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Abstract

Among the many fields of robotics, assistive robotic technologies have attracted a
lot of attention among the research community as well as the common society. Especially
assistive robots such as exoskeletons, prosthetics are playing major roles in assisting and
rehabilitation processes for a range of people including physically weak, old, injured or
disabled individuals to improve their quality of life. An upper-limb exoskeleton robot is
one of the most effective assistive robots that can be used to assist or rehabilitate the mo-
tions of upper-limbs of a physically weak individual. Controlling upper-limb exoskeletons
however, requires sophisticated technologies or methods, as they always interact with hu-
man users. More importantly, upper-limb exoskeletons are required to control according to
the motion intention of the user. Apart from torque/force sensor signals, Electromyography
(EMG) and Electroencephalography (EEG) signals are identified as two potential input sig-
nals for these control methods in order to monitor the motion intention of the exoskeleton
users. Although there has been tremendous progress in the last decade in control methods
for upper-limb exoskeletons, there are several problems which need further research effort.
Therefore, the objective of this thesis is to address issues related to the control of upper-
limb exoskeletons using EMG and EEG signals. More specifically this thesis focuses on
the issue of muscle fatigue in EMG-based control and the feasibility of using EEG signals
for evaluation of the perception-assist in upper-limb exoskeletons.

The first half of the thesis addresses the problem of muscle fatigue on EMG-based
control. At the beginning, experiments were carried out to find out the effects of muscle
fatigue on EMG signals and EMG-based control in human upper-limb power-assist. The
results of these experiments revealed that only an EMG amplitude feature such as EMG
Root mean square (RMS) is not adequate as an input for accurate EMG-based control dur-
ing the muscle fatigue conditions and highlighted the importance of using frequency do-
main EMG features as additional input features to EMG-based control. To compensate for
the effects of muscle fatigue on EMG-based control, this thesis proposed a novel method
based on multiple fuzzy-neuro modifiers which used EMG mean power frequency (MPF)
in addition to EMG RMS as an input to identify the muscle fatigue conditions. Experi-
ments were performed with elbow flexion/extension motions to control a robot arm and
the proposed method was able to reduce the overshoots of the robot motions that occurred
due the effects of muscle fatigue conditions. From the overall analysis, it turned out that
the proposed method based on multiple fuzzy-neuro modifiers with EMG RMS and MPF
features as inputs could be effectively used to compensate for the effects of muscle fa-
tigue on EMG-based control. With increasing number of EMG-based control approaches
for assistive robots, the proposed method is beneficial to deal with the problem of muscle
fatigue.
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The second half of the thesis investigates the feasibility of EEG signals for evaluation
of the perception-assist control performed by the upper-limb exoskeletons. Perception-
assist has been introduced in addition to the power-assist for upper-limb exoskeletons to
avoid the undesired motion intentions by the users with deteriorated perception abilities.
Perception-assist needs to be learned by the exoskeleton itself and in this learning process;
it is required to judge the correctness or incorrectness of the perception-assist performed
by the exoskeleton. EMG is one of the potential signals to judge the perception-assist
control performed by the exoskeleton. On the other hand, EEG signals are also another
candidate for evaluation of the perception-assist control. Experiments were carried out
using a wrist assist exoskeleton with perception-assist while monitoring EMG and EEG
signals. Results of the analysis of EMG signals during perception-assist signified that EMG
signals are sometimes not adequately changed for the judgments of the perception-assist.
Moreover, for a particular user, it might be difficult to measure the EMG signals or required
muscles may simply be unavailable. For these reasons, in addition to EMG signals, this
thesis explored the possibility of utilizing EEG signals. Correctness or incorrectness of
the perception-assist was judged using a combination of EMG-EEG signals and the results
showed a relatively higher accuracy compared to EMG signals alone. Moreover, an attempt
was made to judge the perception-assist based on only EEG signals. Even though the
accuracy of the judgment was above the chance level in this approach, it was lower than
that of EMG only or EMG-EEG approaches. Eventually, this study suggested that to use
a combination of EMG and EEG for higher judgment accuracy of the perception-assist.
It also highlighted that depending on the situation and condition of the user, either EMG,
EEG or combination of EMG-EEG can be switched in between to judge the correctness or
incorrectness of the perception-assist.
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Chapter 1

Introduction

In the last few decades, robots and robotic technology have progressed from machines

in science fiction to nearly commercialized products. A few decades ago, robots were

mainly utilized as tools in manufacturing facilities to perform tasks like welding, drilling,

machining and assembling. However, with the advancement of technology, the field of

robotics expanded rapidly. More and more researches are carried out in different fields of

robotics such as industrial robots, arial robots, mobile robots, cooperative robots, assistive

robot and biorobotics, underwater robots etc.

