

diffusivity and smaller Prandtl fluids have higher thermal diffusivity. The concentration 

decreases with an increase of the Lewis number. This is because with decrease diffusivity 

the concentration decrease. Moreover, the Prandtl number in liquid region increase the 

larger heat transfer rate is achieved and the Lewis number increase the smaller mass transfer 

rate is achieved. 
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                                             CHAPTER FIVE                   
 

Similarity Solution of Heat and Mass Transfer for the 

Falling Film Flow on a Porous Medium in Presence of 

Heat Generation or Absorption 

 

5.1 Introduction 

 

There are many applications in heat pumps, chillers and air-conditioners which is the gas 

absorption process taking place on a falling liquid film has received much attention. In these 

absorption machines, the refrigerant vapor from evaporator is absorbed by a falling film of 

an absorbent solution in an absorber, and then the absorbent solution is regenerated by 

releasing the refrigerant vapor in a regenerator (boiler). Since these absorption machines are 

driven mainly by low-grade energy, heat, Jones and Hawkins [1], rather than by high-grade 

energy, electricity, their application is especially interesting in areas where the electric 

power supply is limited. The performance of the absorption machine is controlled by the 

heat and mass transfer rates of the absorption process. Therefore, it is important to study the 

means of enhancing the heat and mass transfer rates of an absorption process. The 

absorption process for an absorption process taking place on a falling film flow in a porous 

medium which is considered by Yang and Jou [2]. The application of porous media in a 

falling film absorption process is mainly to enhance the wetting conditions which is also 

discussed by Yang and Jou [3]. 

Gebhart and Pera [4] and Chen and Yuh [5] treated the vaporizing liquid film as the 

boundary condition for the gas stream and Shembharkar and Pai [6] and Baumann and 

Thiele [7] assumed the temperature distribution across the film to be linear. Recently, 

researches with more rigorous treatments of the equations governing the liquid film and 

liquid–gas interface have been published. Yan and Lin [8] studied the evaporative cooling 

of liquid film through interfacial heat and mass transfer in a vertical channel. A. Miyara [9] 

investigated the flow dynamics and heat transfer characteristics of wavy liquid films. Leu 

et al. [10] analyzed the liquid film evaporation flow along a vertical isothermal plate covered 

with a thin liquid-saturated porous layer.  
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Khader and Megahed [11] are presented a numerical technique which is the implicit finite 

difference method to the search for the numerical solutions for the given equations. Their 

technique reduces the problem to a system of algebraic equations. Recently, M. 

Hasanuzzaman and A. Miyara [12] have been studied a possible similarity solution of 

unsteady natural convection laminar boundary layer flow of viscous incompressible fluid 

caused by a heated (or cooled) axi-symmetric slender body of finite axial length immersed 

vertically in a viscous incompressible fluid. 

 

The basic theme of the present study is to investigate the effect of heat generation or 

absorption, thermal radiation and chemical reaction on the velocity, temperature and 

concentration fields in the thin liquid film on a porous medium. Mathematical modelling is 

developed under the considerations of heat generation or absorption, thermal radiation and 

chemical reaction stratification effects. The effects of various emerging parameters on 

velocity, temperature as well as concentration fields are presented graphically. The local 

Nusselt number and the local Sherwood numbers are computed and analyzed both 

numerically and graphically. 

 

5.2 Model and Governing Equations 

 
The physical model and coordinate system are shown in Figure 5.1. Two-dimensional wavy 

film on a vertical wall is considered. With the usual boundary layer approximations, the gas 

flow is assumed as laminar and steady.  

 

 
Fig.5.1: Physical model and coordinates system 
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The two-dimensional laminar continuity equation, momentum equation, energy equation 

and mass balance equations are the governing equations: 

 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                                                                   (5.1) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈

𝜕2𝑢

𝜕𝑦2
−

𝜈

𝐾
𝑢 + 𝑔                                                                                               (5.2) 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
+

𝑄0

𝜌𝐶𝑝

(𝑇 − 𝑇𝑠) −
1

𝜌𝐶𝑝

𝜕𝑞𝑟

𝜕𝑦
                                                                (5.3) 

 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕2𝐶

𝜕𝑦2
− 𝐾𝑟′𝐶                                                                                                   (5.4) 

 

where u and v are the velocity components along the x and y directions, respectively. 𝜌 is 

the fluid density, T is the temperature and C is the concentration of the fluid, 𝜈 is the 

kinematic viscosity, h is the thickness of  porous medium, K is the permeability of the porous 

medium, g is the gravitational acceleration, 𝛼 is the thermal diffusivity, 𝑄0(𝑇 − 𝑇𝑆) are heat 

generated or absorbed per unit volume ( 𝑄0is constant), 𝑞𝑟 is the radiation heat flux, D is 

the mass diffusivity and 𝐾𝑟′ is the chemical reaction rate of species concentration. 

 

5.3 Boundary Conditions 

 

Subject to the following boundary conditions are: 

𝑢 = 0,    𝑣 = 0,   𝑇 = 𝑇𝑤(𝑥) and  
∂C

∂y
   at 𝑦 = 0                                                                    (5.5) 

𝜕𝑢

𝜕𝑦
= 0, 𝑇 = 𝑇𝑆  and    𝐶 = 𝐶𝑆 at 𝑦 → ℎ                                                                           (5.6) 

where  𝑇𝑤 is the wall temperature, 𝑇𝑆 and 𝐶𝑆 are the surface temperature concentration, 

respectively.  

According to Rosseland approximation (Raptis, [13]), the radiation heat flux 𝑞𝑟  is given by 
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𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
                                                                                                                            (5.7) 

 

where 𝜎∗ is termed as Stafan-Boltzman constant and 𝑘∗ is as the mean absorption 

coefficient, Following Raptis [13], we assume that the temperature difference within the 

flow is small such that may be expressed as a linear function of the temperature. Expanding 

𝑇4 in a Taylor series about  𝑇0 and neglecting higher order terms, we have: 

 

𝑇4 ≅ 4𝑇0
3𝑇 − 3𝑇0

4                                                                                                                         (5.8)  

 

We also used the relation between the velocity components as well as the stream functions 

which are given by: 

𝑢 =
𝜕𝜓(𝑥, 𝑦)

𝜕𝑦
, 𝑣 = −

𝜕𝜓(𝑥, 𝑦)

𝜕𝑥
                                                                                         (5.9) 

5.4 Similarity Transforms 

The similarity transformations which are given by: 

𝜂 =
𝑦

ℎ
,   𝜓 = √𝜈 𝑥𝑓(𝜂),   𝜃 =

𝑇 − 𝑇𝑆

𝑇𝑤 − 𝑇𝑆
, 𝜙 = 𝐶 − 𝐶∞                                                 (5.10) 

Using the equations (5.5) -(5.10), the problems defined in equations (5.1) -(5.4) are then 

transformed into the following set of ordinary differential equations: 

 

𝑓′′′(𝜂) + 𝛾{𝑓(𝜂)𝑓′′(𝜂) − 𝑓′2(𝜂) − 𝐷𝑎𝑓′(𝜂) + 𝐹𝑟}  = 0                                                 (5.11) 

 

𝜃′′(𝜂) +
𝑃𝑟 

1 + 𝑁𝑅

[𝑓(𝜂)𝜃′(𝜂) + ∆ 𝜃(𝜂) − 𝑓′(𝜂)𝜃(𝜂)] = 0                                                (5.12) 

 

𝜙′′(𝜂) + 𝑆𝑐[𝑓(𝜂)𝜙′(𝜂) − 𝑓′(𝜂)𝜙(𝜂) − 𝐾𝑟𝑥(𝑁𝑐 + 𝜙(𝜂))] = 0                                     (5.13) 

 

with the boundary conditions  

 

𝑓(0) = 0,   𝑓′(0) = 0, 𝜃(0) = 1,   𝜙′(0) = 0                                                                      (5.14) 

 

𝑓′′(1) = 0,   𝜃(1) = 0, 𝜙(1) = 0                                                                                   (5.15) 
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where primes denote differentiation with respect to η, 𝐷𝑎 =
𝜈

𝐾
 is the Darcy number, 𝛾 =

ℎ

√𝜈
 

is the dimensionless film thickness,  𝐹𝑟 =
𝑔𝜌2ℎ3

𝜇2 is the Froude number, 𝑃𝑟 =
𝜈

𝛼
   is the Prandtl 

number, 𝑁𝑅 =
16𝜎∗𝑇0

3

𝑘∗𝑘
 is the radiation parameter, ∆=

𝑄0

𝜌𝐶𝑃
 is heat generation/absorption 

coefficients, 𝑆𝑐 =
𝜈

𝐷
  is the Schmidt number, 𝐾𝑟𝑥 =

𝐾𝑟′

𝑎
  is the local chemical reaction . 

