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ABSTRACT 

 

  The storm surge and flood occurred on Kyushu island in the past such as 

Typhoon Pat 1985 and river flooding by torrential rain caused inundation in the 

coastal area of the Ariake Sea. The Ariake Sea has the largest tidal range in Japan

i.e., 6 m at the bay head. This sea area is about 1,700 km2 wide with about 96 km 

long of the bay axis, 18 km of the average width, 20 m of the mean depth. It faces on 

four prefectures, i.e., Nagasaki, Saga, Fukuoka, and Kumamoto. Most of the plains 

in Saga Prefecture are adjacent to the Ariake Sea. It is mainly lowland area with an 

unusually small slope, so once the sea water enters into these areas, it will 

immediately create largely inundated area despite the fact that these areas are being 

used for agricultural, offices, residential, industrial, airport, etc.  

 In this dissertation, the storm surge by the past main typhoon and flood are 

studied to analyze in the case that two disasters simultaneously occur and to know 

the conditions of the water level causing the inundation in the coastal area of the 

Ariake Sea and Saga lowland. This study also considers the inundation risk in the 

coastal area, in particular on the buildings or houses and public facilities by 

evaluating of future disaster management.  

1-D Hydrodynamic model is used to analyze of water level in the Chikugo 

River and branches when the high discharge by torrential rain occurs in the Chikugo 

River. 2-D Hydrodynamic model is used to analyze of water level or tide in the Ariake 

Sea when the storm surge by typhoon Pat occurs in the Ariake Sea. A coupled model 

of hydrodynamic model of 1-D and 2-D are used to analyze of water level when the 

storm surge and high discharge take place in the same time in the coastal area of the 

Ariake Sea and Saga lowland. 
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This research makes assumption that two disasters simultaneously occurred 

at the same time, storm surge by the typhoon in the Ariake Sea and high discharge or 

river flood by torrential rain in the Chikugo River that empty in the Ariake Sea. The 

simulation results of 1-D and 2-D model analysis separately gives, no water level 

exceeded the existing coastal dyke when the storm surge by typhoon Pat occurred in 

the Ariake Sea on August to September 1985 by 2-D analysis. In the coupled model 

simulation result, in which storm surge and river flood simultaneously occurred at 

the same time, the coastal area of the Ariake Sea and Saga lowland were inundated. 

The GIS model analysis indicates a high risk of inundation in the Ariake Sea 

coastal area and Saga lowland, i.e. more than 96,000 buildings or houses and 245 

public facilities are inundated. For the disaster management of flood and storm surge 

in the coastal area of Ariake Sea and Saga lowland, it is recommended to implement 

the disaster management system based on flood disaster management cycle by 

mitigation, awareness/preparedness, response, and recovery. 

 

Keywords: inundation simulation, storm surge, river flood, Ariake sea, Chikugo river 
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Chapter 1 

INTRODUCTION 

 

1.1.   BACKGROUND 

 Japan has suffered many storm surges and other disasters such as high 

discharge by torrential rain in the past. As Japan is located in the region of the high 

tropical cyclone, it often experiences storm surge disaster caused mainly by typhoons. 

On September 26, 1959, super Typhoon Vera, also known as Isewan Typhoon in 

Japan, made landfall in the area of the southern coast of Japan, striking the Kushimoto 

region in the Wakayama Prefecture. The storm was the most destructive typhoon to 

impact the country in recent history, causing more than US$260 million worth of 

damage of buildings (RMS Special Report, 2009). The Japan Meteorological Agency 

(JMA) named the storm “Isewan” Typhoon. By the strength and extent of the storm’s 

wind field and storm surge, most of the country sustained damaging winds, and more 

than 310 km2 of land inundated. Also, it caused destroying thousands of homes, 

leaving more than 5,000 people dead and injuring more than 39,000 individuals. 

Super Typhoon Vera made a large storm area; the strong wind rocked almost the 

whole of Japan. The maximum wind speed recorded was 45.4 m/s and maximum 

instantaneous wind speed: 55.3 m/s in Arako, Aichi Prefecture. In Nagoya, the 

maximum wind speed recorded was 37.0 m/s while the maximum instantaneous wind 

speed was 45.7 m/s. More than 20 m/s of wind speed and over 30 m/s of the maximum 

instantaneous wind speed recorded in almost every part of Japan from Kyushu to 

Hokkaido. An extraordinarily high surge of up to 3.45 m overthrow dykes along the 

coast and at river mouths. The flooding sea water rushed inland, washing away many 

people who had no time to escape. Typhoon Isewan caused the worst damage by the 
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typhoon in the history of Japan, including 5,092 persons dead or missing and 38,921 

people injured. In 2005, super typhoon Nabi occurred to the far southeast of Japan. 

Powerful typhoon Nabi has pummeled southwestern Japan with torrential rain and 

high winds, causing floods and landslides, crippling transport and prompting officials 

to tell more than 100,000 people to flee their homes. According to press reports, 32 

people were killed and 140 people were injured. At least 270,000 households were 

without electricity, and around 10,000 buildings damaged (source: Monthly Global 

Tropical Cyclone Summary, 2005). 

 Besides storm surge, flood by heavy rain or torrential rain is also a frequent 

disaster in the region of Japan. Every year in this region torrential rains occur with 

the small and big scale. Torrential rains fed by the warm ocean waters surrounding 

Japan can cause significant flooding and mudslides on the islands. In June 1953, a 

flood hit Northern Kyushu, Japan (Fukuoka Prefecture, Saga Prefecture, Kumamoto 

Prefecture and Oita Prefecture). More than 1,000 mm precipitation 

on Aso and Hikosan mountains, produced the great flood into many rivers such 

as Chikugo River when the torrential rain occur on the rainy season. More than 1,000 

people dead and missing, 450,000 houses were flooded, and 1,000,000 people 

suffered from the flood (Takezawa, 2014). In July 2012, heavy rains fell on the 

Kyushu island, causing floods and landslides, especially in northern regions. Some 

towns were temporally isolated. Hundreds of thousands of victims had to leave their 

homes, more than 25 people lost their lives.  

 

1.2.  OBJECTIVES 

The aim of this study is analyzed the storm surge by the past main typhoon 

and river flooding occurrs in this study area.  With a scenario two disaster 

https://en.wikipedia.org/wiki/Fukuoka_Prefecture
https://en.wikipedia.org/wiki/Saga_Prefecture
https://en.wikipedia.org/wiki/Kumamoto_Prefecture
https://en.wikipedia.org/wiki/Kumamoto_Prefecture
https://en.wikipedia.org/wiki/%C5%8Cita_Prefecture
https://en.wikipedia.org/wiki/Mount_Aso
https://en.wikipedia.org/wiki/Mount_Hiko
https://en.wikipedia.org/wiki/Chikugo_River
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simultaneously occurred in the same time, the conditions of the water level will be 

presented, which causes the inundation in the coastal area of the Ariake Sea and Saga 

lowland. In this research, estimate the inundation risk due to storm surge and flood 

will be conducted. A map of inundation risk area is also created for coastal disaster 

management.  

 

1.3.      LIMITATIONS AND ASSUMPTIONS  

Limitations and assumptions of the problem of research in this dissertation 

are as follows:  

1. The software used to analyze the water level in the river is a MIKE 11 developed 

by Danish Hydraulic Institute (DHI). 

2. The software used to analyze the water level at the sea and inundation is a MIKE 

21 FM (hydrodynamic module) developed by Danish Hydraulic Institute (DHI). 

3. A typhoon was selected based on the previous research in this study area, 

especially the mouth of the Ariake Sea. Typhoon Pat that occurred in this study 

area was selected as a reference. 

4. A flood or high discharge was selected based on the torrential rain that took place 

in this study area in July 2012. 

5. The Chikugo River was selected for analyzing the water level based on the high 

discharge or river flood when the torrential rain occurred in this study area and 

based on previous research. 

6. The selection of data from the stations to be used is done based on the 

computational mesh employed in hydrodynamic simulations.  
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7. In the simulations we assumed that two disasters, the storm surge by Typhoon 

Pat and high discharge by torrential rain simultaneously occur at the same time 

in July 2012. 

8. In the hydrodynamic simulations, we assumed that there was no structural failure 

of the dyke.  

9. Evaluation sites in the Saga Plain are the area in front of the Shiroishi City, 

Rokkaku River Estuary, Kase River Estuary, Higashiyoka, Saga Airport, 

Chikugo River Estuary and Ohamma. 

 

 

1.4.  OUTLINE OF DISSERTATION 

 This dissertation consists of eight chapters. Chapter 1 contains an 

introduction, background, and aims of this dissertation.  

 Chapter 2 contains several references review. In this chapter, the theory and 

references that used in this study and also the previous research related to this 

research as a reference will be presented.  

 Chapter 3, discusses about the Ariake Sea coastal area and Saga lowland. In 

this chapter, the history and disaster occurred in this area also the problem in this area 

are explained. 

 Chapter 4, a 2-D simulation model is presented for modeling of storm surges 

in the Ariake Sea. In this chapter, the software MIKE  21 numerical model hydraulic 

developed by DHI is used for analysis of storm surge. 

 Chapter 5, 1-D hydrodynamic modeling of flooding in the Chikugo River will 

be presented. In this chapter, MIKE 11 numerical model hydraulic is used for analysis 

of river flooding or high discharge. 
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 Chapter 6, model coupled analysis of inundation in the coastal area of the 

Ariake Sea due to storm surge and flood is done. In this chapter, the coupling of 1D 

and 2D numerical model hydraulic is conducted using MIKE FLOOD. 

 Chapter 7, disaster management in the coastal area of the Ariake Sea and saga 

lowland is presented. In this chapter, inundation risk analysis using GIS is conducted 

and planning for flood disaster management in the coastal area of the Ariake sea and 

Saga lowland is done based on the simulation result of inundation in this area. 

 Chapter 8, the overall findings of the previous chapters and the 

recommendation for further research are summarized and discusses in this chapter. 
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Chapter 2 

LITERATURE REVIEW 

 

 This chapter consists of seven parts. The first part focuses on related 

researches, the second part focuses on storm surge, third part focuses on the typhoon, 

fourth part focuses on river flooding, fifth part discusses the numerical model, and 

seven part is about conclusions.  

 

2.1 RELATED RESEARCHES 

In recent year, the research about the influence of the storm surge by the 

typhoon to inundation in the saga lowland and the surrounding has been conducted 

by Dundu et al. (2012). They analyzed, the storm surges by the past main typhoons, 

such as Typhoon Songda (T200418), Typhoon Nabi (T200514), Typhoon Wilda 

(T196420), Typhoon Pat (T198513) are analyzed under several scenarios with the 

high wind speed, to obtain the effect of tide levels to the storm surge and to know the 

conditions that the water level exceeds the height of coastal dyke, which causes the 

inundation in the Saga Plain. The performance of the old coastal dykes is calculated 

and also coastal flood hazard management in this area is conducted. The result of this 

research, typhoon Sonda, typhoon Nabi, typhoon Wilda and typhoon Pat do not bring 

about water level to exceed the existing coastal dyke 7.5 m. The scenario using of 

wind speed maximum 80 m/s and wind direction 1800 are constant occurred can cause 

the water level exceed the existing coastal dyke in the several area.  