Among many fields of robotics, assistive robotic technologies have been able to attract

much attention in the current research community around the world. Recent developments

in assistive robotic technology serves in many ways to improve the quality of life for a

range of people including physically weak, old, injured or disabled individuals. It is also

a well known fact that in current global society, the number of aged population and the

percentage of aged population are increasing rapidly [1]. The main reasons of this rapid

increment of aged population are the decrease in the total fertility rate and the increase in

the life expectancy [2]. In addition, a significant numbers in the population suffer from

physical disabilities such as full or partial loss of functions. These disabilities largely occur

due to diseases including trauma, strokes, spinal cord injuries, occupational injuries and

sports related injuries. To add to this, with increasing number of physically weak people

(aged, injured, slightly disabled or handicapped), the working percentage is decreasing and

taking care of physically weak individuals has become a problem. Therefore, usually such

physically weak individuals are forced to take care of themselves. However, it may not be

an easy task to maintain a normal daily life for such individuals in the society. In light of

these problems, assistive robotic technology has opened new paths to assist and improve

1
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the living standards of those people. Especially, assistive robots are playing a major role in

assisting and rehabilitating of physically weak, old, injured or disabled people.

Exoskeleton or exoskeleton robot is one of the promising applications among assistive

robotics technology. The exoskeleton robot is a robotic device that is used to assist or re-

habilitate the limb motions of physically weak individuals. Based on the body part or parts

where the exoskeleton is used to assist, usually the exoskeletons are categorized as upper-

limb exoskeletons [7,30,31,107], lower-limb exoskeletons [8] or full body exoskeletons [9].

As upper-limb motions are very important to perform daily activities, many research and

development projects and studies are carried out on upper-limb exoskeletons. Especially,

assisting motion of the upper-limb of physically weak people brings a lot of benefit to

ease their daily lives and that makes them more productive to the society. Many promising

upper-limb exoskeleton robots [7,30,31,107] have been developed to date. However, a ma-

jority of the exoskeleton robot systems are still at the experimental stage or clinical testing

levels. More research effort is essential to bring them out of the laboratory.

Controlling any exoskeleton, however, requires sophisticated technologies or methods,

as they always interact with human users. Therefore main requirements such as accuracy,

long-term reliability and safety are vital for exoskeletons and their control methods [21].

As a result, several promising control methods have been proposed to meet those require-

ments. However for any control method, the basic task is to translate the user’s motion

intention to drive the exoskeleton robot. Thus, it is necessary to find an appropriate in-

put signal to the control method that reflects the motion intentions of the exoskeleton user.

Basically, input signals to the control method of exoskeleton can be categorized as non-

biological signals and biological signals. Input signals from force/torque sensors which

can be considered as non-biological signals have been successfully used to control the ex-

oskeletons [75, 76]. On the other hand, it is necessary for any input signal of exoskeleton

control methods to provide the information about the motion intention of the user as soon

as it occurs because, exoskeletons should operate in real time without any delays. In this

context, electromyography (EMG) has been one of the frequently used biological signals in

the control methods of bio-robotics applications such exoskeletons and prosthetics, because
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EMG directly reflects the human motion intention or muscle activity of the user. Many ef-

fective control methods have been developed for exoskeleton robots taking EMG signals

as input information [11, 24, 26–28, 106]. On the other hand, with recent advancements of

technology, brain-machine interfaces (BMI) have attracted a lot of interest in the assistive

robotics field. Such interfaces may open new paths to directly decode the user’s brain sig-

nals to control equipment such as prosthetics, exoskeletons. Among the several methods

of capturing brain signals, electroencephalography (EEG) is identified as a non-invasive

and convenient method which may be suitable for practical systems. Several attempts to

implement EEG signal based control methods have been reported in case of exoskeleton

robots [3,4]. However, unlike EMG signals which has one to one mapping between motion

intentions or limb movements, EEG signals do not reflect such clear and direct connections.