 

5.5 Flow Parameters 

The physical quantities of interest the local Nusselt number 𝑁𝑢𝑥 and the local Sherwood 

number 𝑆ℎ𝑥 which are given by 

  𝑁𝑢𝑥 =
1

ℎ
𝜃′(0), 𝑆ℎ𝑥 =

1

ℎ
𝜙′(0)                                                                                     (5.16) 

 

5.6 Numerical Results and Discussions 

By using the similarity solution technique in MATLAB, the set of ordinary differential 

equations (5.11)- (5.13) with the boundary conditions (5.14)- (5.15) are solved numerically. 

Here the velocity, temperature and concentration are determined as a function of coordinate 

𝜂. We have adopted a numerical procedure based on MATLAB for getting the solution of 

the differential equations (5.11) -(5.13) with the boundary conditions (5.14) -(5.15). The 

fundamental parameters that governed the flow are the dimensionless film thickness, Froude 

number, Darcy number, Prandtl number, thermal radiation parameter, heat 

generation/absorption parameter, Schmidt number and chemical reaction parameter. 

According to study their effects, a MATLAB program is written to enumerate and produce 

the graphs for the velocity, temperature and concentration for different values of these 

parameters. Few delegate results are given in Figures 5.2-5.9.  
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5.6.1 Effect of the Froude Number Fr on the Velocity, Temperature and 

Concentration Profiles 

 

Figure 5.2(a), (b) and (c) are shown the effect of the Froude number Fr on the velocity, 

temperature and concentration profiles. From Fig. 5.2(a), it is observed that in all cases the 

velocity is started at 0(zero) and then the velocity increase with the increase of η. After 

η=0.5 again the velocity decrease with the increase in the similarity variable η. Also, the 

velocity increases with the increase of the Froude number Fr along the similarity variable η. 

The dimensionless temperature profiles shown as in Figure 5.2(b) for different values of 

Froude number Fr. It is clearly seen that the temperature at any point decreases with the 

increase in Fr. The concentration increases with increase in Froude number Fr along the 

similarity variable η which as shown in Fig. 5.2(c). This is due to fact that influence of the 

gravitation force enhancing the velocity and concentration as well as reduce the temperature 

of the fluid. 

 

 

 

 

Figure 5.2: (a) Velocity profiles for different values of Fr with fixed values 

of Pr=10, 𝑁𝑅=1, Da=0.6, Sc=50, γ=0.5 and 𝐾𝑟𝑥=0.5 
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Figure 5.2: (b) Temperature profiles for different values of Fr with fixed 

values of Pr=10, 𝑁𝑅=1, Da=0.6, Sc=50, γ=0.5 and 𝐾𝑟𝑥=0.5 

 

Figure 5.2: (c) Concentration profiles for different values of Fr with fixed 

values of Pr=10, 𝑁𝑅=1, Da=0.6, Sc=50, γ=0.5 and 𝐾𝑟𝑥=0.5 
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5.6.2 Effect of the Dimensionless Film Thickness 𝜸 on the Velocity, 

Temperature and Concentration Profiles 

 

 

 

 

 

Figure 5.3: (a) Velocity profiles for different values of γ with fixed 

values of Pr=10, 𝑁𝑅=1, Da=0.6, Sc=50, Fr =0.5 and 𝐾𝑟𝑥=0.5 

 

Figure 5.3: (b) Temperature profiles for different values of γ with fixed 

values of Pr=10, 𝑁𝑅=1, Da=0.6, Sc=50, Fr =0.5 and 𝐾𝑟𝑥=0.5 
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Figures 5.3(a), (b) and (c) demonstrates the effect of the dimensionless film thickness 𝜸 on 

the velocity, temperature and concentration profiles, respectively. It is clearly observed from 

Fig. 5.3(a) that the fluid increases with the increase in dimensionless film thickness 𝜸 along 

the similarity variable η.  Temperature of the fluid decreases with the increase in 𝜸 along 

the similarity variable η which is shown in Fig. 5.3(b). Also, the concentration behavior is 

opposite for increasing dimensionless film thickness 𝜸. With an increase of dimensionless 

film thickness 𝜸 the concentration increases along the similarity variable η which is shown 

in Fig. 5.3(c). 

 

 

5.6.3 Influence of the Darcy Number Da on the Velocity Profiles 

 

The influence of the Darcy number Da on the velocity profile is shown in Fig. 5.4. The 

results show that the velocity decreases as the Darcy parameter increases. This is because 

that the porous medium produces a resistive type of force which causes a reduction in the 

fluid velocity. 

Figure 5.3: (c) Concentration profiles for different values of γ with 

fixed values of Pr=10, 𝑁𝑅=1, Da=0.6, Sc=50, Fr =0.5 and 𝐾𝑟𝑥=0.5 
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5.6.4 Effect of the Prandtl Number Pr on the Temperature Profiles 

 

 

 

 

Figure 5.4:  Velocity profiles for different values of Darcy number Da 

with fixed values of Pr=10, 𝑁𝑅=1, γ =0.5, Sc=50, Fr =0.5 and 𝐾𝑟𝑥=0.5 

 

Figure 5.5: Temperature profiles for different values of Prandtl number Pr 

with fixed values of Da=10, 𝑁𝑅=1, γ =0.5, Sc=50, Fr =0.5 and 𝐾𝑟𝑥=0.5 
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Figure 5.5 illustrate the effect of the Prandtl number Pr on the temperature profiles. It is 

observed that the temperature increases with the increase of the Prandtl number. This is due 

to fact that a fluid with large Prandtl number possesses large heat capacity, and hence 

augments the heat transfer. 

 

5.6.5 Effect of the Radiation Parameter 𝑵𝑹 on the Dimensionless 

Temperature Profiles 

 

 

 

 

 

The effect of the radiation parameter 𝑵𝑹 on the dimensionless temperature is shown in Fig. 

5.6. It is observed that with an increase in the radiation parameter the temperature decreases 

along the similarity variable η. This is because the increase in the radiation parameter 

implies higher surface heat flux and there-by decreasing the temperature of the fluid. 

 

 

 

Figure 5.6: Temperature profiles for different values of radiation parameter 

𝑁𝑅with fixed values of Da=10, Pr=10, γ =0.5, Sc=50, Fr =0.5 and 𝐾𝑟𝑥=0.5 
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5.6.6 Effect of Heat Generation (∆> 𝟎) and Heat Absorption (∆< 𝟎) on the 

Temperature Profiles 

 

 

 

 

 

Figure: 5.7 represents the effect of heat generation (∆> 𝟎) and a heat absorption generation 

(∆< 𝟎) on the temperature profile. It is clearly observed that with an increase the heat 

generation the temperature increases. This increase in the fluid temperature causes more 

induced flow towards the plate through the thermal buoyancy effect. For the case of 

absorption, the temperature decreases with an increase the absorption. 

 

 

 

 

 

 

Figure 5.7: Temperature profiles for different values of heat generation and 

absorption with fixed values of Da=10, 𝑁𝑅=1, γ =0.5, Sc=50, Fr =0.5 and 𝐾𝑟𝑥=0.5 
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5.6.7 Effect of Schmidt Number Sc on Concentration Profiles 

 

 

 

 

 

 

The variation of the dimensionless concentration against the similarity variable η for various 

values of the Schmidt number Sc are displayed in Fig. 5.8. It is seen that the increase of the 

Schmidt number leads to decrease in the concentration. Schmidt number is inversely 

proportional to the diffusion coefficient. Hence with an increase in Schmidt number 

corresponding to a smaller diffusion coefficient. Such smaller diffusion coefficient creates 

a reduction in the concentration. 

 

 

 

 

Figure 5.8: Concentration profiles for different values of Schmidt number Sc with 

fixed values of Pr=10, 𝑁𝑅=1, Da=0.6, γ =0.5, Fr =0.5 and 𝐾𝑟𝑥=0.5 
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5.6.8 Influence of the Chemical Reaction Rate Constant 𝑲𝒓𝒙 on the 

Concentration Profiles 

 

 

 

 

 

 

 

The influence of the chemical reaction rate constant 𝐾𝑟𝑥 on the concentration profile within 

the boundary layer is given in Fig. 5.9. An increase in the chemical reaction effects increases 

the concentration within the thermal boundary layer region. This is because increasing the 

chemical reaction rate causes a thickening of the mass transfer boundary layer.  

 

 

 

 

 

 

 

Figure 5.9: Concentration profiles for different values of chemical reaction 

parameter 𝐾𝑟𝑥 with fixed values of Pr=10, 𝑁𝑅=1, Da=0.6, γ =0.5, Fr =0.5 and Sc 

=50 

 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107622#pone-0107622-g009
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5.6.9 Variation of Flow Parameters  
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Figure 5.10: Variation of local Nussult number 𝑁𝑢𝑥 with h for various 

heat generation and absorption parameter ∆ 
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Figure 5.11: Variation of local Sherwood number 𝑆ℎ𝑥 with h for various 

Schmidt number Sc 
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Figure 5.10 is shown the variation of local Nusselt number 𝑵𝒖𝒙 versus thickness of porous 

medium h for selected values of heat generation and absorption ∆. With an increase the heat 

generation parameter the local Nusselt number decrease within the boundary along h. Also, 

increases the absorption the local Nusselt number increase along h. The Schmidt number 

DSc =  indicates the relative extent of the concentration field. The local Sherwood number 

xSh increases with the increase the Schmidt number Sc along h.  This is because, for 

increasing Schmidt number, larger mass flow rate is achieved which is shown in Fig. 5.11.  