According to Yoong et al. (2013), using a numerical finite-volume coastal 

ocean model, a storm surge was simulated to investigate the inundation 
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characteristics for the coastal area at Masan, Yeosu and Busan cities on the southern 

coast of Korea. In the model, a moving boundary condition (wet-dry treatment) was 

applied to examine inundation propagation by the storm surge. Simulated inundation 

range and depth were compared with the inundation map made from field 

measurements after the typhoon event. The results of inundation simulations in this 

study show good correspondence with not only the observed inundation area but also 

inundation depth. 

From the research of Prashant and Dhrubajyoti (2012), with title “Flood 

inundation simulation in Ajoy River using MIKE-FLOOD”, the simulated values for 

the validation period were having good agreement with observed values. Manning's 

roughness coefficient, n, was the only calibrating parameter. The bathymetry of the 

study area for the MIKE-21 hydrodynamic setup was the only significant input for 2-

D MIKE-21 cells with lateral links. The simulation by MIKE-FLOOD was carried 

out for two monsoon months of the year 2000 as flooding was severe for this year. In 

their study, the flow in the main river channel was simulated using the 1D equations. 

For the water spilling over the banks of the overflowing river onto the flood plain, 

the 2D equations were solved using numerical schemes. Mass conversion equation 

usually does the link between the two kinds of flow.  

Yamashiro et al. (2014), on their research, to understand the characteristic of 

storm surge along the coast of innermost in the Ariake Sea. The observational results 

of this research show that the storm surge amplifies remarkably in the innermost area 

of the Ariake Sea in particular. The numerical simulation results that there is the risk 

of severe storm surge disaster in the Ariake Sea under event the present climate 

condition. 
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Hashimoto et al. (2015), on their research, comparing the values is used to 

discussed a bias correction method of typhoon strength. Also, they evaluated a 

maximum storm surge anomaly on the Ariake Sea coast by correcting bias of the 

typhoons with the proposed method. The results of their research indicated the 

possibility of storm surge anomaly of 2.8 m, exceeding the current design storm surge 

anomaly of 2.36 m at the innermost of the Ariake Sea. 

 

2.2 STORM SURGE 

A storm surge is an abnormally high sea level produced by severe atmospheric 

conditions, lasting for a period ranging from a few minutes to a few days (Hardword, 

2012). Famous storm surges include the 1953 North Sea Flood, the 1970 Bangladesh 

floods, Hurricane Katrina in New Orleans in 2005 and Hurricane Sandy in 2013. 

Storm surge is simply a behavior of water that is pushed toward the shore by 

the force of the winds swirling around the storm. This advancing surge combines with 

the normal tides to create the hurricane storm tide, which can increase the mean water 

level 4.5 m or more. Also, wind waves are superimposed on the storm tide. This rise 

in water level can cause severe flooding in coastal areas, particularly when the storm 

tide coincides with the normal high tides.  

The water level produced by a storm surge is the result of a complex set of 

interactions between the storm surge, local tidal characteristics, the wind and swell 

waves, currents and local water flow. However, the main factor is the state of the tide 

at the time that the storm hits the shore. When a storm hits a low-lying shore at the 

same time as a high tide, water levels can rise considerably above their normal level, 

resulting in severe flooding.  
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The storm surge is created by the wind, waves, and low pressure. Three 

mechanisms contribute to the storm surge (wheather underground, 

https://www.wunderground.com/prepare/storm-surge): 

1. The action of the winds piling up water (typically more than 85% of the surge). 

2. Waves pushing water inland faster than it can drain off. This is called wave 

set-up. Wave set-up is typically 5 - 10% of the surge. 

3. The low pressure of a hurricane sucking water higher into the air near the eye 

(typically 5 - 10% of the surge). 

Storm surge is caused primarily by the strong winds in a hurricane or typhoon. 

The wind circulation around the eye of a hurricane or typhoon blows on the ocean 

surface and produces a vertical circulation in the ocean. In deep water, there is 

nothing to disturb this circulation and there is very little indication of storm surge. 

Once the hurricane or typhoon reaches shallower waters near the coast, the 

vertical circulation in the ocean becomes disrupted by the ocean bottom. The water 

can no longer go down, so it has nowhere else to go but up and inland. In general, 

storm surge occurs where winds are blowing onshore. The highest surge tends to 

occur near the “radius of maximum winds,” or where the strongest winds of the 

hurricane or typhoon occur. 

 

2.3 TYPHOON 

The definition of the typhoon is different between the Japanese standard and 

the international standard. A tropical storm with the wind speed of more than 34 knots 

is called a "typhoon" in Japan, while in the international standard, that with the wind 

speed of more than 64 knots is called a "typhoon". Different names call of tropical 

cyclones in the world in each basin, such as a "typhoon" and a "hurricane", but the 
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standard to be called by such names is the same: more than 64 knots of wind.  A 

typhoon with maximum sustained surface winds greater than or equal to 130 knots 

(approximately Category 5) is called a "super typhoon," and a hurricane of Category 

3 and above is known as a "major hurricane." A tropical cyclone weaker than 

Category 1 is not a "typhoon" in the international standard, but may be classified as 

a "typhoon" in the Japanese standard. In mainland China and Hong Kong, a typhoon 

with maximum sustained surface winds greater than or equal to 100 knots are called 

Super Typhoon. However, maximum sustained winds are measured differently in 

mainland China, and Hong Kong, where the former uses 2-min mean, and the latter 

uses 10-min mean. For other regions than Japan and the United States, please refer to 

the classification of tropical cyclones in the world. (http://agora.ex.nii.ac.jp/digital-

typhoon/help/unit.html.en). 

Typhoons, hurricanes, and cyclones may have different names according to 

the region they hit, but typhoons, hurricanes, and cyclones are all violent tropical 

storms that can generate ten times as much energy as the Hiroshima atomic bomb. 

The typhoon that devastated the Philippines, wiping out entire towns with a death toll 

that could soar well over 10,000, is the Asian term for a low-pressure system that is 

called a hurricane in the Atlantic and northeast Pacific and a cyclone in the South 

Pacific and the Indian Ocean. However, meteorologists use the term "tropical 

cyclone" when talking about these immensely powerful natural phenomena, which 

are divided into five categories according to the maximum sustained wind force and 

the scale of the potential damage they can inflict. (http://tuoitrenews.vn/international/ 

14985/cyclone-hurricane-typhoon-different-names-same-phenomenon) 

 

 

http://agora.ex.nii.ac.jp/digital-typhoon/help/unit.html.en
http://agora.ex.nii.ac.jp/digital-typhoon/help/unit.html.en
http://tuoitrenews.vn/international/　14985/cyclone-hurricane-typhoon-different-names-same-phenomenon
http://tuoitrenews.vn/international/　14985/cyclone-hurricane-typhoon-different-names-same-phenomenon
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2.4 RIVER FLOOD 

River flood or flash flood is the high discharge that occurs on the river which 

is caused by heavy or excessive rainfall in a short period, generally less than 6 hours. 

River floods are usually characterized by raging torrents after heavy rains that rip 

through river beds, urban streets, or mountain canyons sweeping everything before 

them. They can occur within minutes or a few hours of excessive rainfall.  

A river flood is one of the most common forms of natural disaster. It occurs 

when a river fills with water beyond its capacity. The surplus water overflows the 

banks and runs into adjoining low-lying lands. River floods are responsible for the 

loss of human life and the damage to property. Each year, the number of deaths from 

flooding of rivers is more than any other natural disaster. (Debashree, 

http://www.ehow.com/about_6310709_river-flood_.html).  

River floods have serious repercussions. The floodwater drowns human 

beings and animals. It damages buildings, roads, bridges and crops. A serious 

aftermath of river flooding is pollution of the water supply. Flood water also 

damages sewage systems, gas lines, and power lines. 

In the reseant year, the river flooding is one of the natural disaster that occurs 

in the rainy season and typhoon which cause damage and loss of property and lives 

in Japan. On July, 2012 the Shirakawa River is flooded in Kumamoto, Japan, which 

cause 19 people confirmed dead and 7 others are still missing in Kumamoto and Oita 

perfectures (source: record-setting rainfall hit Kyushu-getty images). Also, in 

September 2015, the Kinugawa River is flooded in Joso, Japan. The flooding has 

forced more than 100,000 people from their homes, at least 17 people were injured 

and two people were missing (Aljazeera News, 2015).  

http://www.ehow.com/about_6310709_river-flood_.html
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2.5 HYDRODYNAMIC MODEL  

 

2.5.1  1-D Numerical Model 

 The most widely used approach to modeling fluvial hydraulics has been 1-D 

finite difference solutions of the Saint-Venant Equations (Bates and De Roo, 2000).  

1-D solutions of the Saint-Venant Equations are derived based on several 

assumptions: the flow is one-dimensional, the water level across the section is 

horizontal, the streamline curvature is small and vertical accelerations are negligible, 

the effects of boundary friction and turbulence can be accounted for using resistance 

laws analogous to those for steady flow conditions, and the average channel bed slope 

is small so the cosine of the angle can be replaced by unity (Cunge, Holly and Verwey, 

1980).   Widely available, the software MIKE11 uses the general form of the section-

averaged Navier-Stokes equations.  The basic forms of the equations used in MIKE11 

are shown in Equations 2.1 and 2.2. 
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where Q  is discharge, x  is longitudinal channel distance, A  is a cross-sectional area, 

q  is lateral inflow,  t  is time,  h  is flow depth,   C  is the Chézy coefficient and   R   

is the hydraulic radius. 
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 An inherent assumption of 1-D finite difference river modeling is that flow 

velocities are perpendicular to cross-sections.  Additionally, water surface elevations 

are assumed constant for entire cross-sections.  For river reaches containing 

backwater areas or naturally occurring diversion channels, these assumptions are 

frequently violated.  For out-of-bank flow, interaction with the floodplain results in 

highly complex fluid movement with at least two-dimensional properties.  Flow at 

the channel-floodplain transition has been shown to develop a three-dimensional flow 

field due to intense shear layers (Bates and De Roo, 2000).    

 Development of a one-dimensional hydraulic model requires user discretion 

in defining the model geometry.  Bates and De Roo (2000) found that subjectivity of 

cross-section placement is a significant contributor to the overall accuracy of a 1-D 

hydraulic model.  In addition to directly determining overbank reach lengths, 

placement of cross-sections must be executed so that changes in conveyance due to 

expansions or contractions are accurately captured. 

 

 

2.5.2  2-D Numerical Model 

 The complex interaction of channel and floodplain flow fields makes two-

dimensional simulation codes more desirable than one-dimensional codes in many 

modeling situations   (Horritt and Bates, 2002).  Continual improvements in 

computational resources and affordability have also increased implementation of 

two-dimensional modeling.   

 The governing equations of 2-D plane storm surge numerical model (LI 

Daming et al., 2011) are, 
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where   is tidal level setup; h  static water depth; H  total water depth,  hH ; 

f  Coriolis coefficient; g  gravity acceleration;  sx,   and  sy ,  wind stress in x and y-

direction: C Chézy coefficient, 
6/11

h
n

C  ,  h  the average value of water depth;  n  

Manning roughness coefficient; u and v depth average velocity in x and y-direction. 

  

 

2.5.3  Coupling 1-D and 2-D models 

 The coupled model of 1-D and 2-D can be applied to the simulation of 

inundation in a floodplain area.   One-dimensional numerical models are unable to 

resolve complex flood plain flow fields and require post-processing to produce 

realistic flood extents.  Two-dimensional numerical models fail to model structural 

elements that may produce supercritical or pressurized flow conditions.  