Therefore, extracting motion intention from the EEG signals is much more challenging in

comparison to EMG signals.

Although there has been tremendous progress in the last decade in control methods

for upper-limb exoskeletons, there are several problems which need more research effort.

While some of the problems in EMG-based control methods such as physical tremor or

unintentional limb movements have been explored [44–46] adequately, relatively less at-

tention has been given to issues such as muscle fatigue and problems related to perception-

assist control. Therefore, the objective of this thesis is to address these issues related to the

control of upper-limb exoskeletons using EMG and EEG signals: more specifically issue of

muscle fatigue in EMG-based control and problems associated with the perception-assist

control in upper-limb exoskeletons.

Muscle fatigue can occur in any exoskeleton user and may have a higher possibility

of occurring in older people. As the body gets older, the skeletal muscle fibers become

smaller in size and less powerful which may lead to reduction of strength and endurance,

and tendency to fatigue rapidly [32]. Muscle fatigue can affect the estimation of the correct

motion intention of the user in the EMG based control as muscle fatigue has an influence

on variations of the EMG amplitude and frequency [95, 96, 99, 100]. Muscle fatigue can

significantly modify the EMG to EMG-based torque relationship, and therefore assistive
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robots such as exoskeletons, prosthetics should consider this alteration and comply with

it in order to maintain accurate control. Therefore, when the user’s muscles get fatigued,

it is required to consider the variety of EMG signals on the EMG-based controllers and

compensate for the effects. In light of these issues, the first half of this thesis aims to

explore the problem of muscle fatigue on EMG-based control.

On the other hand, many of the proposed upper-limb exoskeleton systems assume

that the exoskeleton user has good environment perception abilities. However, this as-

sumption may not be valid for each and every user. Therefore, in addition to the basic

assist, perception-assist control methods have been proposed [40–43] for upper-limb ex-

oskeletons. In the perception-assist control, exoskeletons generate additional modification

forces to the user’s motions based on information of environment monitoring sensors to

ensure safety of the user’s motion. As it is difficult for the exoskeleton to plan all proper

perception-assist for each and every task, tool, and environment, basically exoskeletons are

required to learn the proper perception-assist on its own [42, 43]. In this learning process,

it is necessary to judge the correctness or erroneous of the perception-assist performed by

the exoskeleton. Specifically, second half of this thesis aims to study this problem of eval-

uating or judging the perception-assist control in upper-limb exoskeletons. In addition to

EMG signals, the feasibility of utilizing EEG signals for the evaluation of perception-assist

control in upper-limb exoskeletons are explored in the second half of this thesis.

1.1 Thesis Contributions

The research work presented in this thesis basically addresses the issues related to con-

trol of upper-limb exoskeletons using EMG and EEG signals. More specifically, major

contributions of this thesis are outlined as follows:

• Show that only an EMG amplitude feature such as EMG RMS is not adequate as

an input for effective EMG-based control during the muscle fatigue conditions and

highlight the importance of using frequency domain or spectral EMG features as ad-

ditional input features to EMG-based control. Experiments are carried out to support

these claims.
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– Propose multiple fuzzy-neuro modifiers based method for compensation of the

effects of muscle fatigue on EMG-based control. Both amplitude (time domain)

and spectral (frequency domain) features of EMG signals are used to identify the

muscle fatigue conditions. In the proposed method, multiple fuzzy-neuro modi-

fiers are trained to adapt to the muscle fatigue conditions and those modifiers are

used to modify the EMG-based torque output in order to compensate the effects

of muscle fatigue on EMG-based control. Effectiveness of the proposed methods

are experimentally validated.

• Show that variations of EMG signals are sometimes not adequate to be used in per-

ception assist control learning approaches where EMG signals are basically used to

evaluate the correctness or incorrectness of the perception-assist performed in upper-

limb exoskeletons.

– Investigate the feasibility of utilizing EEG signals in addition to EMG signals to

evaluate the correctness or incorrectness of the performed perception-assist tasks

by upper-limb power-assist exoskeletons. In this investigation, combinations of

EMG and EEG signals are tested to judge to the performed perception-assist

tasks of the upper-limb exoskeletons. Moreover, possibilities of using EEG sig-

nal alone for this purpose are also explored. Effectiveness of the propose methods

are validated by performing experiments.