 

5.7 Conclusions 

 

Influence of triple stratification in the falling film flow on a porous medium with heat 

generation and absorption, thermal radiation and chemical reaction are examined. The 

velocity and concentration increase as well as temperature decreases with an increase in 

Froude number. This is due to fact that influence of the gravitation force enhancing the 

velocity and concentration as well as reduce the temperature of the fluid. With an increase 

the heat generation the temperature increases. This increase in the fluid temperature causes 

more induced flow towards the plate through the thermal buoyancy effect. For the case of 

absorption, the temperature decreases with an increase the absorption. The increase in the 

radiation parameter implies higher surface heat flux and there-by decreasing the temperature 

of the fluid. An increase in the chemical reaction effects increases the concentration within 

the thermal boundary layer region. This is because increasing the chemical reaction rate 

causes a thickening of the mass transfer boundary layer. In addition, for the absorption and 

Schmidt number increase, larger heat transfer rate and mass flow rate are achieved. 
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CHAPTER SIX 

Effect of Thermal Radiation and Rhemical Reaction on 

Heat and Mass Transfer Flow over a Moving Porous 

Sheet with Suction and Blowing 

 

6.1 Introduction 

Flow of an incompressible viscous fluid and heat transfer phenomena over a stretching sheet 

have received great attention during the past decades owing to the abundance of practical 

applications in chemical and manufacturing process, such as polymer extrusion, drawing of 

copper wires, and continuous casting of metals, wire drawing and glass blowing. The prime 

aim in almost every extrusion is to maintain the surface quality of the extrudate. The 

problem of extrusion of thin surface layers needs special attention to gain some knowledge 

for controlling the coating efficiently. Crane [1] was studied the pioneering work of the flow 

of Newtonian fluid over a linearly stretching surface. Many researchers [2-8] are extended 

the pioneering works of Crane [1] to explore various aspects of the flow and heat transfer 

occurring in an infinite domain of the fluid surrounding the stretching sheet. After all, these 

studies treated with a steady flow only. In some cases, the flow field and heat transfer can 

be unsteady due to a sudden stretching of the flat sheet or by a steep change of the 

temperature of the sheet. 

Hossain et al. [9] explained the effect of radiation on natural convection flow of an optically 

thick viscous incompressible flow past a heated vertical porous plate with a uniform surface 

temperature and a uniform rate of suction where radiation is included by assuming the 

Rosseland discussion approximation. A similarity transformation the flow of a thin liquid 

film of a power-law fluid by unsteady stretching of a surface which is investigated by 

Andersson et al. [10]. Later, Andersson et al. [11] analyzed the momentum and heat transfer 

in a laminar liquid film on a horizontal stretching sheet governed by time-dependent 

boundary layer equations. 

Similarity solutions of the boundary layer equations, which describe the unsteady flow and 

heat transfer over an unsteady stretching sheet which is presented by Elbashbeshy and Bazid 

[15]. Thermal radiation plays a very significant role in controlling heat transfer in polymer 

processing industry. The quality of the final product depends to a great extent on the heat 
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controlling factors, and the knowledge of radiative heat transfer in the system can perhaps 

lead to a desired product with sought qualities. Dandapat et al. [2] explored how the 

hydrodynamics and heat transfer in a liquid film on unsteady stretching surface are affected 

by thermo-capillarity. Tsai et al. [13] studied the non-uniform heat source/sink effect on the 

flow and heat transfer from an unsteady stretching sheet through a quiescent fluid medium 

extending to infinity. 

In this chapter, we investigated the effect of thermal radiation and chemical reaction on heat 

and mass transfer flow over a moving porous sheet with suction and blowing. Under the 

consideration of thermal and chemical reaction stratification effects the Mathematical 

modelling is developed. The effects of various emerging parameters on the velocity, 

temperature and concentration fields are presented through graphically and tables. The local 

skin friction, the local Nusselt number and the local Sherwood numbers are computed 

numerically and analyzed. 

6.2 Model and Governing Equations 

In this present study on effect of thermal radiation and chemical reaction, we assumed the 

flow to be laminar flow of a viscous, incompressible fluid past a stretching sheet. In order 

to give way for possible wall fluid suction/injection, the stretching sheet is assumed to be 

permeable. Figure 6.1 shows the physical model and the coordinate system.  

 

 

 

 

Figure 6.1: Physical model and coordinates system 
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The governing equations for the continuity equation, momentum equation, energy equation 

and mass balance equations are given by 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                                                                   (6.1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈

𝜕2𝑢

𝜕𝑦2
−

𝜇

𝜌𝐾
𝑢 + 𝑔𝛽𝑇(𝑇 − 𝑇∞) + 𝑔𝛽𝐶(𝐶 − 𝐶∞)                                        (6.2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
+

𝑄0

𝜌𝐶𝑝

(𝑇 − 𝑇∞) +
𝛽∗𝑢

𝜌𝐶𝑝

(𝑇∞ − 𝑇) +
16𝜎∗

3𝜌𝐶𝑝𝑘∗
𝑇∞

3
𝜕2𝑇

𝜕𝑦2
                   (6.3) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕2𝐶

𝜕𝑦2
− 𝐾𝑟′𝐶                                                                                                   (6.4) 

Subject to the following boundary conditions are: 

𝑢 = 𝑎𝑥,    𝑣 = 𝑣𝑤 ,   𝑇 = 𝑇𝑤(𝑥) = 𝑇∞ + 𝐴𝑥,     𝐶 = 𝐶𝑤(𝑥) = 𝐶∞ + 𝐵𝑥    at 𝑦 = 0        (6.5) 

𝑢 → 0, 𝑇 → 𝑇∞,      𝐶 → 𝐶∞     at 𝑦 → ∞                                                                           (6.6) 

where 𝑢, 𝑣, 𝑇 and 𝐶 are the velocity, temperature and concentration components in x and y-

directions, respectively, 𝑔 is the acceleration due to gravity, 𝑇𝑤 and 𝐶𝑤 are as the wall 

temperature and concentration, respectively, a is the stretching rate which is constant, 𝑣𝑤 is 

the wall suction when(𝑣𝑤 < 0) and injection (𝑣𝑤 > 0). Also, 𝐶𝑝 is the specific heat at 

constant pressure, 𝜈 is the kinematic viscosity, K is the permeability, 𝛽𝑇 is the thermal 

expansion coefficient, 𝛽𝐶 is the solutal expansion coefficient, 𝛼 is the thermal diffusivity of 

the fluid, D is the mass diffusivity, 𝜌 is the density, 𝛽∗(𝑇∞ − 𝑇) and 𝑄0(𝑇 − 𝑇∞) are heat 

generated or absorbed per unit volume (𝛽∗ and 𝑄0 are constants), 𝜎∗ is termed as Stafan-

Boltzman constant and 𝑘∗ is as the mean absorption coefficient and 𝐾𝑟′ is the chemical 

reaction rate of species concentration. 

In this chapter, we used the relation between the velocity components as well as the stream 

functions which are given by: 

𝑢 =
𝜕𝜓(𝑥, 𝑦)

𝜕𝑦
, 𝑣 = −

𝜕𝜓(𝑥, 𝑦)

𝜕𝑥
                                                                                         (6.7) 

 

 



105 
 

6.3 Similarity Transforms 

Also, using the similarity transformations which are given by: 

𝜂 = 𝑦√
𝑎

𝜈
,   𝜓 = √𝜈𝑎 𝑥𝑓(𝜂), 𝜃(𝜂) =

𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
, 𝜙(𝜂) =

𝐶 − 𝐶∞

𝐶𝑤 − 𝐶∞ 
                   (6.8) 

 

Now,  

𝑢 =
𝜕𝜓(𝑥, 𝑦)

𝜕𝑦
 

    =
𝜕

𝜕𝑦
{√𝜈𝑎 𝑥𝑓(𝜂)} 

    = √𝜈𝑎𝑥
𝜕

𝜕𝑦
{ 𝑓(𝜂)} 

     = √𝜈𝑎𝑥
𝜕

𝜕𝜂
{ 𝑓(𝜂)}

𝜕𝜂

𝜕𝑦
 

      = √𝜈𝑎𝑥𝑓′(𝜂)√
𝑎

𝜈
 

       = 𝑎𝑥𝑓′(𝜂)                                                                                                                                (6.9) 

𝑣 = −
𝜕𝜓(𝑥, 𝑦)

𝜕𝑥
   

     = −
𝜕

𝜕𝑥
{√𝜈𝑎 𝑥𝑓(𝜂)} 

      = −√𝜈𝑎 [𝑥
𝜕

𝜕𝑥
{𝑓(𝜂)} + 𝑓(𝜂)] 

        = −√𝜈𝑎 [𝑥
𝜕

𝜕𝜂
{𝑓(𝜂)}

𝜕𝜂

𝜕𝑥
+ 𝑓(𝜂)] 

         = −√𝜈𝑎𝑓(𝜂)                                                                                                                       (6.10) 

𝜕𝑢

𝜕𝑥
=

𝜕

𝜕𝑥
{𝑎𝑥𝑓′(𝜂)} 

        = 𝑎𝑓′(𝜂)                                                                                                                               (6.11) 
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𝜕𝑣

𝜕𝑦
=

𝜕

𝜕𝑦
{−√𝜈𝑎𝑓(𝜂)} 

       = −√𝜈𝑎
𝜕

𝜕𝜂
{𝑓(𝜂)}

𝜕𝜂

𝜕𝑦
 

        = −√𝜈𝑎𝑓′(𝜂)√
𝑎

𝜈
 

         = −𝑎𝑓′(𝜂)                                                                                                                           (6.12) 

Hence the equation of continuity (6.1) becomes 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 𝑎𝑓′(𝜂) − 𝑎𝑓′(𝜂) = 0                                                                                           (6.13) 

So, the equation of continuity is satisfied. 