Consequently, recent urban flood modeling efforts have been focused on dynamically 

coupling one-dimensional and two-dimensional models to avoid these limitations. A 

one-dimensional numerical model of the river channel complimented by a two-

dimensional model of the floodplain provides improvements in hydraulic modeling 
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accuracy and computational efficiency.  If an entire river reach is modeled using a 

one-dimensional model, then computational nodes within that portion of the two-

dimensional mesh will not become active, improving computational efficiency. 

 

   

2.6 INTEGRATED HYDRODYNAMICAL MODEL 

 

2.6.1   MIKE 11- A modeling system for river and channel hydraulics 

MIKE 11 is a software package for simulating flow and water level, water 

quality and sediment transport in rivers, floodplains, irrigation canals, reservoirs and 

other inland water bodies. MIKE 11 is a one-dimensional river model. It was 

developed by DHI Water & Environment Denmark. MIKE11 has long been known 

as a software tool with advanced interface facilities.  

 

2.6.1.1 Modules 

The computational core of MIKE 11 is hydrodynamic simulation engine, 

and this is complemented by a wide range of additional modules and extensions 

covering almost all conceivable aspects of river modeling. 

 

2.6.1.2 Development of Model  

The processing of the data for the simulation in the MIKE 11 hydrodynamic 

module involves; preparation of the network (can assume a straight stream channel), 

http://en.wikipedia.org/wiki/Water_quality
http://en.wikipedia.org/wiki/Water_quality
http://en.wikipedia.org/wiki/Sediment_transport
http://en.wikipedia.org/wiki/Flood_plain


Arthur Harris Thambas Page 16 

 

cross section, hydrodynamic and boundary parameters. The data hourly rainfall, 

water levels, and flows are created incompatible MIKE 11 time series in a separate 

file as the input for the parameter editors. 

 

a. The River Network file 

The River Network file allows the modeler to: 

- define the river network and reference cross-sections and control structures to the 

network, and 

- graphically obtain an overview of the model of information in the current 

simulation. 

 

b. The Cross-Section File 

The Cross-Section file contains streambed cross-sections as specified 

locations along a river network. The geometry of cross-sections is usually obtained 

from field-surveyed data. 

 

c. The Boundary Files 

The Boundary file consists of boundary conditions in a time-series format for 

the river network's boundaries. The water-level boundary must be applied to either 

the upstream or downstream boundary condition in the model. The discharge 

boundary can be applied to either the upstream or downstream boundary condition 

and can also be applied to a side Tributary flow (lateral inflow).  
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d. The Hydrodynamic Parameter File 

The Hydrodynamic Parameter File bed and floodplain resistance requires the 

data for the river network. The differentiation between the streambed and floodplain 

along the river network is accomplished at each cross-section in the cross-section file. 

 

2.6.1.3 Applications 

MIKE11 has been used in hundreds of application around the world. Its main 

application areas are flood analysis and alleviation design, real-time flood 

forecasting, dam break analysis, optimization of reservoir and canal gate/structure 

operations, ecological and water quality assessments in rivers and wetlands, sediment 

transport and river morphology studies, salinity intrusion in rivers and estuaries. 

Presentation of results from MIKE 11 is carried out with MIKE View. MIKE View 

is a Windows-based result presentation and reporting tool for MIKE 11. 

 

2.6.2   MIKE 21 - An applications of hydraulic phenomena in lakes, estuaries, 

bays, coastal areas and seas. 

  

 MIKE 21 is a computer program that simulates flows, waves, sediments and 

ecology in rivers, lakes, estuaries, bays, coastal areas and seas in two dimensions. 

MIKE 21 was developed by DHI.  It applies to the simulation of hydraulic flow in 

rivers and estuaries in two dimensions. It can be used for design data assessment for 

coastal and offshore structure, inland flooding and overland flood modeling. Using a 
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Finite Difference Method (FDM), MIKE 21 model has integrated hydraulic structures 

in 2-D grids and can be applied for urban and coastal flood mapping. 

 

2.6.2.1  Hydrodynamic Module 

 The hydrodynamic module is based on the numerical solution of 2-D shallow 

water equations: the depth integrated incompressible Reynolds-averaged Navier-

Stokes equation subject to Boussinesq assumption and the presence of hydrostatic 

pressure (DHI, 2006). 

 

2.6.2.1.1 Flood and Dry 

 

a. General Description 

 The approach for the treatment of the moving boundaries (flooding and drying 

fronts) problem is based on the work by Zhao et al. (1994) and Sleigh et al. (1998). 

When the depths are small, the problem is reformulated and only when depths are 

slight the elements/cells are removed from the calculation. The reformulation is made 

by setting the momentum fluxes to zero and only taking the mass fluxes into 

consideration. 

 

b. Recommended value   

 The default values are: drying depth 
dryh = 0.005 m, flooding depth 

floodh = 

0.05 m and wetting depth weth =0.1 m. The wetting depth, weth , must be larger than 

the drying depth, 
dryh , and flooding depth, 

floodh , must satisfy. 
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 In this research based on the previous research by Dundu (2012), the values 

of flood and dry is used as follows:  
dryh = 0.1 m, flooding depth 

floodh = 0.7 m and 

wetting depth weth =0.7 m. 

 

                  

2.6.2.1.2 Eddy Viscosity 

 In many applications, a constant eddy viscosity can be used for the horizontal 

stress terms. Alternatively, Smagorinsky (1963) proposed to express sub-grid scale 

transports by an effective eddy viscosity related to a characteristic length scale. The 

Smagorinsky coefficient, sC , should be chosen in the interval of 0.25 to 1.0. In Eddy 

Parameters, if using Smagorinsky formula or coefficient the value of eddy viscosity 

must specify a minimum and maximum value. The format of the eddy viscosity 

coefficient (in m2/s), or Smagorinsky coefficient, can be specified as constant (in 

domain) and varying in domain. Ueno (1989), in the Abualtayeb et al. (2008, 2007), 

suggests Eddy viscosity in the interval of 0.1to 1.0. In this research based on the 

previous research by Dundu (2012), Eddy Viscosity using Smargorinsky coefficient, 

sC  is 0.1 constant in domain. 

 

2.6.2.1.3 Bed Resistance 

 The bed resistance can be specified in three different ways: 

 No bed resistance 

 Chézy number 

 Manning number 
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 The format of Chézy number, C (m1/2/s), and the Manning number, m (m1/3/s), 

can be specified in two ways constant (in domain) and varying in domain. 

 The bottom stress, b  , is determined by a quadratic friction law, 

 

      
bbf

b uuc
0



                                                                                           (2.6)      

                    

Where  
fc  is the drag coefficient, bu  is the flow velocity above the bottom and 0  

is the density of the water. For two-dimensional calculations bu  is the depth average 

velocity and the drag coefficient can be determined from the Chézy number, C, or 

Manning number, n 
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Where h  is the total water depth and g  is the gravitational acceleration. The unit of 

Chézy numbers and Manning numbers are (m1/2/s) and (m1/3/s), respectively. 

 The value of Manning number in the range 20-40 m1/3/s is typically used with 

a suggested value of 32 m1/3/s  if no other information is available. The value of Chézy 

number in the range 30-50 m1/2/s is common for the coastal and marine application 

(in the MIKE 21 DHI tutorial).  The other value of Chézy number has been applied 

by some researchers at the Ariake Seas be varied. Abualtayeb et al. (2007), used the 

value of Chézy coefficient, 10 m1/2/s and 50 m1/2/s. Kanayama and Dan (2006), used 

the value 61.4 m1/2/s for Chézy coefficient. The Chézy coefficient is determined as 
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50 m1/2/s tuning by Yano et al. (2010), on their research. In this research the Chézy 

coefficient is determined as 32 m1/2/s, constant in domain. 

 

2.6.2.1.4 Coriolis Forcing 

  

 A Coriolis parameter is defined as, 

                              sin2 cf                                         ………………….  (2.9) 

where 
1410458.12  s  and    is latitude. This parameter is constant at any 

fixed location. 

 The effect of the Coriolis force can be included in three different ways (DHI, 

2011), 

 No Coriolis force 

 Constant in domain 

 Varying in domain 

 If the constant in domain option is selected the Coriolis force will be 

calculated using a constant specified reference latitude (in Degree) 

 If the varying in domain option is selected, the Coriolis force will be 

calculated based on the geographical information given in the mesh file. In this 

research the Coriolis force varying in domain is selected. 

  

 

2.6.2.1.5 Wind Forcing 

 It is possible to take into account the effect of the wind on the flow field. The 

format of the wind data can be specified as, 
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 Constant. The wind is blowing from the same direction and with the same 

magnitude for the whole simulation period and over the entire model area. 

 Varying in time and constant in domain. The magnitude and direction vary 

during the simulation period but is the same over the entire model area. 

 Varying in time and domain. The magnitude and direction vary during the 

simulation period and over the model area. 

 

The effect of wind blowing over the model area following way : 

 The surface stress, s , is determined by the wind speed above the water. The 

empirical relation of stress is given by the following, 

 

          wwdas uuc 
                             ..................................................    (2.10) 

 

where a  is the density of air, dc  is the empirical drag coefficient  of air, and 

),( www vuu   is the wind speed 10 m above the sea surface. 

 Definition of wind direction that had been given in degrees blowing from 

relative to true north can be seen in Figure 2.1. 

 

 
 

      Figure 2.1: Definition of Wind Direction 
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 The drag coefficient can either be a constant value or depend on the wind 

speed. The empirical formula proposed by Wu (1980, 1994) is used for the 

parametrization on the drag coefficient as follow: 
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where ac , bc , aw and bw  are empirical factors and 10w  is the wind speed 10 m 

above the sea surface. The default values for the empirical factors are 

310255.1 ac ,  
310425.2 bc , smwa /7 , smwb /25 . The value gives 

generally good result for open sea applications. Field measurements of the drag 

coefficient collected over lakes indicate that the drag coefficient is larger than open 

ocean data (Geenaert and Plant, 1990). 

 In this research wind forcing (speed and direction) is the format of wind data 

varying in time and constant in domain. 

 

 

2.6.2.1.6  Wind Friction 

 

 The wind friction can be specified either as a constant or varying with the 

wind speed. In the latter case, the friction is linearly interpolated between two values 

based on the wind speed, and if the wind speed is below the lower limit or above the 

upper limit, the friction is given the value corresponding to that limit (DHI, 2011). 
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The wind friction in this research is a constant and the value be used is 0.001255 

based on the previous research by Dundu (2012). 

  

 

2.6.2.2  Basic Parameter 

 

2.6.2.2.1 Domain 

 The MIKE 21 Flow Model FM is based on flexible mesh approach. Setting 

up the mesh includes a selection of the appropriate area to be modeled, adequate 

resolution of the bathymetry, wave wind and flow fields under consideration and 

definition of codes for open and closed boundaries.  

 

 

a. Mesh and Bathymetry 

 The mesh file is ASCII file including information of the geographical position 

and bathymetry for each node point in the mesh. The file also includes information 

on the node connectivity in the mesh. 