𝜕𝑢

𝜕𝑦
=

𝜕

𝜕𝑦
{𝑎𝑥𝑓′(𝜂)} 

      = 𝑎𝑥
𝜕

𝜕𝜂
{𝑓′(𝜂)}

𝜕𝜂

𝜕𝑦
 

      = 𝑎𝑥
𝜕

𝜕𝜂
{𝑓′(𝜂)}√

𝑎

𝜈
 

     =
𝑎

3
2

√𝜈
𝑥𝑓′′(𝜂)                                                                                                                           (6.14) 

𝜕2𝑢

𝜕𝑦2
=

𝜕

𝜕𝑦
{
𝜕𝑢

𝜕𝑦
} 

         =
𝜕

𝜕𝑦
{

𝑎
3
2

√𝜈
𝑥𝑓′′(𝜂)} 

         =
𝜕

𝜕𝜂
{

𝑎
3
2

√𝜈
𝑥𝑓′′(𝜂)}

𝜕𝜂

𝜕𝑦
 

        =
𝑎

3
2

√𝜈
𝑥𝑓′′′(𝜂)√

𝑎

𝜈
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      =
𝑎2

𝜈
𝑥𝑓′′′(𝜂)                                                                                                                         (6.15) 

𝜕𝑇

𝜕𝑥
=

𝜕

𝜕𝑥
{𝑇∞ + (𝑇𝑤 − 𝑇∞)𝜃} 

      = (𝑇𝑤 − 𝑇∞)
𝜕

𝜕𝜂
{𝜃(𝜂)}

𝜕𝜂

𝜕𝑥
 

     = 0                                                                                                                                           (6.16) 

𝜕𝑇

𝜕𝑦
=

𝜕

𝜕𝑦
{𝑇∞ + (𝑇𝑤 − 𝑇∞)𝜃(𝜂)} 

        =
𝜕

𝜕𝜂
{𝑇∞ + (𝑇𝑤 − 𝑇∞)𝜃(𝜂)}

𝜕𝜂

𝜕𝑦
 

        = (𝑇𝑤 − 𝑇∞)𝜃′(𝜂)√
𝑎

𝜈
                                                                                                       (6.17) 

𝜕2𝑇

𝜕𝑦2
=

𝜕

𝜕𝑦
{
𝜕𝑇

𝜕𝑦
} 

           =
𝜕

𝜕𝑦
{(𝑇𝑤 − 𝑇∞)𝜃′(𝜂)√

𝑎

𝜈
   } 

           =
𝜕

𝜕𝜂
{(𝑇𝑤 − 𝑇∞)𝜃′(𝜂)√

𝑎

𝜈
   }

𝜕𝜂

𝜕𝑦
 

           = (𝑇𝑤 − 𝑇∞)𝜃′′(𝜂)√
𝑎

𝜈
√

𝑎

𝜈
 

            = (𝑇𝑤 − 𝑇∞)𝜃′′(𝜂)
𝑎

𝜈
                                                                                                     (6.18) 

𝜕𝐶

𝜕𝑥
=

𝜕

𝜕𝑥
{𝐶∞ + (𝐶𝑤 − 𝐶∞)𝜙(𝜂)} 

        = (𝐶𝑤 − 𝐶∞)
𝜕

𝜕𝜂
{𝜙(𝜂)}

𝜕𝜂

𝜕𝑥
 

       = 0                                                                                                                                       (6.19)   

𝜕𝐶

𝜕𝑦
=

𝜕

𝜕𝑦
{𝐶∞ + (𝐶𝑤 − 𝐶∞)𝜙(𝜂)} 



108 
 

        =
𝜕

𝜕𝜂
{𝐶∞ + (𝐶𝑤 − 𝐶∞)𝜙(𝜂)}

𝜕𝜂

𝜕𝑦
 

        = (𝐶𝑤 − 𝐶∞)𝜙′(𝜂)√
𝑎

𝜈
                                                                                                      (6.20) 

𝜕2𝐶

𝜕𝑦2
=

𝜕

𝜕𝑦
{
𝜕𝐶

𝜕𝑦
} 

           =
𝜕

𝜕𝑦
{(𝐶𝑤 − 𝐶∞)𝜙′(𝜂)√

𝑎

𝜈
   } 

           =
𝜕

𝜕𝜂
{(𝐶𝑤 − 𝐶∞)𝜙′(𝜂)√

𝑎

𝜈
   }

𝜕𝜂

𝜕𝑦
 

           = (𝐶𝑤 − 𝐶∞)𝜙′′(𝜂)√
𝑎

𝜈
√

𝑎

𝜈
 

            = (𝐶𝑤 − 𝐶∞)𝜙′′(𝜂)
𝑎

𝜈
                                                                                                    (6.21) 

Using the equations (6.5) -(6.21), the problems defined in equations (6.2) -(6.4) are then 

transformed into the following set of ordinary differential equations: 

Equation (6.2) becomes: 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈

𝜕2𝑢

𝜕𝑦2
−

𝜇

𝜌𝐾
𝑢 + 𝑔𝛽𝑇(𝑇 − 𝑇∞) + 𝑔𝛽𝐶(𝐶 − 𝐶∞) 

⇒ 𝑎𝑥𝑓′(𝜂) × 𝑎𝑓′(𝜂) − √𝜈𝑎𝑓(𝜂) ×
𝑎

3
2

√𝜈
𝑥𝑓′′(𝜂)

= 𝜈
𝑎2

𝜈
𝑥𝑓′′′(𝜂) −

𝜇

𝜌𝐾
𝑎𝑥𝑓′(𝜂) + 𝑔𝛽𝑇(𝑇𝑤 − 𝑇∞)𝜃 + 𝑔𝛽𝐶(𝐶𝑤 − 𝐶∞)𝜙 

⇒ 𝑎2𝑥𝑓′2(𝜂) − 𝑎2𝑥𝑓(𝜂)𝑓′′(𝜂)

= 𝑎2𝑥𝑓′′′(𝜂) − −
𝜇

𝜌𝐾
𝑎𝑥𝑓′(𝜂) + 𝑔𝛽𝑇(𝑇𝑤 − 𝑇∞)𝜃 + 𝑔𝛽𝐶(𝐶𝑤 − 𝐶∞)𝜙 

⇒ 𝑓′2(𝜂) − 𝑓(𝜂)𝑓′′(𝜂) = 𝑓′′′(𝜂) −
𝜈

𝑎𝐾
𝑓′(𝜂) +

𝑔𝛽𝑇

𝑎2𝑥
(𝑇𝑤 − 𝑇∞)𝜃 +

𝑔𝛽𝐶

𝑎2𝑥
(𝐶𝑤 − 𝐶∞)𝜙 

⇒ 𝑓′2(𝜂) − 𝑓(𝜂)𝑓′′(𝜂) = 𝑓′′′(𝜂) −
1

𝐷𝑎
𝑓′(𝜂) + 𝐺𝑟𝑇𝜃 + 𝐺𝑟𝐶𝜙 
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⇒ 𝑓′′′(𝜂) − 𝑓′2(𝜂) + 𝑓(𝜂)𝑓′′(𝜂) −
1

𝐷𝑎
𝑓′(𝜂) + 𝐺𝑟𝑇𝜃 + 𝐺𝑟𝐶𝜙 = 0                             (6.22) 

Also, equation (6.3) implies that 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
+

𝑄0

𝜌𝐶𝑝

(𝑇 − 𝑇∞) +
𝛽∗𝑢

𝜌𝐶𝑝

(𝑇∞ − 𝑇) +
16𝜎∗

3𝜌𝐶𝑝𝑘∗
𝑇∞

3
𝜕2𝑇

𝜕𝑦2
   

⇒ 𝑎𝑥𝑓′(𝜂) × 0 − √𝜈𝑎𝑓(𝜂) × (𝑇𝑤 − 𝑇∞)𝜃′(𝜂)√
𝑎

𝜈
= 𝛼(𝑇𝑤 − 𝑇∞)𝜃′′(𝜂)

𝑎

𝜈
 

+
𝑄0

𝜌𝐶𝑝

(𝑇𝑤 − 𝑇∞)𝜃(𝜂) −
𝛽∗𝑢

𝜌𝐶𝑝
𝑎𝑥𝑓′(𝜂) × (𝑇𝑤 − 𝑇∞)𝜃(𝜂) +

16𝜎∗

3𝜌𝐶𝑝𝑘∗
𝑇∞

3 (𝑇𝑤 − 𝑇∞)𝜃′′(𝜂)
𝑎

𝜈
 

⇒ −𝑎(𝑇𝑤 − 𝑇∞)𝑓(𝜂)𝜃′(𝜂) = 𝛼(𝑇𝑤 − 𝑇∞)𝜃′′(𝜂)
𝑎

𝜈
+

𝑄0

𝜌𝐶𝑝

(𝑇𝑤 − 𝑇∞)𝜃(𝜂) 

−
𝛽∗𝑢

𝜌𝐶𝑝
𝑎𝑥𝑓′(𝜂) × (𝑇𝑤 − 𝑇∞)𝜃(𝜂) +

16𝜎∗

3𝜌𝐶𝑝𝑘∗
𝑇∞

3 (𝑇𝑤 − 𝑇∞)𝜃′′(𝜂)
𝑎

𝜈
 

⇒ −𝑓(𝜂)𝜃′(𝜂) =
𝛼

𝜈
𝜃′′(𝜂) +

𝑄0

𝜌𝑎𝐶𝑝
𝜃(𝜂) −

𝛽∗𝑥

𝜌𝐶𝑝
𝑓′(𝜂)𝜃(𝜂) +

16𝜎∗

3𝜌𝐶𝑝𝑘∗
𝜃′′(𝜂)

1

𝜈
 

⇒ −𝑓(𝜂)𝜃′(𝜂) =
1

𝑃𝑟
𝜃′′(𝜂) + ∆𝜃(𝜂) − 𝛿𝑥𝑓′(𝜂)𝜃(𝜂) +

𝑁𝑅

𝑃𝑟
𝜃′′(𝜂) 

⇒
1 + 𝑁𝑅

𝑃𝑟
𝜃′′(𝜂) + ∆𝜃(𝜂) − 𝛿𝑥𝑓′(𝜂)𝜃(𝜂) + 𝑓(𝜂)𝜃′(𝜂) = 0 

⇒𝜃′′(𝜂) +
𝑃𝑟 

1+𝑁𝑅
[𝑓(𝜂)𝜃′(𝜂) + ∆ 𝜃(𝜂) − 𝛿𝑥𝑓′(𝜂)𝜃(𝜂)] = 0                                            (6.23) 

Again, equation (6.4) becomes 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕2𝐶

𝜕𝑦2
− 𝐾𝑟′𝐶     

⇒ 𝑎𝑥𝑓′(𝜂) × 0 − √𝜈𝑎𝑓(𝜂) × (𝐶𝑤 − 𝐶∞)𝜙′(𝜂)√
𝑎

𝜈

= 𝐷(𝐶𝑤 − 𝐶∞)𝜙′′(𝜂)
𝑎

𝜈
− 𝐾𝑟′ (𝐶𝑤 − 𝐶∞)𝜙(𝜂) 

⇒ −𝑎𝑓(𝜂)𝜙′(𝜂) = 𝐷
𝑎

𝜈
𝜙′′(𝜂) − 𝐾𝑟′ 𝜙(𝜂) 

⇒
𝐷

𝜈
𝜙′′(𝜂) −

𝐾𝑟′

𝑎
 𝜙(𝜂) + 𝑓(𝜂)𝜙′(𝜂) = 0 
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⇒
1

𝑆𝑐
𝜙′′(𝜂) − 𝐾𝑟𝑥 𝜙(𝜂) + 𝑓(𝜂)𝜙′(𝜂) = 0 

⇒ 𝜙′′(𝜂) + 𝑆𝑐[𝑓(𝜂)𝜙′(𝜂) − 𝐾𝑟𝑥𝜙(𝜂)] = 0                                                                        (6.24) 

with the boundary conditions  

𝑓(0) = 𝐹𝑊,       𝑓′(0) = 1, 𝜃(0) = 1, 𝜙(0) = 1                                                  (6.25) 

𝑓(∞) = 0,          𝜃(∞) = 0, 𝜙(∞) = 0                                                                           (6.26) 

where primes denote differentiation with respect to 𝜂 ,  𝐹𝑊 =
𝑣𝑤 

√𝜈𝑎
 is the dimensionless 

suction/ blowing velocity, 𝐷𝑎 =
𝑎𝐾

𝜈
 is the Darcy number, 𝐺𝑟𝑇 = 𝑔𝛽𝑇

(𝑇𝑤−𝑇∞)

𝑎2𝑥
 is the Grashof 

number, 𝐺𝑟𝐶 = 𝑔𝛽𝐶
(𝐶𝑤−𝐶∞)

𝑎2𝑥
  is the modified Grashof number, 𝑃𝑟 =

𝜈

𝛼
 is the Prandtl number, 

𝑁𝑅 =
16𝜎∗𝑇∞

3

3𝐾∗𝑘
 is the thermal radiation parameter, ∆=

𝑄0

𝜌𝐶𝑃𝑎
 and 𝛿𝑥 =

𝛽∗𝑥

𝜌𝐶𝑝
 are heat 

generation/absorption coefficients, 𝑆𝑐 =
𝜈

𝐷
 is the Schmidt number and 𝐾𝑟𝑥 =

𝐾𝑟′

𝑎
 is the 

chemical reaction parameter, respectively. 

6.4 Physical Parameters 

The physical quantities of interest are the skin friction 𝐶𝑓, the local Nusselt number 𝑁𝑢𝑥 

and the local Sherwood number 𝑆ℎ𝑥 which are given by 

Shear stress,  

𝜏𝑤 = 𝜇 (
𝜕𝑢

𝜕𝑦
) │𝑦=0 

      = 𝜇
𝜕

𝜕𝑦
{𝑎𝑥𝑓′(𝜂)}│𝑦=0 

     = 𝜇𝑎𝑥
𝜕

𝜕𝜂
{𝑓′(𝜂)}

𝜕𝜂

𝜕𝑦
│𝑦=0 

= 𝜇𝑎𝑥𝑓′′(0)√
𝑎

𝜈
 

The skin friction 𝐶𝑓 is given by 

𝐶𝑓 =
1

2

𝜏𝑤

𝜌𝑢2
 

      =
1

2𝜌𝑢2
𝜇𝑎𝑥√

𝑎

𝜈
𝑓′′(0) 



111 
 

     =
1

2𝜌{𝑎𝑥𝑓′(0)}
2 𝜇𝑎𝑥√

𝑎

𝜈
𝑓′′(0) 

    =
1

2𝜌𝑎2𝑥2
𝜇𝑎𝑥√

𝑎

𝜈
𝑓′′(0) 

    =
1

2

𝜈

𝑎𝑥
√

𝑎

𝜈
𝑓′′(0) 

        =
1

2

√𝜈

√𝑥√𝑎𝑥
𝑓′′(0) 

        =
1

2

√𝜈

√𝑥√𝑢
𝑓′′(0) 

 𝐶𝑓  =
1

2

1

√𝑅𝑒𝑥

𝑓′′(0)                                                                                                               (6.27) 

 

The local Nusselt number 𝑁𝑢𝑥 is given by  

𝑁𝑢𝑥 =
𝑥

𝑇𝑤 − 𝑇∞
(

𝜕𝑇

𝜕𝑦
) │𝑦=0 

           =
𝑥

𝑇𝑤 − 𝑇∞

(𝑇𝑤 − 𝑇∞)𝜃′(0)√
𝑎

𝜈
       

            = 𝑥𝜃′(0)√
𝑎

𝜈
   

             =
√x√ax

√𝜈
𝜃′(0) 

             =
√x√𝑢

√𝜈
𝜃′(0) 

    𝑁𝑢𝑥 = √𝑅𝑒𝑥 𝜃′(0)                                                                                                                (6.28) 

The local Sherwood number 𝑆ℎ𝑥 

𝑆𝑢𝑥 =
𝑥

(𝐶𝑤 − 𝐶∞)
(

𝜕𝐶

𝜕𝑦
) │𝑦=0 

           =
𝑥

(𝐶𝑤 − 𝐶∞)
(𝐶𝑤 − 𝐶∞)𝜃′(0)√

𝑎

𝜈
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            = 𝑥𝜙′(0)√
𝑎

𝜈
   

             =
√x√ax

√𝜈
𝜙′(0) 

     𝑆𝑢𝑥 =
√x√𝑢

√𝜈
𝜙′(0) = √𝑅𝑒𝑥 𝜙′(0)                                                                                   (6.29) 

6.5 Finite Difference Method (FDM) 

Our main goal in this article is to apply the finite difference method to solve the problems 

(6.22) -(6.24) with the boundary conditions (6.25) -(6.26). This method has been tested for 

accuracy and efficiency for solving different problems (Cheng and Liu [16] and Chamkha 

et al., [17]). 