 

b. Boundary Names 

 Figure 2.2 shows the definition of codes in a simple application. In this case, 

three open boundaries have been detected from the mesh file specified in the domain 

parameters; code 2, code 3 and code 4. In the main boundary name dialog, the name 

of code values can be re-name to more appropriate names, such as shown in Figure 

2.3 
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Figure 2.2: The definition of boundary codes in the mesh is made in the Mesh  

                         Generator (DHI, MIKE 21 user guide, 2011) 

 

 

 

 

Figure 2.3: Change of default code names to more appropriate names 

    (DHI, MIKE 21 user guide, 2011) 

 

 

2.6.2.2.2 Time 

 The period to be covered by the simulation is specified such as specify the 

simulation start date, the overall number of time steps and the overall time step 

interval (in seconds). The simulation always starts which the time step number 0 and 

the simulation start date is the historical data and time corresponding to time step 0. 

The simulation end date is presented for reference. 
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 The various modules in MIKE 21 Flow Model FM each use an internal time 

step, see in Figure 2.4. 

 

 

Figure 2.4: Overall time step related to internal time step 

    (DHI, MIKE 21 user guide, 2011) 

 

 

 The time step for the hydrodynamic calculations, the advection-dispersion 

calculations, and the spectral waves calculations are dynamic and each determined to 

satisfy stability criteria. All time steps within the simulation for the various modules 

are synchronized at the overall discrete time step. The time step for the hydrodynamic 

calculations is the synchronized at the time step for the advection/dispersion 

calculation.  

 

  

2.6.3   MIKE FLOOD  

 MIKE FLOOD is a tool that integrates the one-dimensional model MIKE 11 

and the two-dimensional model MIKE 21 into a single, dynamically coupled 

modeling system. There are many advantages to using MIKE FLOOD, and many 

model applications can be improved through its use, including: 
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 Floodplain application 

 Storm surge studies 

 Urban drainage 

 Dam break 

 Hydraulic design of structures 

 Broad-scale estuarine applications 

 

 By combining the two modelers MIKE 21 and MIKE 11 we can choose that 

the best features of both and make the best model with these functions. At present,  

there are six different types of MIKE FLOOD linkage available: 

 

a. Standard link 

 “MIKE FLOOD user manual (2007) say as follows: This type of link is 

useful for connecting a detailed MIKE 21 grid into a broader  MIKE 11 network, or 

to connect an internal structure or feature inside a MIKE 21 grid. The application of 

standard link can be seen in Figure 2.5.” 

 

 

Figure 2.5: Application of Standard Links 

                                      (DHI, MIKE FLOOD user manual, 2007) 
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b. Lateral link 

 “MIKE FLOOD user manual (2007) say as follows: A lateral link allows a 

string of MIKE 21 cells to be laterally linked to a given reach in MIKE 11, either a 

section of a branch. Flow through the lateral link is calculated using a structure 

equation or QH table. This type of link is particularly useful for simulating overflow 

from a river channel onto a floodplain, where flow over the river levee is calculated 

using a weir equation. The application of the lateral link can be seen in Figure 2.6.” 

 

                         

Figure 2.6: Application of Lateral Links 

                                         (DHI, MIKE FLOOD user manual, 2007) 

 

c. Structure Link (Implicit) 

 “MIKE FLOOD user manual (2007) say as follows: The structure link is the 

first of a series of new developments planned for MIKE FLOOD. The structure link 

takes the flow terms from a structure in MIKE 11 and inserts them directly into the 

momentum equations of MIKE 21. This is fully implicit, so should not affect time 

step considerations in MIKE 21. 
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 The structure link is useful for simulating structures within a MIKE 21 

model. The link consists of 3 points MIKE 11 branch (upstream cross-section, 

structure, downstream cross-section), the flow terms of which are applied to the right 

or top of a MIKE 21 cell or group of cells. The application of the structure link can 

be seen in Figure 2.7.” 

 

 

Figure 2.7: Application of Structure Links 

                                      (DHI, MIKE FLOOD user manual, 2007) 

 

d. Zero Flow Link (X and Y) 

 “MIKE FLOOD user manual (2007) say as follows: A MIKE 21 cell specified 

as a zero flow link in the x direction will have zero flow passing across the right side 

of the cell. Similarly, a zero flow link in the y direction will have zero flow passing 

across the top of the cell. The zero flow link were developed to complement the lateral 

flow links. To ensure that floodplain flow in MIKE 21 does not travel directly across 
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a river to the opposite side of the floodplain without passing through MIKE 11, zero 

flow links are inserted to block MIKE 21 flows. An alternative to using the zero-flow 

links is to apply land cells which, depending upon grid resolution, may not be 

appropriate. Another useful application of zero flow links is to represent narrow 

blockages on a floodplain, such as roads and levees. Rather than using a string of land 

cells, a string of zero flow cells can be utilized.” 

 

e. Standard Link (QH Extrapolation) 

 The standard link uses a predictor term that modifies flow from MIKE 11. 

This is required to establish a value in MIKE 21 that it is consistent with the time 

centering differences in the MIKE 11 and MIKE 21 solutions. The extrapolation 

factor controls this predictor. An alternative method to this is QH extrapolation 

standard link. This link uses the implicit terms from MIKE 11 to produce a QH 

relationship through the link. In this way, the predictor from MIKE 11 is, in fact, the 

slope of the QH curve. In practice, there appears to be little difference between the 

two standard link methods. It is possible that the QH extrapolation is marginally more 

stable. However, tests show that while results using this approach remain stable at 

higher time steps, the accuracy of the solution at these great time steps rapidly 

deteriorates.   

 

 

2.7 CONCLUSIONS 

Many researches about flood and storm surge are conducted in recently years 

using numerical model analysis either using 1-D, 2-D, and 3-D hydrodynamic 

numerical models. Most of the researches were to analyze individually regarding 
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flood and storm surges.  The related researchers used 1-D and 2-D hydrodynamic 

numerical models is conducted by Kadam and Dhrubajyoti, (2012). They also used 

coupled of 1-D and 2-D hydrodynamic numerical models but only for analyses of 

flow in the river.  

Some parameters that will be utilized in this research have varying values, 

both of suggestion value by DHI and which has been used by other researchers in the 

Ariake Sea in their researches.  
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Chapter 3 

 THE ARIAKE SEA COASTAL AREA  

AND SAGA LOWLAND 

 

 

3.1 INTRODUCTION 

The Ariake Sea is located in Kyushu Island, west part of Japan. The sea opens 

to the East China Sea such as shown in Figure 3.1. The area and the average depth of 

the sea are approximately 1,700 km2 and 20 m respectively. The sea has vast tidal 

flats in the innermost area. The maximum tidal range during the spring tide reaches 

6m at the innermost area. Seawater, therefore, flows to the upstream section of the 

rivers at high tide. The hinterland is a low flatland that is 0-3 m above sea level since 

the tidal mudflats have been converted to land or reclaimed by people. As a result, 

it's hard to use the river water. 

 

 

Figure 3.1: The Ariake Sea 

(source: Yamashiro, 2014) 
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Figure 3.2: Tidal range condition in Ariake Sea 

(Source: MLIT Takeo office, 2011) 

 

The Ariake Sea is known as one of the sea areas that have a high risk of the 

storm surge in Japan because the sea area had been damaged by the storm surges 

caused by typhoons in the past (Hiyajo et al. 2011). 

Many rivers flow into the Ariake Sea, such as the Chikugo, Kase, Rokkaku, 

Shiota, Kikuchi, Yabe, Midori, and Shira. The annual volume of freshwater inflow is 

about 8 × 109 m3 (Tabata et. Al. 2010). The Chikugo River is the largest river flowing 

into the Ariake Sea, and its inflow amount accounts for 50% of the overall freshwater 

inflow and makes potential inundation in the coastal area when the high tide condition 

in the Ariake Sea.  

 

 

 

 

 

 

 

( a )                                       ( b ) 

Figure 3.3: River condition when high tide (a) and low tide (b) 
(Source: MLIT Takeo office, 2011) 

http://www.qsr.mlit.go.jp/takeo/site_files/file/english/eng_03/2_8-1-1New_Contingency_Plan.pdf
http://www.qsr.mlit.go.jp/takeo/site_files/file/english/eng_03/2_8-1-1New_Contingency_Plan.pdf
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 Ariake Sea coastal area is known to have highest productivity of nori 

(Rhodophyta algae, Porphyra spp.) in Japan, so the nori production in its cultivation 

is developed as one of the specialties in Saga Prefecture. However, the harvest 

amount of nori in the growing in this area has been unstable in recent year, possibly 

due to the sudden change for worse in the fishery environment. Therefore, the 

recovery of the fishery environment has become the urgent problem to be settled in 

Ariake Sea and its coastal area. 

 In Saga Prefecture, nori is produced about 20 percent of the whole production 

in Japan (about 18 billion yen), and the nori sheet is commercialized as a brand of 

'Saga Nori' produced from Ariake Sea around Saga Prefecture. In recent years, the 

decrease in the quality by the disease and the discolorment of the thalli of nori had 

become a serious problem. Therefore, it led uneasy elements in the income for the 

aquacultural labor of nori (Kato, 2007). 

 

 

3.2 HISTORY OF ARIAKE SEA COASTAL AREA AND SAGA 

LOWLAND 

 

 The history of the Ariake Sea coastal area and Saga lowland has undergone a 

major change by reclamation works from the Ariake Sea in Nothern Kyushu, Japan.  

Reclamation works with very small slope have some problems such as flood prone 

area, so once the sea water enters these area immediately inundation occurs. Figure 

3.4 shown the history of the changes the coastline of the Saga plain from beginning 

of the alluvial period until present coastline. 
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Figure 3.4. : Changes in the coastline of the Saga Plain 

(Source: MLIT Takeo office, 2011) 

 

 

 

3.3 NATURAL DISASTER OCCURRED IN THE COASTAL AREA OF 

ARIAKE SEA AND SAGA LOWLAND 

  

 As lowland areas with a very small slope, Saga plain and the Ariake Sea 

coastal area are flood-prone areas. Therefore, when the natural disaster such as 

torrential rain causing a flood or high discharge and the typhoon causing storm surge 

occurred in this field once the water enters these areas it will immediately create 

largely inundated area despite the fact that these areas are used for agricultural, 

offices, residential, airport, etc.  

 From 1952 to 2011, 72 typhoon passed through Saga within a radius of 150 

km where the typhoon Ruth (1951), Wilda (1964), Pat (1985), Songda (2004), Chaba 

(2004), Nabi (2005), and several other typhoons resulted damage and casualties 

(Dundu, 2012). Storm surge by Typhoon Pat, causes damage to fish port by wave 

overtopping in the Ariake coast, Ashikari cho, Saga Prefecture as shown in Figure 

3.5. 

http://www.qsr.mlit.go.jp/takeo/site_files/file/english/eng_03/2_8-1-1New_Contingency_Plan.pdf
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Figure 3.5: Storm surge damage during Typhoon Pat 1985 

     (Source: Kyushu Regional Planning Association, 2009 ) 

 

 The torrential rain causing inundation in the coastal area of Ariake Sea and 

Saga lowland is the one of the frequent natural disasters in this area. Figure 3.6 to 

Figure 3.8 show inundation by torrential rains in the Saga lowland area.  

 

 

Figure 3.6: Inundation by torrential rains in Asahi Town, Takeo, July 1990 

(Source: MLIT Takeo office, 2011) 
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 Figure 3.7: Inundation by torrential rains in Asahi Town, Takeo, July 2009 

(Source: MLIT Takeo office, 2011) 

 

Figure 3.8: Inundation by torrential rains in Saga City, July 2012 

              (Source: IALT, 2012) 

 

 

3.4 PRESENT STATE 

 Based on the typhoon Vera also known as Isewan typhoon in 1959, the 

Government has built the dyke along the coastline in the Ariake Sea with maximum 
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elevation 7.5 m high as shown in Figure 3.9. Modification of rivers, embankments 

and river channels has been conducted and modified weirs installed to improve the 

flow-down capability. The government also built the dam construction and drainage 

pump station. When constructing embankments, the ultra-soft ground has been 

enhanced using slow banking work. Figure 3.10 show the Kyuragi dam is situated on 

the Kyuragi River, a tributary of the Matsuura River, Karatsu, Saga, Japan. 

 

 

 

 

 

 

 

Figure 3.9: Coastal dyke along Ariake Sea 

 

 

 

 

 

 

 

 

 

Figure 3.10: Kyuragi dam 

(Source: MLIT Takeo office, 2011) 
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3.5 CONCLUSIONS  

 

 The Coastal area of the Ariake Sea and Saga lowland has undergone a major 

change by reclamation works. These areas are flood-prone area caused by torrential 

rain and typhoon.  To mitigate the impact of storm surge by the typhoon and torrential 

rains in the coastal area of Ariake sea and Saga lowland, the government has built a 

dyke along the coastline and rivers with a maximum level high 7.5 m. Also, the 

government has built a variety of dam such as Kyuragi dam for flood control and 

water use. 

 This research is necessary to evaluation of the existing dyke along the 

coastline and river in the coastal area of the Ariake Sea and Saga lowland if the two 

disaster storm surge and river flood simultaneously occurs in the same time.  
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Chapter 4 

2-D SIMULATION MODEL OF STORM SURGE ANALYSIS IN 

THE ARIAKE SEA  

 

4.1 INTRODUCTION 

 

 Typhoons have caused catastrophic damage by flooding due to storm surges 

in Japanese history (Torii, 2003).  Table 4.1 shows storm surge disaster in Japan. The 

large scale of storm surge disasters have frequently occurred until 1961. For example, 

about five thousands of people were dead with storm surge by a typhoon in 1959, 

which was called Isewan typhoon. After 1970's, catastrophic flood disaster due to 

storm surges has decreased. 

 

Table 4.1: Storm surge disaster in Japan 

 
(Source: Torii, 2003) 
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 Every year Japan territory is crossed by typhoon with a variety of categories, 

ranging from wind speed categories from the smallest to the largest. According to 

data in Table 4.1, three typhoons gave high damages and causing many casualties. 

First is typhoon Muroto (1934), that caused high damages to the buildings, largely 

inundated area for about 927.4 km2 and 2,702 human casualties. The second one is 

typhoon Makurazaki (1945) that damaged some buildings, resulted to significantly 

inundated area for about 898 km2 and 1,229 people also lost their lives during this 

typhoon. The last one is Typhoon Isewan (1959) which also gave the same impacts 

as the first two typhoons mentioned. The Typhoon Isewan created largely inundates 

on about 8340 km2 area and 5,098 people killed (Dundu, 2012). 

 The Ariake Sea located in Kyushu Island is one of the sea areas that have a 

high risk of severe storm surges caused by typhoons in Japan. The total area of the 

sea is about 1,700 km2 with l00 km gulf axial length, 16 km in average width, and 20 

m of average water depth (Araki, et al., 2001). The sea has vast tidal flats in the 

innermost area. The maximum tidal range during the spring tide reaches 6m at the 

innermost area. The Ariake Sea is located in the region of 4 prefectures i.e. Nagasaki, 

Saga, Fukuoka, and Kumamoto. Most of the field in Saga Prefecture is adjacent to 

the Ariake Sea mainly lowland areas with a very small slope, so once the sea water 

enters these areas, it will immediately create largely inundated area despite the fact 

that these areas are being used for agricultural, offices, residential, airport, etc. 

However, the Japanese government has built a coastal dyke along the shorelines and 

river within this areas with the maximum height of 7.5m. 
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4.2 STUDY AREA AND DISASTER 

 

4.2.1  Study area 

 Study areas are coastal area of Ariake Sea and Saga lowland, such as shown 

in Figure 4.1 

 

Figure 4.1: Study Area 

 

 

4.2.1     Studied disaster 

  Studied disaster is Storm Surge by Typhoon Pat that occurred in the study 

area on August to September 1985. Three people died due to Typhoon Pat and 

16 people were injured. Furthermore, 589 houses were damaged with category 

partially destroyed.   
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4.3 METHODOLOGY  

 

 

 This study utilizes a two-dimensional hydrodynamic model, MIKE 21 FM 

developed by DHI (Danish Hydraulic Institute). MIKE 21 FM is a computer program 

that simulates flows, waves, sediments and ecologi in rivers, likes, estuaries, bays, 

coastal areas and seas in two dimensions. This software is used to create a simulation 

of several typhoons that ever crossed Ariake Sea. In this study, based on the 

simulation results of the previous research by Dundu (2012) and Thambas (2015), 

seven measurement lines shown in Figure 4.2 are considered as transects to 

investigate the inundation in the coastal area, as follow:  

 

  1. Shiroishi  (S) 

  2. Higashioka  (H) 

  3. Rokkaku Estuary (RE) 

  4. Kase Estuary  (KE) 

  5. Chikugo Estuary  (CE) 

  6. Saga Airport  (SA) 

  7. Ohamma  (O) 
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Figure 4.2 : Measurement lines 

 

 

4.3.1  Data 

 In the numerical simulations, the following data are taken as input data; 

bathymetrical data, topographical data, wind data (speed and direction), some of the 

water level at stations, and a time step of the simulation. Bathymetric data are 

obtained from the Ariake Project of Saga University in the form of water depth in the 

Ariake Sea and other areas in the southern of Kyushu Island, from longitude 128o - 

131o and latitude 30o - 34o. Topographic data are obtained from 50 m DEM of Japan 

supplied by Geospatial Information Authority of Japan. The elevation is taken up 20 

m considering the number of points will determine the processing time on the 

computer and the assumption that the boundary conditions for groundwater are 10 m. 

Figure 4.3 shown bathymetry and topography on grid file.  
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Figure 4.3: Bathymetry and topography in grid file 

 

Wind data in the form of wind speed and wind direction shown in Figure 4.4 were 

provided by Meteorological Agency. Water level and tide data shown in Figure 4.5 

were provided by Meteorological Agency took at the same time with wind data from 

August 31 to September 1, 1985 in Misumi Station.  The simulation was taken from 

August 31, 1985, 00:00 to September 1, 1985, 00:00 when the Typhoon Pat passed 

through the Ariake Sea area.  
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Figure 4.4: Wind data at Misumi Station 

 

          

          Figure 4.5 : Tide data at Misumi station 
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  Figure 4.6 show observation station of tide data and Figure 4.7 show location 

of Misumi station.  

 

Figure 4.6: Station observation of tide data 
(source: Japan Oceanographic Data Center, 2016) 

 

 

Figure 4.7: Location of Misumi Station 
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4.3.2  Computational Mesh and Boundary 

The calculation model was established by the computational mesh such as 

shown in Table 4.2 and the Figure 4.8. 

Table 4.2  Information of computational mesh 

 

 
 

 

Figure 4.8: Computational mesh 
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 The computational boundary with an open boundary to input time series data of 

tide can be seen in the Figure 4.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Computational boundary 

 

 

4.4 RESULTS AND DISCUSSIONS 

 

4.4.1 Model Calibration 

 

 Model calibration of water level or tide at the Misumi station from August 31 

to September 1, 1985 is shown in Figure 4.10. Calibration is also carried out at Oura 

station as shown in Figure 4.11. 
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Figure 4.10: Calibration of tide at Misumi station 

 

 

Figure 4.11: Calibration of tide at Oura station 
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 Based on model calibration, tide condition at the Misumi station between simulation 

and measurement are same. Although there were some discrepancies between tide 

observation and simulations at the Oura station, but overall the simulation result of tide 

coordinated well with the observed data 

 

 

4.4.2 Simulation Results 

 

 Table 4.3 shows the maximum water levels at each measurement line. The 

simulation's results on the seven specified location indicate that the maximum water 

levels elevation under 7 m. Figure 4.12 shows the water level simulated at each 

measurement lines is presented the water level does not exceed the height of the 

existing coastal dikes of 7.5 m high.   

 

Table 4.3  Maximum water level 
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Figure 4.12: Water level simulated at each measurement lines 

 

 The following figures, Figure 4.13 to Figure 4.18 is simulation result of water 

level in the Ariake Sea when storm surge by Typhoon Pat occurred on August 31, 

1985 to September 1, 1985 at each time 02:00,  06:00,  11:00, 15:00 and 19:00 on 

August 31, 1985 and at time 00:00 on September 1, 1985, respectively.  

 This research and previous research by Dundu (2012) and Thambas (2015) 

simulation results is relative same, there were no water level exceeded the existing 

coastal dyke. In the real condition when the Typhoon Pat occurred in this study area 

on August to September, 1985, there were no water level exceeded the existing 

coastal dyke was caused by high tide. Althought, at the some place was caused 

damage of fish port due to wave overtopping in the Ariake coast, Ashikari cho, Saga 

Prefecture as showed in the Figure 3.5 in Chapter 3. 
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Figure 4.13: Water level on August 31, 1985, at the time 02:00 

 

Figure 4.14: Water level on August 31, 1985, at the time 06:00 
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Figure 4.15: Water level on August 31, 1985, at the time 11:00 

 

Figure 4.16: Water level on August 31, 1985, at the time 15:00 
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Figure 4.17: Water level on August 31, 1985, at the time 19:00 

 

Figure 4.18: Water level on September 1, 1985 at the time 00:00 
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4.4.3 Comparison of the results with previous researches 

 

  Table 4.4 shown the comparison results of maximum water level at the same 

place (measurement line) with previous researches by Dundu, (2012) and Thambas, 

(2015). In their research used same data when the Typhoon Pat occurred in the Ariake 

Sea on August, 31 to September 1, 1985.  

 

Table 4.4  Maximum water level (comparison) 

 

  The maximum water level at the Shiroishi (S), Rokkaku Estuary (RE), Kase 

Estuary (KE) and Higashiyoka (H) was obtained at time 10:00 on August 31, 1985 

by Thambas (2015), while Dundu (2012) was obtained at time 24:00 or at time 00:00 

on September  1, 1985. The maximum water level in the Saga Airport (SA), Chikugo 

Estuary (CE) and Ohamma (O) was obtained at time 11:00 on August, 31 by Thambas 

(2015). In this research, the maximum water level at the Rokkaku Estuary (RE) and 

Kase Estuary (KE) was obtained at time 11:00 and the maximum water level at the 

Shiroishi (S), Higashiyoka (H), Saga Airport (SA), Chikuko Estuary (CE) and 

Ohamma (O) was obtained at time 10:00 on August 31, 1985. 

  Dundu (2012) used 3-D numerical model simulation to analyze the storm 

surge by Typhoon Pat  and Thambas (2015) used 2-D model simulation and in the 

boundary condition make open boundary at the Kumamoto station observation with 
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using tide and wind data from Misumi station when the Typhoon Pat occurred on 

August 31 to September 1, 1985. 