By using the transformation 𝑓′(𝜂) = 𝑧(𝜂) to convert the system of equations (6.22) -

(6.24) in the following form: 

𝑓′ − 𝑧 = 0                                                                                                                                    (6.27) 

𝑧′′ + 𝑓𝑧′ − 𝑧2 −
1

𝐷𝑎
𝑧 + 𝐺𝑟𝑇𝜃 + 𝐺𝑟𝐶𝜙 = 0                                                                         (6.28) 

𝜃′′ +
𝑃𝑟

1 + 𝑁𝑅

[𝑓𝜃′ + ∆𝜃 − 𝛿𝑥𝑧𝜃] = 0                                                                                    (6.29) 

𝜙′′ + 𝑆𝑐[𝑓𝜙′ − 𝐾𝑟𝑥𝜙] = 0                                                                                                      (6.30) 

Subject to the boundary conditions: 

𝑓(0) = 𝑅, 𝑧(0) = 1, 𝜃(0) = 1, 𝜙(0) = 1                                                    (6.31) 

𝑓(∞) = 0,         𝜃(∞) = 0, 𝜙(∞) = 0                                                                            (6.32) 

The space of solution’s domain is discretized in finite difference methods. By using the 

following notations: ∆𝜂 = ℎ > 0 to be the grid   size in 𝜂-direction, ∆𝜂 =
1

𝑁
 , with 𝜂𝑖 = 𝑖ℎ 

for 𝑖 = 0, 1, 2, … … … 𝑁. Define 𝑓𝑖 = 𝑓(𝜂𝑖),  𝑧𝑖 = 𝑧(𝜂𝑖), 𝜃𝑖 = 𝜃(𝜂𝑖), and 𝜙𝑖 = 𝜙(𝜂𝑖). Let 

𝐹𝑖,  𝑍𝑖,  𝛩𝑖 and ϕ𝑖 represent the numerical values of 𝑓, 𝑧, 𝜃 and 𝜙 at the node  𝑖𝑡ℎ node, 

respectively. Then, we get 

𝑓′│𝑖 ≈
𝑓𝑖+1 − 𝑓𝑖−1

2ℎ
,           𝑧′│𝑖 ≈

𝑧𝑖+1 − 𝑧𝑖−1

2ℎ
,                                                                     (6.33) 
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𝜃′│𝑖 ≈
𝜃𝑖+1 − 𝜃𝑖−1

2ℎ
, 𝜙′│𝑖 ≈

𝜙𝑖+1 − 𝜙𝑖−1

2ℎ
,                                                                   (6.34) 

𝑧′′│𝑖 ≈
𝑧𝑖+1 − 2𝑧𝑖 + 𝑧𝑖−1

ℎ2
, 𝜃′′│𝑖 ≈

𝜃𝑖+1 − 2𝜃𝑖 + 𝜃𝑖−1

ℎ2
,                                            (6.35) 

  𝜙′′│𝑖 ≈
𝜙𝑖+1 − 2𝜙𝑖 + 𝜙𝑖−1

ℎ2
                                                                                                  (6.36) 

By using the FDM the main step is that the system of ordinary differential equations (6.27) 

-(6.30) is discretizes in space. Now, using the equations (6.33) -(6.36) into the equations 

(6.27) -(6.30) and omitting the truncation errors, finally we get the system of algebraic 

equations which are given for (𝑖 = 0, 1, 2, … … … 𝑁): 

𝐹𝑖+1 − 𝐹𝑖−1 − 2ℎ𝑍𝑖 = 0                                                                                                            (6.36)  

𝑍𝑖+1 − 2𝑍𝑖 + 𝑍𝑖−1 + 0.5ℎ[𝑍𝑖+1 − 𝑍𝑖−1] + ℎ2 [𝐺𝑟𝑇𝛩𝑖 + 𝐺𝑟𝐶ϕ𝑖 − 𝑍𝑖
2 −

1

𝐷𝑎
𝑍𝑖] = 0   (6.37) 

𝛩𝑖+1 − 2𝛩𝑖 + 𝛩𝑖−1 +
𝑃𝑟

1 + 𝑁𝑅
0.5ℎ[𝐹𝑖(𝛩𝑖+1 − 𝛩𝑖−1) + 2ℎ(∆ 𝛩𝑖 − 𝛿𝑥 𝑍𝑖𝛩𝑖)] = 0       (6.38) 

ϕ𝑖+1 − 2ϕ𝑖 + ϕ𝑖−1 + 0.5ℎ 𝑆𝑐[𝐹𝑖(ϕi+1 − ϕi−1) − 2ℎ𝐾𝑟𝑥ϕi] = 0                                  (6.39) 

Also, the boundary conditions are: 

𝐹0 = 𝐹𝑊, 𝑍0 = 1, 𝛩0 = 1, ϕ0 = 1                                                                   (6.40) 

FN = FN−1, ZN = ZN−1, ΘN = ΘN−1, ϕN = ϕN−1                                       (6.41) 

The nonlinear system of algebraic equations are the system of equations (6.36) -(6.39) in 

the variables 𝐹𝑖 , 𝑍𝑖 , 𝛩𝑖 and ϕ𝑖. In our simulations we used the MATLAB package.  

6.6 Numerical Results and Discussions 

By using the similarity solution technique in MATLAB, the set of ordinary differential 

equations (6.22)- (6.23) with the boundary conditions (6.24)- (6.25) are solved numerically. 

Here the velocity, temperature and concentration are determined as a function of coordinate 

𝜂. We have adopted a numerical procedure based on MATLAB for getting the solution of 

the differential equations (6.22)- (6.23) with the boundary conditions (6.24)- (6.25). The 

fundamental parameters that governed the flow are the Grashof number, Darcy number, 

Prandtl number, thermal radiation parameter, heat generation/absorption parameter, 

Schmidt number and chemical reaction parameter. According to study their effects, a 
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MATLAB programe is written to enumerate and produce the graphs for the velocity, 

temperature and concentration for different values of these parameters. Few delegate results 

are given in Figures 6.2-6.9.  

 

 

6.6.1 Effect of Grashof Number 𝑮𝒓𝑻 on Velocity, Temperature and 

Concentration Profiles 

 

 

 

 

 

 

 

 

 

 Figure 6.2: (a) Velocity profiles for different values of Grashof number 𝐺𝑟𝑇 with fixed values 

of  𝐷𝑎 = 0.8, 𝐹𝑊 = 0.5, 𝑁𝑅 = 1, ∆= 0.5, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.5 𝑎𝑛𝑑 𝐾𝑟𝑥 = 0.02 

 



115 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 6.2(a), (b) and (c) show the effects of the buoyancy force (Grashof number 𝐺𝑟𝑇) to 

the viscous forces of a typical velocity, temperature and concentration profiles in the 

Figure 6. 2: (b) Temperature profiles for different values of Grashof number 𝐺𝑟𝑇 with 

fixed values of  𝐷𝑎 = 0.8, 𝐹𝑊 = 0.5, 𝑁𝑅 = 1, ∆= 0.5, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.5 𝑎𝑛𝑑 𝐾𝑟𝑥 =

0.02 

 

Figure 6.2: (c) Concentration profiles for different values of Grashof number 𝐺𝑟𝑇 with fixed 

values of  𝐷𝑎 = 0.8, 𝐹𝑊 = 0.5, 𝑁𝑅 = 1, ∆= 0.5, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.5 𝑎𝑛𝑑 𝐾𝑟𝑥 = 0.02 
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boundary layer, respectively. From Fig 6.2(a), it is clear that the momentum boundary layer 

thickness increases with increasing values of 𝐺𝑟𝑇 enabling more flow. In Fig. 6.2(b), this 

figure represents increasing the value of 𝐺𝑟𝑇  outcomes in thinning of thermal boundary 

layer associated with an increase in the wall temperature gradient and hence produces an 

increase in the heat transfer rate. It is noticed that the concentration boundary thickness 

decreases with an increase in the buoyancy force. It is due to fact that an increase in the 

values of the Grashof number has the tendency to increase the mass buoyancy effect. This 

gives rise to an increase in the induced flow and there by decrease the concentration which 

is shown in Figure 6.2(c). 

 

6.6.2 Effect of Darcy Number Da on Velocity, Temperature and 

Concentration Profiles 

The influence of Darcy number on velocity, temperature and concentration profiles are 

shown in Figure 6.3(a), (b) and (c), respectively. From Fig. 6.3(a), it is observed that the 

velocity increases with the increase of the Darcy parameter along the sheet and the reverse 

is true away from the sheet. The dimensionless temperature and concentration profiles are 

displayed in Fig. 6.3(b) and 6.3(c), respectively. 