  The difference of maximum water level simulated between this research and 

previous research by Dundu (2012) and Thambas (2015) is considered to occur due 

to determining the boundary condition’s location and computational mesh such as 

shown in the Figure 4.19 and Figure 4.20. The difference time of the maximum water 

level simulated on each researches is caused the peak of water level have two times 

of period. The first time period between times 10:00 to 11:00 and the second time 

period between times 23:00 to 24:00 as showed in Figure 4.10 on previous page. 

   

 

Figure 4.19: Boundary condition and mesh used by Dundu (2012)  
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Figure 4.20: Boundary condition and mesh used by Thambas (2015) 

 

 

4.5 CONCLUSIONS 

 

  Based on the simulation results, the water level does not exceed the height of 

the existing coastal dikes of 7.5 m high; it means no inundation in the coastal area of 

the Ariake Sea and Saga lowland when the storm surge occurred in this area. The 

maximum water level at each measurement line is relative same but the times are the 

difference.  
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Chapter 5 

1-D HYDRODYNAMIC MODELING OF FLOODING IN THE CHIKUGO 

RIVER 

 

 

5.1.    INTRODUCTION 

 Chikugo River is located on Kyushu Island in Japan, belongs to Oita, 

Fukuoka, Kumamoto, and Saga prefectures. It is mainly covered with forest, 

wetlands, agriculture, and urban–built up areas. The total basin area is about 2,800 

km2. The Chikugo River rises under the Mount Aso and discharges into the Ariake 

Sea. With a total length of 143 kilometers, it is the longest river of Kyushu Island 

which empties into the Ariake Sea. The upper reaches of the river are important to 

forestry, whereas the middle and lower reaches are important for the local agriculture, 

providing irrigation to some 400 km² of rice fields on the Tsukushi Plain.  The river 

is also important for the industry, with twenty electrical power plants are located 

along the banks of the Chikugo River, as well as the major city of Kurume in Fukuoka 

Prefecture. 

 In July 2012, torrential rain in the Kyushu island caused high discharge or 

river flood in the Chikugo River.  Recorded from Senoshita station at Chikugo River, 

the maximum of high discharge was 5864.9 m3/s on July 14, 2012 at 01:00 pm. To 

see how much influences of flood in this river, this study is conducted to analyze of 

river flooding by using 1-D simulation model. 
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5.2.    STUDY AREA AND DISASTER 

 

5.2.1   Study area 

 The Chikugo River empties into the Ariake Sea from km 0 at Estuary to km 

23 at Senoshita station, including the river branch along of this route such as Hayatsue 

River, Jobaru River, Sagae River and Morodomi River as shown in Figure 5.1. 

 

 

Figure 5.1: Study area of Chikugo River 

(Source: Japan Water Agency, 2015) 

 

 

5.2.2.  Studied disaster 

 Studied disaster is the high discharge, or river flood has been occurred at the 

Chikugo River due to torrential rain on July 2012.  

 

http://www.water.go.jp/honsya/honsya/english/jwa_ta/map6.html


Arthur Harris Thambas Page 61 

 

5.3.    METHODOLOGY 

This study utilizes a one-dimensional hydrodynamic model, MIKE 11 

developed by DHI (Danish Hydraulic Institute). This software is used to analyze the 

water level in the high discharge condition at the Chikugo River including the river 

branch. The data required for this analysis such as: cross-section of the river,  a 

network of river and boundary data. The geometry of cross-sections of Chikugo River 

and branch was obtained from MLIT Chikugo River Office, Japan. 

 

5.3.1 Cross-section 

 Cross-section obtained from field measurement data. The original data was 

analyzed such as shown in Figure 5.2 and Figure 5.3. 

 

 

Figure 5.2 : Original data of cross-section 

(source: MLIT Chikugo River office, Japan) 
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Figure 5.3 : Analysis of cross-section data 

 

5.3.2  Network  

 The network was obtained based on the analysis of cross-section data. The 

lowest river bottom of each cross-section or the lowest point of each cross section 

data analysis become a points the network of river. Figure 5.4 shows the network of 

Chikugo River and its branch with cross-sections. 
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Figure 5.4: Network of Chikugo River and branch with cross-section 

 

 

5.3.3  Boundary data 

 The input data in boundary is discharge at upstream and water level at 

downstream of the river. In this case the discharge data was taken from upstream of 

Chikugo River and Jyobaru River and the water level data was taken from 

downstream of Chikugo River and Hayatsue River. The discharge data of Chikugo 

River was obtained from Senoshita station and discharge data of Jyobaru river was 

obtained from Hidekibashi station by the time series format of discharge data. The 
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water level data was obtained from tide data at near estuary of each rivers  Chikugo 

and Hayatsue as shown in Figure 5.5  to Figure 5.7. 

 

 

Figure 5.5: Discharge hydrograph of Chikugo River at Senoshita Station 

 

 

Figure 5.6: Discharge hydrograph of Jyobaru River at Hidekibashi Station 
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Figure 5.7: Tidal hydrograph of Hayatsue River near Chikugo River 

 

     

5.4.   RESULTS AND DISCUSSIONS 

 

5.4.1  Model Calibration 

 

5.4.1.1    Water level 

  Calibration of water level is performed based on the boundary condition of 

the water level data input at downstream of the Chikugo River and Hayatsue River. 

The water level condition based on simulation result at the downstream of the 

Chikugo River and Hayatsue River. The results of model calibration are shown in 

Figure 5.8 and 5.9 
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Figure 5.8: Calibration of water level at Hayatsue River near mouth of Chikugo River  

 

 

Figure 5.9: Calibration of water level at Wakatsu station 
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Based on model calibration of water level at Hayatsue River near mouth of 

Chikugo River was obtained the water level measured related same with water level 

simulated. Although there were some discrepancies between the measurement and 

simulation of the water level at the Wakatsu station, but overall the water level 

simulated were coordinated well with the measured data. 

 

5.4.1.2    Discharge 

  Calibration of discharge is performed based on the boundary condition of the 

discharge data input at upstream of the Chikugo River and Jyobaru River. The 

discharge condition based on simulation result at the upstream of the Chikugo River 

and Jyobaru River. Discharge condition between measurement and simulation result 

are same. The model calibration of discharge is shown in Figure 5.10 and Figure 5.11. 

 

 

Figure 5.10: Calibration of discharge at Senoshita Station 
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Figure 5.11: Calibration of discharge at Hidekibashi station 

 

 

5.4.2  Simulation results 

 

  In the simulation result, the water level condition depended on the tide 

condition at the mouth of the river in the downstream and discharge condition in the 

upstream. Figure 5.12 showed the hydrograph of discharge and tide as the boundary 

condition in the upstream and downstream.  
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Figure 5.12: Hydrograph of discharge and tide  

 

 

 The simulation result of water level is based on the boundary condition on the 
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following the boundary condition at upstream and downstream. Figure 5.13 to Figure 

5.15 shows the pattern of water level simulated changing following the pattern of 

water level measurement at the mouth of Chikugo River and Hayatsue River. 
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Figure 5.13: The pattern of water level simulated at Chikugo Km. 0  

and Hayatsue Km. 0.4 

 

 

 

Figure 5.14: The pattern of water level simulated at Chikugo Km. 1.2  

and Hayatsue Km. 1.6   
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Figure 5.15: The pattern of water level simulated at Chikugo Km. 4.2  

and Hayatsue KM. 4.6 

 

 

Figure 5.16 showed that the pattern of water level changes at Chikugo Km. 

5.4 and Hayatsue Km. 5.8 follows the water level pattern between mouth of Chikugo 

at Km 0 (measurement and boundary condition) and Sta. Wakatsu at Km 6.85 

(measurement). 
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Figure 5.16: The pattern of water level simulated at Chikugo Km 5.4  

and Hayatsue Km. 5.8 
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River Km 6.8 (-6800) still followed the pattern of water level or tide from 

downstream. As for, Figure 5.18 is showed the pattern of water level at Chikugo 
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Figure 5.17: The pattern of water level simulated at Chikugo River Km 6.8 

 

 

 

Figure 5.18: The pattern of water level simulated at Chikugo River Km 7.0 
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Figure 5.19 to Figure 5.22 show that the patterns of water level simulated 

changes following the discharge pattern at Sta. Senoshita Km 23.0 (measurement and 

boundary condition). It means, the influences of discharge pattern from upstream as 

boundary condition is stronger because the location of water level simulated nearly 

the boundary condition in upstream. 

 

 

Figure 5.19: The pattern of water level simulated at Chikugo River Km 16.2 

 

 

Figure 5.20: The pattern of water level simulated at Chikugo River Km 18.8 
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Figure 5.21: The pattern of water level simulated at Chikugo River Km 21.2 

 

 

 
 

Figure 5.22: The pattern of water level simulated at Chikugo River Km 23.0 

 

 The longitudinal of water level conditions at Chikugo River section could be 

seen in Figure 5.23 and Hayatsue-Jyobaru River section is shown in Figure 5.24. The 

maximum water level at the Chikugo River section and Hayatsue-Jyobaru River 

section could be seen in the Figure 5.25 and Figure 5.26. 
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Figure 5.23: Water level condition at Chikugo River section (initial condition) 

River dyke (left) 

River dyke (right) 
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Figure 5.24: Water level condition at Hayatsue - Jyobaru Rivers section (initial condition) 

River dyke (left) 
River dyke (right) 
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Figure 5.25: Maximum water level at Chikugo River section at the time 17:30 on July 14, 2012  

 

Maximum water level Minimum water level 
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Figure 5.26: Maximum water level at Hayatsue-Jyobaru Rivers section at the time 18:00 on July 14, 2012
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5.5    CONCLUSIONS 

 

  Based on the simulation results, the water level does not exceed the height of 

the existing coastal dykes of 7.5 m high, it means no inundation in the coastal area of 

the Ariake Sea and along of the Chikugo River and its branch when the high discharge 

or river flood by torrential rain occurred in this area on July 14 to 15, 2012.  

  The pattern of water level changes following the pattern of water level 

measurement at the mouth of Chikugo at Km. 0 and the pattern of discharge 

measurement at Senoshita Station at Km. 23.00 (-23000) from the river mouth of 

Chikugo. 

  The pattern of water level simulated near boundary condition in the 

downstream is followed the tide measurement at the mouth of Chikugo River as Km 

1.2 (-1200), Km 4.2 (-4200), Km 5.4 (-5400) even to Km 6.8 (-6800) from the river 

mouth.  

  The pattern of water level simulated near boundary condition in the upstream 

is followed the discharge measurement at the Senoshita station as Km 21.2 (-21200), 

Km 18.2 (-18800) and Km 16.2 (-16200) from the mouth of Chikugo river. 

  The pattern of water level simulated near Wakatsu station Km 6.85 (-6850) 

from the mouth of Chikugo river is followed the water level measurement at Wakatsu 

station as Km 6.8 (-6800) and Km 7.0 (-7000). 

  Based on the pattern of water level simulated, the effect of boundary at the 

river mouth extents to Km 6.8 (-6800) at the Chikugo River. It means, the influences 

of tide extents to Km 6.8 near Wakatsu station. 
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Chapter 6 

COUPLED MODEL ANALYSIS OF INUNDATION IN THE 

COASTAL AREA OF THE ARIAKE SEA DUE TO  

STORM SURGE AND FLOOD 

  

 

6.1.     INTRODUCTION 

 The coupled model of 1-D and 2-D hydrodynamic model linking the river 

channel flooding simulation and storm surge model simulation analysis was proposed 

for the numerical resolution in this study. The numerical models using one-

dimensional (1-D) approximation were commonly based on the finite difference 

method (Chaudhry 2007; Cunge et al. 1980) and the finite element method 

(Nwaogazie and Tyagi 1984; Sen and Garg1998; Szymkiewicz 1991). Nevertheless, 

the finite difference method is still popular because of comparatively less 

computational effort. In this approach, the model flood simulation is conducted using 

the 1-D numerical model simulation and the storm surge model simulation is 

conducted using the 2-D numerical model simulation.  