 

 

Figure 6.3: (a) Velocity profiles for different values of Darcy number Da with fixed 

values of  𝐺𝑟𝑇 = 0.5, 𝐹𝑊 = 0.5, 𝑁𝑅 = 1, ∆= 0.5, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.5 𝑎𝑛𝑑 𝐾𝑟𝑥 =

0.02 
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Figure 6.3: (c) Concentration profiles for different values of Darcy number Da with fixed 

values of  𝐺𝑟𝑇 = 0.5, 𝐹𝑊 = 0.5, 𝑁𝑅 = 1, ∆= 0.5, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.5 𝑎𝑛𝑑 𝐾𝑟𝑥 = 0.02 

Figure 6.3: (b) Temperature profiles for different values of Darcy number Da with 

fixed values of  𝐺𝑟𝑇 = 0.5, 𝐹𝑊 = 0.5, 𝑁𝑅 = 1, ∆= 0.5, 𝑃𝑟 = 1.0, 𝑆𝑐 =

0.5 𝑎𝑛𝑑 𝐾𝑟𝑥 = 0.02 
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6.6.3 Influence of Suction/Blowing 𝑭𝑾 on Velocity, Temperature and 

Concentration Profiles 

The influence of suction/blowing parameter 𝐹𝑊 on velocity, temperature and concentration 

profiles is shown in Figures 6.4(a), (b) and (c), respectively. From Fig. 6.4(a) it is observed 

that the hydrodynamic boundary layer which shows an increase in the fluid velocity when 

the imposition of the wall fluid injection increases. However, the exact opposite behavior is 

produced by imposition of wall fluid suction. From Fig. 6.4(b), it is observed that with an 

increase the injection parameters the temperature increases, and the temperature decreases 

the suction parameter decreases. The same behavior arises for the concentration profiles 

which is shown in Fig. 6.4(c). 

 

 

 

Figure 6.4: (a) Velocity profiles for different values of suction/blowing parameter 𝐹𝑊 with fixed 

values of  𝐷𝑎 = 0.8, 𝑁𝑅 = 1, 𝐺𝑟𝑇 = 0.5, ∆= 0.5, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.5 𝑎𝑛𝑑 𝐾𝑟𝑥 = 0.02 
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Figure 6.4: (b) Temperature profiles for different values of suction/blowing parameter 𝐹𝑊 with 

fixed values of  𝐷𝑎 = 0.8, 𝐺𝑟𝑇 = 0.5,  𝑁𝑅 = 1, ∆= 0.5, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.5 𝑎𝑛𝑑 𝐾𝑟𝑥 = 0.02 

 

Figure 6.4: (c) Concentration profiles for different values of suction/blowing parameter 𝐹𝑊 with fixed 

values of  𝐷𝑎 = 0.8, 𝐺𝑟𝑇 = 0.5, 𝑁𝑅 = 1, ∆= 0.5, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.5 𝑎𝑛𝑑 𝐾𝑟𝑥 = 0.02 
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6.6.4 Effect of Heat Generation (∆> 𝟎) and Heat Absorption (∆< 𝟎) on 

Velocity, Temperature and Concentration Profiles 

Figures 6.5(a), (b) and (c) represent the effect of heat generation (∆> 0) or  heat absorption 

(∆< 0) in the boundary layer on the velocity, temperature and concentration profiles. From 

Fig 6.5(a), it is observed that increasing the heat generation the fluid velocity increase and 

for the case of absorption parameter increases the velocity decrease. With an increase the 

heat generation the temperature increase. This increase in the fluid temperature causes more 

induced flow towards the plate through the thermal buoyancy effect which shown in Fig. 

6.5(b). From Fig. 6.5(c) it is clearly observed that increasing the heat generation parameter 

the concentration decreases and for absorption increasing there is unchanged in 

concentration profile.   

 

 

 

 

 

 

Figure 6.5(a): Velocity profiles for different values of heat generation/absorption parameter ∆ with 

fixed values of  𝐷𝑎 = 0.8, 𝐹𝑊 = 0.5, 𝑁𝑅 = 1,   𝐺𝑟𝑇 = 0.5, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.5 𝑎𝑛𝑑 𝐾𝑟𝑥 = 0.02 
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Figure 6.5(c):  Concentration profiles for different values of heat generation/absorption parameter ∆ 

with fixed values of  𝐷𝑎 = 0.8, 𝐺𝑟𝑇 = 0.5, 𝐹𝑊 = 0.5, 𝑁𝑅 = 1,   𝑃𝑟 = 1.0, 𝑆𝑐 = 0.5 𝑎𝑛𝑑 𝐾𝑟𝑥 = 0.02 

 

Figure 6.5 (b): Temperature profiles for different values of heat generation/absorption parameter ∆ 

with fixed values of  𝐷𝑎 = 0.8, 𝐺𝑟𝑇 = 0.5, 𝐹𝑊 = 0.5, 𝑁𝑅 = 1,   𝑃𝑟 = 1.0, 𝑆𝑐 = 0.5 𝑎𝑛𝑑 𝐾𝑟𝑥 = 0.02 
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6.6.5 Effect of Prandtl Number Pr on Temperature Profiles  

 

 

 

Figure 6.6 demonstrates the effect of the Prandtl number 𝑃𝑟 on the temperature profile. It is 

observed that with the increase of Prandtl number the temperature decrease. This because a 

fluid with large Prandtl number possesses large heat capacity, and hence augments the heat 

transfer.  

6.6.6 Effect of Radiation Parameter 𝑵𝑹  on Temperature Profiles 

Figure 6.7 represents the effect of the radiation parameter 𝑁𝑅 on the dimensionless 

temperature 𝜃(𝜂). It is clearly noticed that the increase of the radiation parameter 𝑁𝑅 leads 

an increase in the temperature at any point. This is due to fact that higher surface heat flux 

and thereby increasing the temperature of the fluid when the thermal radiation parameter 

increases. 

 

 

Figure 6.6: Temperature profiles for different values of Prandtl number Pr with fixed values of  

𝐷𝑎 = 0.8, 𝐺𝑟𝑇 = 0.5, 𝐹𝑊 = 0.5, 𝑁𝑅 = 1,   ∆= 0.5, 𝑁𝑅 = 1.0, 𝑆𝑐 = 0.5 𝑎𝑛𝑑 𝐾𝑟𝑥 = 0.02 
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6.6.7 Effect of Schmidt Number Sc  on Concentration Profiles 

  

 

Figure 6.7: Temperature profiles for different values of radiation parameter 𝑁𝑅with fixed 

values of  𝐷𝑎 = 0.8, 𝐺𝑟𝑇 = 0.5, 𝐹𝑊 = 0.5,   ∆= 0.5, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.5 𝑎𝑛𝑑 𝐾𝑟𝑥 = 0.02 

 

 Figure 6.8: Concentration profiles for different values of Schmidt number 𝑆𝑐 with fixed values 

of  𝐷𝑎 = 0.8, 𝐺𝑟𝑇 = 0.5, 𝐹𝑊 = 0.5, 𝑁𝑅 = 1, ∆= 0.5, 𝑃𝑟 = 1.0, 𝑁𝑅 = 0.5 𝑎𝑛𝑑 𝐾𝑟𝑥 = 0.02 
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The variation of the dimensionless concentration against η for different values of the 

Schmidt number Sc are displayed in Figure 6. 8. It is clearly observed that with an increase 

the Schmidt number the concentration decreases. Diffusion coefficient is inversely 

proportional to the Schmidt number. A smaller diffusion coefficient corresponds to an 

increase in Schmidt number. Such smaller diffusion coefficient creates a reduction in the 

concentration.  

6.6.8 Effect of Chemical Reaction Parameter  𝑲𝒓𝒙 on Concentration 

Profiles 

 

 

 

Figure 6.9 illustrate the effect of the chemical reaction parameter on the concentration 

profile. From Fig. 6.9, it is clearly seen that the concentration and its associated boundary 

layer thickness are decreasing functions of chemical reaction. Chemical reaction increases 

the rate of interfacial mass transfer. The concentration gradient and its flux increasing when 

the chemical reaction reduces the local concentration. Finally, with an increase in the 

chemical reaction parameter the concentration of the chemical species in the boundary layer 

decreases. 

Figure 6.9: Concentration profiles for different values of chemical reaction 𝐾𝑟𝑥 with fixed values 

of  𝐷𝑎 = 0.8, 𝐺𝑟𝑇 = 0.5, 𝐹𝑊 = 0.5, 𝑁𝑅 = 1,   ∆= 0.5, 𝑃𝑟 = 1.0, 𝑁𝑅 = 0.5 𝑎𝑛𝑑 𝑆𝑐 = 0.5 
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6.6.9 Variation of Physical Parameters 
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Figure 6.10: Variation of Skin-friction 𝐶𝑓 with Local Reynolds number 𝑅𝑒𝑥 

for various Darcy number Da 
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Figure 6.11: Variation of local Nusselt number 𝑁𝑢𝑥 with Local Reynolds 

number 𝑅𝑒𝑥 for various thermal radiation parameter 𝑁𝑅 
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Figure 6.10 illustrates the effect of the Darcy number Da on the skin-friction versus the local 

Reynolds number. With an increase the Darcy number the skin-friction increase along the 

local Reynolds number. This is because that a porous media produces a resistive type of 

force which causes the increase of the skin-friction. Figure 6.11 represents the effect of the 

radiation parameter 𝑁𝑅 on the Nusselt number 𝑁𝑢𝑥 along the local Reynolds number 𝑅𝑒𝑥. 

With an increase the thermal radiation parameter, the Nusselt number 𝑁𝑢𝑥 increases along 

the local Reynolds number. This is due to fact that for increasing thermal radiation larger 

heat transfer rates are achieved. Also, with an increase the chemical reaction 𝐾𝑟𝑥 the local. 

Sherwood number 𝑆ℎ𝑥 decrease along the local Reynolds number 𝑅𝑒𝑥.This is because, for 

increasing the Chemical reaction parameter smaller mass flow rates are achieved which is 

shown in Figure 6.12. 
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Figure 6.12: Variation of local Sherwood number 𝑆ℎ𝑥 with Local Reynolds 

number 𝑅𝑒𝑥 for various thermal radiation parameter 𝐾𝑟𝑥 
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Table 6.1:  Values proportional to the coefficients of skin-friction (𝑓′′(0)), rate of heat 

transfer (−𝜃′(0)) and the magnitude of the local Sherwood number (−𝜙′(0)) with the 

variation of Grashof number 𝐺𝑟𝑇 (for fixed 𝐷𝑎 = 0.8, 𝑃𝑟 = 1, 𝐾𝑟𝑥 = 0.02 and 𝑆𝑐 = 0.5) 

𝐺𝑟𝑇 𝑓′′(0) −𝜃′(0) −𝜙′(0) 

0.0 -0.0014 -0.0650 -0.0072 

0.5 -0.0032 -0.0175 -0.0034 

1.0 -0.0029 -0.0096 -0.0022 

2.0 -0.0023 -0.0044 -0.0013 

 

 

Table 6.2:  Values proportional to the coefficients of skin-friction (𝑓′′(0)), rate of heat 

transfer (−𝜃′(0)) and the magnitude of the local Sherwood number (−𝜙′(0)) with the 

variation of Darcy parameter Da (for fixed, S=0.8, Pr=1.0, 𝑁𝑅 = 1 and Sc=0.5) 

Da 𝑓′′(0) −𝜃′(0) −𝜙′(0) 

0.4 -0.0042 -0.0334 -0.0052 

0.8 -0.0032 -0.0175 -0.0034 

2.0 -0.0024 -0.0101 -0.0023 

 

 

Table 6.3:  Values proportional to the coefficients of skin-friction (𝑓′′(0)), rate of heat 

transfer (−𝜃′(0)) and the magnitude of the local Sherwood number (−𝜙′(0)) with the 

variation of radiation parameter 𝑁𝑅 (for fixed 𝐷𝑎 = 0.8, 𝑃𝑟 = 1, 𝐾𝑟𝑥 = 0.02 and 𝑆𝑐 = 0.5) 

𝑁𝑅 𝑓′′(0) −𝜃′(0) −𝜙′(0) 

0.0 -0.0012 -0.0009 -0.0052 

1.0 -0.0032 -0.0175 -0.0034 

2.0 -0.0052 -0.0394 -0.0028 

 

Table 6.4:  Values proportional to the coefficients of skin-friction (𝑓′′(0)), rate of heat 

transfer (−𝜃′(0)) and the magnitude of the local Sherwood number (−𝜙′(0)) with the 

variation of Chemical reaction 𝐾𝑟𝑥 (for fixed 𝐷𝑎 = 0.8, 𝑃𝑟 = 1, 𝐾𝑟𝑥 = 0.02 and 𝑆𝑐 = 0.5) 

𝐾𝑟𝑥 𝑓′′(0) −𝜃′(0) −𝜙′(0) 

0.02 -0.0032 -0.0175 -0.0034 

0.2 -0.0032 -0.0175 -0.0022 

1.2 -0.0032 -0.0175 -0.0003 
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6.7 Conclusions 

In this present research, we are tried to investigate the effect of various non-dimensional 

numbers on the non-dimensional velocity, temperature and concentration fields. The higher 

values of heat generation parameter result in higher velocity and temperature distributions 

and lower concentration distribution. For the higher absorption the velocity and temperature 

decrease. The concentration gradient and its flux increasing when the chemical reaction 

reduces the local concentration. Finally, with an increase in the chemical reaction parameter 

the concentration of the chemical species in the boundary layer decreases. A fluid with large 

Prandtl number possesses large heat capacity, and hence augments the heat transfer. 

Moreover, as the thermal radiation increase larger heat transfer rate is achieved as well as 

the chemical reaction increase smaller mass flow rate is achieved. 
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CHAPTER SEVEN 

CONCLUSIONS AND RECOMMODATION 

 

7.1 Conclusions 

A two-dimensional numerical simulation of wavy liquid film flowing along an inclined 

porous wall has been performed. We investigated the effect of several parameters on the 

film thickness. In solid substrate, a small disturbance generated at the inflow grows to a 

solitary wave consisting of a big-amplitude roll wave and the small-amplitude short 

capillary waves, where as in porous wall only the solitary waves are observed and in low 

frequency, wave front is steeper than wave rear. Moreover, symmetrical waves are observed 

in the case of high frequency. For the low porosity the wave front is steeper than the wave 

rear. The principal effect of the porous substrate on the film flow is to displace the liquid-

porous interface to an effective liquid-solid interface located at the lower boundary of the 

upper momentum boundary layer in the porous medium. 

 

In chapter four, the analytical and numerical solutions of the considered problems which 

have been obtained by using similarity solution technique in MATLAB. Similarity 

transformations were used to convert the partial differential equations describing the 

problem into a system of ordinary differential equations. In liquid film region, with an 

increase of the gravitational force the velocity decrease and enhancing the temperature. 

Also, a fluid with large Prandtl number possesses small heat capacity, and hence reduce the 

heat transfer. The velocity decreases with an increase of the Darcy number. This is due to 

fact that the porous medium produces a resistive type of force which causes a reduction in 

the fluid velocity. Where as in gas stream region, large Prandtl fluids possess lower thermal 

diffusivity and smaller Prandtl fluids have higher thermal diffusivity. The concentration 

decreases with an increase of the Lewis number. This is because with decrease diffusivity 

the concentration decrease. Moreover, the Prandtl number in liquid region increase the 

larger heat transfer rate is achieved and the Lewis number increase the smaller mass transfer 

rate is achieved. 

Influence of triple stratification in the falling film flow on a porous medium with heat 

generation and absorption, thermal radiation and chemical reaction are examined in Chapter 

Five. The velocity and concentration increase as well as temperature decreases with an 
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increase in Froude number. This is due to fact that influence of the gravitation force 

enhancing the velocity and concentration as well as reduce the temperature of the fluid. With 

an increase the heat generation the temperature increases. This increase in the fluid 

temperature causes more induced flow towards the plate through the thermal buoyancy 

effect. For the case of absorption, the temperature decreases with an increase the absorption. 

The increase in the radiation parameter implies higher surface heat flux and there-by 

decreasing the temperature of the fluid. An increase in the chemical reaction effects 

increases the concentration within the thermal boundary layer region. This is because 

increasing the chemical reaction rate causes a thickening of the mass transfer boundary 

layer. In addition, for the absorption and Schmidt number increase, larger heat transfer rate 

and mass flow rate are achieved. 

In chapter six, we are tried to investigate the effect of various non-dimensional numbers on 

the non-dimensional velocity, temperature and concentration fields. The higher values of 

heat generation parameter result in higher velocity and temperature distributions and lower 

concentration distribution. For the higher absorption the velocity and temperature decrease. 

The concentration gradient and its flux increasing when the chemical reaction reduces the 

local concentration. Finally, with an increase in the chemical reaction parameter the 

concentration of the chemical species in the boundary layer decreases. A fluid with large 

Prandtl number possesses large heat capacity, and hence augments the heat transfer. 

Moreover, as the thermal radiation increase larger heat transfer rate is achieved as well as 

the chemical reaction increase smaller mass flow rate is achieved. 

 

7.2 Recommendation 

Recommendations for future work based on the present study are: 

Numerical simulations are performed for two-dimensional falling film along an incline 

porous wall as shown in chapter 2. It is necessary to carry out three-dimensional simulations 

with larger simulation domain. Characteristics of these types of waves are required to 

investigate. Energy analysis of 3D simulation may reveal the characteristics of various 

energies in the transformation from 2D to 3D waves. 

 

 