 In chapter 4, the model simulation of the storm surge by Typhoon Pat that has 

occurred in the Ariake Sea on August to September 1985 using the 2-D numerical 

model was performed. This study utilized a two-dimensional hydrodynamic model, 

and considered transections are 7 measurement lines: Shiroishi, Higashiyoka, 

Rokkaku estuary, Kase estuary, Chikugo estuary, Saga airport and Ohamma. In the 

simulation results, the water levels did not exceed the elevation of existing coastal 

dyke, which means no seawater inundation happens in the coastal area of the Ariake 

Sea. 
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 In chapter 5, flood or high discharge by torrential rain that has occurred on 

July 2012 is analyzed at Chikugo River and branch. This study utilized a one-

dimensional numerical model. This study analyzes of the cross-section and the 

network of the Chikugo River and branch. The discharge data from upstream of 

Chikugo River and Jyobaru River and the water level data from downstream of 

Chikugo River and Hayatsue River are used for input data in the boundary. The 

discharge data of Chikugo River is obtained from Senoshita station and discharge 

data of Jobaru River obtained from Hidekibashi station with time series format data 

of discharge based on the time series of simulation. The water level data is obtained 

from water level data at near estuary of each rivers Chikugo and Hayatsue. In the 

simulation result shows there is no water level exceeded the existing dyke along 

Chikuko River in the study area. 

 The storm surge by typhoon sometimes occurred during the rainy season in 

Japan.  In July 2015, a total 72 hours rainfall from typhoon Nangka occurred in Japan 

causing landfall and flooding (Erdman and Wiltgen, 2015). With the assumption that 

the flood in chapter 5 and the storm surge in chapter 4 simultaneously occurred at the 

same time in the study area, the coupled model analysis will be conducted. 

  

6.2.    STUDY AREA AND SUPPOSED DISASTERS 

 

6.2.1  Study area 

 Study area is the coastal area of the Ariake Sea and Saga lowland where there 

is Chikugo River and its branch that empties into the Ariake Sea, such as shown in 

Figure 6.1 
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Figure 6.1: Study area 

 

6.2.2  Supposed Disasters 

  Supposed disasters are a storm surge and a flood that have occurred in this 

area. The first disaster is the storm surge by typhoon Pat that occurred on August, 31 

to September 1, 1985. The second disaster is the river flood in the Chikugo River and 

its branch by torrential rain from July 14 to 15, 2012. 
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6.3.    COMPUTATIONAL TOOL AND METHODOLOGY 

 

6.3.1.  Computational tool 

 The numerical simulation model MIKE-FLOOD integrates the 1D model 

MIKE-11 and the 2D model MIKE-21 into a single, dynamically coupled modelling 

system. Using a coupled approach, MIKE-FLOOD enables to extract the best features 

of both MIKE-11 and MIKE-21 to simulate floods, while avoiding many of the 

limitations of resolution and accuracy encountered when using MIKE-11 or MIKE-

21 separately. In the following sections, separate descriptions and usage of the 

component models MIKE-11 and MIKE-21, and the integrated model MIKE-

FLOOD is briefly described. 

 

6.3.2.  Methodology 

 The simulation results of 1-D numerical model analysis of flood in chapter 5 

and simulation results of 2-D numerical model analysis of storm surge in chapter 4 

are used as data input in the dynamically coupled modeling system. For simulation, 

the time series data must be same, in this case with the assumption the storm surge 

and the flood simultaneously occurred on July 14-15, 2012. 

 

2-D model setup 

 In chapter 4, 2-D model setup of storm surge simulation in the Ariake Sea has 

been done using MIKE 21 model setup. For using the coupled 1D-2D model 
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simulation, the setup data of the time series data must be changed based on the 

assumption as mentioned above.  

 

1-D model setup 

 In chapter 5, 1-D model flood simulation in the Chikugo River and its branch 

has been carried out using MIKE 11, such as cross section, network, and boundary. 

For using the coupled 1D-2D model simulation, the setup data of the time series is 

same because the time simulation at July 14-15, 2012 is the same time or based on 

the time series were used in the 1-D model setup in chapter 5. 

 

 

Coupling of 1D-2D model setup 

 The MIKE-11 river network was connected to the MIKE-21 bathymetry using 

the lateral link and standard link option available in the MIKE-FLOOD. Figure 6.2 

shows the connected river network and bathymetry. 
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Figure 6.2: The connected network and bathymetry 

 

 

6.4. SIMULATION RESULTS  

 For simulation both of flood and storm surge in the coupled model, the 

coordinate system must be same for making the river network and bathymetry 

connected, as shown in Figure 6.2. Also, time series data must be same. The 

simulation results could be presented using result viewer in the frame MIKE ZERO 

developed by DHI on the frame 1-D model and simulation result of inundation could 

be presented using MIKE 21 in the frame 2-D model. Figure 6.3 to Figure 6.11 shown 

the inundation processes. 

 The simulation showed that the exceeding of water level of the river dyke 

starting from 1:57 AM at the left bank of Hayatue River at the cross-section -3400 as 
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shown in Figure 6.3. In the Chikugo River, the water level exceeds the existing river 

dyke starting from 2:07 AM at the right bank of the cross-section -4600 as shown in 

Figure 6.4. 

 At the time 6:00 AM, the water level receded and there was no inundation 

area such as shown in Figure 6.5 and Figure 6.6. 

 The maximum water level of all cross sections in the Chikugo River section 

was occurred at the time 11:00 AM on July 14, 2012 and the maximum water level 

of all cross sections in the Hayatue-Jyobaru River section was occurred at the time 

11:00 AM on July 14, 2012 and at the time 0:00 on July 15, 2012, as shown in Figure 

6.7 to Figure 6.9. 
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Figure 6.3: Water level in the Hayatsue-Jyobaru River section at time 01:57 on July 14, 2012 

Minimum water level Maximum water level River dyke (left) River dyke (right) 
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Figure 6.4: Water level in the Chikugo River section at time 02:07 on July 14, 2012 

Minimum water level Maximum water level River dyke (left) River dyke (right) 
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Figure 6.5: Water level in the Chikugo River section at time 06:00 on July 14, 2012 
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Figure 6.6: Water level in the Hayatsue-Jyobaru River section at time 06:00 on July 14, 2012 
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Figure 6.7: Maximum water level in the Chikugo River section at time 11:00 on July 14, 2012 
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Figure 6.8: Maximum water level in the Hayatsue-Jyobaru River section at time 11:00 on July 14, 2012 
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Figure 6.9: Maximum water level in the Hayatsue-Jyobaru River section at time 00:00 on July 15, 2012



Arthur Harris Thambas Page 95 

 

Figure 6.10 to Figure 6.19 showed the water surface distribution when the 

storm surge and the river flood occurred in the coastal area of Ariake Sea and Saga 

lowland near of Chikugo estuary. 

 

 

 

Figure 6.10: Water surface distribution in the coastal area of the Ariake Sea  

at time 02:15 on July 14, 2012 



Arthur Harris Thambas Page 96 

 

 

Figure 6.11: Water surface distribution in the coastal area of the Ariake Sea  

at time 03:00 on July 14, 2012 

 

 

Figure 6.12: Water surface distribution in the coastal area of the Ariake Sae  

at time 06:00 on July 14, 2012 
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Figure 6.13: Water surface distribution in the coastal area of the Ariake Sea  

at time 08:00 on July 14, 2012 

 

 

Figure 6.14: Water surface distribution in the coastal area of the Ariake Sea  

at time 11:00 on July 14, 2012 
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Figure 6.15: Water surface distribution in the coastal area of the Ariake Sea  

at time 15:00 on July 14, 2012     

                             

 

Figure 6.16: Water surface distribution in the coastal area of the Ariake Sea  

at time 18:00 on July 14, 2012 
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Figure 6.17: Water surface distribution in the coastal area of the Ariake Sea  

at time 20:00 on July 14, 2012 

 

 

Figure 6.18: Water surface distribution in the coastal area of the Ariake Sea  

at time 22:00 on July 14, 2012 
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Figure 6.19: Water surface distribution in the coastal area of the Ariake Sea  

at time 00:00 on July 15, 2012 

 

 

 

 

6.5. CONCLUSIONS  

 Based on the simulation result by the coupled model simulation, if the river 

flood in the Chikugo River and its branch and the storm surge in the Ariake Sea 

simultaneously occurred, the coastal area of the Ariake Sea and Saga lowland near of 

the Chikugo River estuary were inundated.  

 The water level rise during the storm surge occurs in the Ariake Sea can cause 

sea water inside in the Chikugo River and the same time the flood from Chikugo river 

occurs can cause water level in the Chikugo river exceed the existing river dyke. This 

situation resulted inundation in the coastal area of the Ariake Sea and Saga lowland 

near of the Chikugo river estuary.  
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In the simulation result, no sea water exceeds the existing coastal dyke with 

7.5 m high. The inundation in the coastal area of the Ariake Sea and Saga lowland 

occurred due to water level exceeding the existing river dyke or water overflowing 

of the Chikugo River and its branch. 
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Chapter 7 

DISASTER MANAGEMENT IN THE COASTAL AREA OF THE 

ARIAKE SEA AND SAGA LOWLAND 

 

7.1   INTRODUCTION 

  Storm surge is a phenomenon in which ocean water surface elevations rise as 

a result of strong winds and decreases in atmospheric pressure during tropical storms 

and typhoon. Storm surge by the typhoon is the one of the frequent disasters in Japan, 

which can cause significant inundation in the coastal communities. Lives and 

properties located in the coastal area of typhoon-prone regions are significant risk 

during large storm events.  

  Many of the risks are given by the storm surge along the coastal areas 

including residential areas, industries, agriculture, etc., with exposure to inundation 

from the combination of storm surge and river flooding. However, storm surge 

combined with the flood in the coastal area is not well studied. Understanding of 

these risks of inundation as a result of storm surge and river flooding is quite 

necessary, especially for the coastal communities. River flooding by high discharge 

is also a disaster that could cause inundation in the coastal area. 

  This study aims to get an overview of inundation when the two disasters, 

storm surge, and river flood simultaneously occurred in the coastal area of Ariake 

Sea and Saga lowland. GIS analysis will be presented to obtained the inundation 

affective in the houses or buildings and the public facilities. Also, created an 

inundation risk map in the coastal area of Ariake sea and saga lowland for the future 

of coastal disaster management. 
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7.2   STUDY AREA AND SUPPOSED DISASTERS 

  The Ariake Sea, which is surrounded by Fukuoka, Saga, Nagasaki and 

Kumamoto Prefectures, is the biggest Bay in Kyushu island. This is an inner bay, 

where many rivers are flowing in such as Chikugo River, Kase River, Rokkaku River, 

Yabe River, etc. This bay includes muddy tidal flat. The Ariake Sea's tidal range is 

the largest in Japan, and the maximum tidal range is as much as 5 m to 6 m at the  

innermost part. Coastal areas of this bay are mainly lowland with an unusually small 

slope, so once the sea water enters these areas, they will be immediately inundated.  

  If the typhoon track coincides with the Ariake Sea's longitudinal axis, it can 

cause a significant storm surge. The large rivers such as Chikugo River, Kase River, 

and Rokkaku River empty into this bay. There are settlements, airport, agriculture, 

industrial and office buildings and other public facilities in this coastal area. 

Therefore, the Japanese government has built a coastal dyke along the shorelines and 

river within this region with the maximum elevation of 7.5 m based on the analysis 

of Isewan Typhoon in 1959.  

 In 1985, the typhoon Pat hit a track in this area. With highest winds of 80 mph 

(130 km/h) this typhoon resulted in the storm surge in the region of Kyushu island, 

79 people were injured, 38 houses in Japan were demolished, 110 were damaged, and 

over 2,000 were flooded. More than 160,000 homes lost power, a total of 165 flights 

were cancelled (Wikipedia, https://en.wikipedia.org/wiki/Typhoon_Pat_(1985). In 

July 2012 torrential rains caused high discharge and widespread flooding in this area, 

causing at least 10 people deaths, 20 were missing and around 50,000 evacuations 

(http://www.hurriyetdailynews.com/50000-flee-as-record-rain-in-japan-kills-10-

.aspx?pageID=238&nID=25346&NewsCatID=356). 
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7.3   INUNDATION RISK ANALYSIS 

 

7.3.1   GIS Model Analysis 

    GIS model analysis are conducted to obtain the inundation risk affected based 

on the result of 2-D inundation numerical simulation. The data of 2-D simulation 

result are converted to shape file. Furthermore, inputted data of buildings or houses 

and public facilities are also converted to the shape files. According to the level of 

the inundation risk, the amount of buildings or houses and public facilities inundated 

is obtained. Figure 7.1 and Figure 7.2 show the inundation risk of buildings and 

public facilities in the coastal area of Ariake Sea in the case that the storm surge and 

the flood simultaneously occur in this area. More than 96,000 buildings or houses 

and 245 public facilities were inundated. 
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Figure 7.1: Inundation of the buildings or houses 

 

Ariake 

Sea 

Chikugo R. 
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Figure 7.2: Inundation of the public facilities 

 

 

7.3.2   Creation a risk map of Inundation 

 Based on the GIS analysis, the risk maps of inundation be created such as 

shown in Figure 7.3. 

Ariake 

Sea 

Chikugo R. 
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Figure 7.3: Risk maps of inundation  
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 Based on GIS analysis in the risk map of inundation, table 7.1 below showed 

the criteria of inundation risk. The risk category was based on the inundation height 

and inundation affected to buildings or houses and public facilities. 

 

Table 7.1: Inundation risk categories 

 

 

 Figure 7.4 showed the evacuation route to places that are not affected by the 

inundation such as school, hospital, open spaces or garden and other public facilities. 

  

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Possible evacuation route  
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7.4   FLOOD DISASTER MANAGEMENT IN THE COASTAL AREA 

 

 Clear policy, necessary laws, and legislation are an important mechanisms in 

Inundation or flood management. Also, the institutional arrangement with clear roles 

and does not create redundant work with other organizations can effectively support 

mitigation planning and implementation. The single agency that is fully responsible 

to overall flood management in every level such as national, region, province and 

local, will have efficient flood management and power in co-operation and 

implementation with other organizations. Inundation disaster management consists 

of four main activities which can be described by the cycle of activities as shown in 

Figure 7.5 as following: 

 

Activity 1: Preparedness for flood  prevention and mitigation 

 Preparedness for inundation prevention and mitigation is formed by both 

structural and non-structural measures (NSWG, 1986; ESCAP, 1991). Structural 

measures refer to physical construction work. Non-structural measures are those in 

agreement with sustainable development, well commonly acceptable, and 

environmental friendly. Among non-structural measures are watershed or landscape 

control, laws and regulations, socio-economics, an efficient flood forecast and 

warning system, inundation risk assessment, people awareness, inundation databases, 

etc. a site-specific mix of structural and non-structural measures seems to be a proper 

solution. Flood disaster mitigation includes the followings: updating of laws and 

legislation, community-base approaches to disaster mitigation, establishment of 

information system, capability building, public awareness and social marketing, 

establishment of database system, setting up safety standard in inundation control 
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project, inundation risk maps, inundation forecasting and warning system, land use 

control and land conservation and insurance. 

 

Activity 2: Inundation readiness  

 Readiness enables governments, organizations, communities and individuals 

to respond rapidly and effectively to disaster situations. Readiness measures include 

the formulation of a viable disaster plan, maintenance of resources and training of 

personnel. The readiness can be divided into the following items: Warning: when a 

hazard has been identified but is not yet threatening a particular area. Threat: when a 

hazard has been identified and assessed as threatening a particular area. Precaution: 

Action was taken after receipt of warning to offset effects of disaster impact. 

 

Activity 3: Emergency response 

 Response measures are those which are taken immediately prior to and 

following disaster. Such measures are directed towards saving life and protecting 

property and to dealing with the immediate damage caused by the disaster. Disaster 

response should be comprehensive and meets a broad range of urgent needs and 

problems arising in the community. 

 

Activity 4: Flood recovery and rehabilitation 

 Recovery is the process by which communities and the nation are assisted in 

returning to their proper functioning following a disaster. Post-flood recovery is often 

less spectacular than actions during the flood, as national leaders and the media who 

have left the natural catastrophe are become disinterested (Kundzewicz, 2002). The 

recovery process can be very protracted, taking 5-10 years or even more. Three main 
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categories of activity are normally regarded as: restoration, rehabilitation, 

reconstruction 

 

 

 

 

 

 

 

 

 

 

Figure 7.5:  Flood disaster management cycle (Tingsanchali, 2012) 

 

 

7.5   APPLICATION OF FLOOD DISASTER MANAGEMENT CYCLE  

 

 Based on the inundation simulation results and inundation risk affected in the 

coastal area of the Ariake Sea and the Saga lowland area due to storm surge and flood, 

this area is a high risk of inundation where buildings or houses and public facilities 

were affected. Also very influential to human and communities life in the surrounding 

of this area. Required an action or efforts to reduce the risk of inundation by 

implementing of disaster management systems based on flood disaster management 

cycle following as: 
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1. Mitigation: Measures put in place to minimize the results from a disaster. 

Examples: building codes and zoning; vulnerability analysis; public 

education. 

2. Awareness: Planning how to respond. Examples: preparedness plans; 

emergency exercises/training; warning systems. 

3. Response: Initial actions taken as the event takes place. It involves efforts to 

minimize the hazards created by a disaster. Examples: evacuation; search 

and rescue; emergency relief. 

4. Recovery: Returning the community to normal. Ideally, the affected area 

should be put in a condition equal to or better than it was before the disaster 

took place. Examples: a temporary housing; grants; medical care.  

 

Figure 7.6 shown the suggestion for required an action or efforts to reduce the 

risk of inundation by implementing of disaster management systems based on flood 

disaster management cycle for the coastal disaster management in this area. 
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Figure 7.6: Inundation disaster management cycle 

(Photograph source from MLIT Takeo office, 2011) 

 

 The existing system for flood disaster management in the study area was 

conducted as shown in Figure 7.7: 

 

 

Figure 7.7: Flood disaster management existing in study area 

(Source: MLIT Takeo office, 2011) 
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1. Plan : Planning for flood disaster management in Saga Plain 

2. Do : Implementation and execution such as residents evacuation drill, training 

or emergency exercise with utilizing the disaster prevention map. 

3. Check : Inspection and evaluation of the progress confirmation, etc. in the 

field (Saga Plain) to evaluation and verification 27 measures of the existing 

plan, consists of; information collection and transmission, wide area support 

and emergency transportation network, and strengthening cooperation. 

4. Action : Treatment and improvement 

 

Inundation disaster management cycle proposed to be implemented, as shown 

in Figure 7.6 is a simplification from the existing flood disaster management in the 

study area (Figure 7.7) to be more easily understood and applied both before, while 

and after the disaster. 

 

 

7.6   CONCLUSIONS  

 

 Based on the 2-D inundation numerical modeling, the storm surge and the 

flood by torrential rain at the same time can cause inundation disaster near the river 

mouth, the inundation risk in the coastal area is high. The buildings or houses and 

public facilities are supposed to have a serious disaster. More than 96,000 buildings 

or houses and 245 public facilities were inundated. 

 The simulation result was presented the area of inundation is high risk with 

inundation height 0.5 m -3.5 m. Evacuation must be carried out for action to reduce 

the risk of inundation. 
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 Required an action or efforts to mitigate the risk of inundation by 

implementing of disaster management systems based on flood disaster management 

cycle for the coastal disaster management in this area be recommended.  
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Chapter 8 

CONCLUSIONS AND RECOMMENDATION 

 

 The overarching aim of this research is to modeling of the inundation in the 

coastal area of the Ariake Sea head based on the disasters has occurred in the coastal 

area of the Ariake Sea in the past, such as storm surge by typhoon and river flood or 

high discharge by torrential rain. The previous chapter in this dissertation has been 

presented of the objective of this research. 

 In the numerical simulation of river flood by torrential rain on 14 to 15 July 

2012 at the Chikugo River and branch using 1-D model simulation, no water level 

overflow. It means no inundation in the coastal area of the area of the Ariake Sea and 

Saga lowland around of the Chikugo River.  

  The pattern of water level change in the Chikugo River and branch based on 

or following the boundary condition in the upstream and downstream of the Chikugo 

River and branch. The pattern of water level simulated near boundary condition in 

the downstream is followed the tide measurement at the mouth of Chikugo River until 

Km 6.8 (-6800) from the river mouth. The pattern of water level simulated near 

boundary condition in the upstream is followed the discharge measurement at the 

Senoshita station until  Km 16.2 (-16200) from the mouth of Chikugo river. It means, 

the pattern of water level change is followed the discharge condition extents to 6.2 

kilometer from Senoshita station at Km 23.0 (-23000). 

  The pattern of water level simulated near Wakatsu station Km 6.85 (-6850) 

from the mouth of Chikugo river is followed the water level measurement at Wakatsu 

station as Km 6.8 (-6800) and Km 7.0 (-7000). 
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  Based on the pattern of water level simulated, the effect of boundary at the 

river mouth extents to Km 6.8 (-6800) at the Chikugo River. It means, the influences 

of tide extents to Km 6.8 near Wakatsu station. 

 In the numerical simulation of storm surge by typhoon Pat on August 31 to 

September 1, 1985, at the Ariake Sea using 2-D model simulation, no water level 

exceed of the existing coastal dyke. It means no inundation in the coastal area of the 

Ariake Sea and Saga lowland. Inundation occurred in the coastal area of the Ariake 

Sea, and Saga lowland near Chikugo River estuary due to water level exceed of 

existing river dyke at Chikugo River and branch during the storm surge and river 

flood simultaneously occurred. No sea water exceed of the existing coastal dyke. 

The coastal area of Ariake Sea and Saga lowland are vulnerable against the 

inundation due to the simultaneous occurrence of the storm surge and river flood. 

Required an action or efforts to reduce the risk of inundation by implementing of 

disaster management systems based on flood disaster management cycle for the 

coastal disaster management in this area. 

 For the further analysis of the storm surge, the effects of wind speed 

distribution and the waves should be considered additionally. 
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