1.2 Thesis Organization

This thesis consists of five chapters including Introduction chapter. The overall structure of

the thesis depicts in fig. 1.1. The contents of next chapters are stipulated as below.

Chapter 2: Background

This chapter starts with a brief introduction on existing exoskeleton robots with a major

focus on upper-limb exoskeletons. More importantly, an in-depth review of controlling
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Figure 1.1: Structure of the Thesis

methods of upper-limb exoskeletons using EMG and EEG signals which have been re-

ported in the literature are presented, discussed and limitations of those methods are identi-

fied. Moreover, specific information on the existing control method that has been proposed

for Saga University upper-limb exoskeleton system in previous work are also presented

since, it is essentially the basic framework of the research work of this thesis.

Chapter 3: Muscle Fatigue and Compensation of the Effects of Muscle Fatigue on

EMG Based Control

This chapter presents a study which aims to address one of the challenges in EMG-based

control: Muscle Fatigue. In this chapter, studies that carry out to analyze the effects of

muscle fatigue on EMG-based control in human upper-limb power-assist are presented.
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Moreover, a novel method based on fuzzy-neuro modifiers for compensation of the effects

of muscle fatigue on EMG-based control to be used in upper-limb exoskeletons are pro-

posed. Proposed methods are experimentally validated and results are presented with a

discussion.

Chapter 4: Investigating the Feasibility of EEG Signals for Evaluation of Perception-

Assist Control in Upper-Limb Exoskeletons

This chapter reports a study which aims to address the problems in perception-assist con-

trol learning of upper-limb exoskeletons. This chapter illustrates an attempt to use EEG

signals recorded from human brain in addition to EMG signals to judge the correctness

or incorrectness of performed perception-assist control by the upper-limb exoskeletons.

Methods of using combination of EEG-EMG signals and EEG signals alone to evaluate

the preformed perception-assist control are investigated. Effectiveness of the methods are

compared with the approach that use EMG signals alone to judge the correctness of the

perception-assist. Moreover, this chapter highlights the advantages of using EEG signals

for evaluation of perception-assist control in upper-limb exoskeletons.

Chapter 5: Conclusions and Future Work

The final chapter includes new contributions of the thesis, conclusions, and suggestions for

the future directions.



Chapter 2

Background

This chapter contains background knowledge on exoskeletons and exoskeleton control

methods. It starts with a brief review on different types of existing exoskeleton systems

and especially focusing on the upper-limb exoskeletons. More importantly, this chapter fo-

cuses on control methods of upper-limb exoskeletons using EMG and EEG signals. First,

a non-exhaustive review of existing EMG-based control methods of upper-limb exoskele-

tons is presented. As mentioned in the introduction, EEG signal is also another biological

signal that has potential to be used as an input signal in upper-limb exoskeletons control.

Therefore, part of this chapter is dedicated to identify the potential uses of EEG signals

and analyze EEG-based control approaches that have been proposed for upper-limb ex-

oskeleton control. Moreover, a relatively new approach: hybrid EMG-EEG based control

methods that have been proposed for upper-limb exoskeletons and other similar assistive

robotic applications are briefly reviewed in this chapter. The research work presented in

this thesis was inspired by the overall framework of EMG-based control methods of Saga

University upper-limb exoskeleton. Therefore at the end of this chapter, it contains a brief

background on those methods which have been developed to date. This will help to provide

a clear understanding about the research work that is going to present in next few chapters

of this thesis.

2.1 Exoskeletons or exoskeleton robots

The basic concept of exoskeleton has been emerged from biology. Some creatures such as

turtles and crabs have external structures called exoskeletons. These exoskeletons usually

offer safety from environment and predators, as sensory mediums to outside world and at-

tachments for muscles etc [5]. In robotics field, an exoskeleton or exoskeleton robot is a

8
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(a) (b) (c)

Figure 2.1: Different types of Exoskeletons (a) CADEN)-7 : Upper-Limb [7] (b) Berkeley Lower-
Limb [8] (c) HAL full body exoskeleton [9]

machine consisting basically of an outer framework worn by a human. This machine could

be a passive device or an active device such as a powered system of motors or hydraulics.

Basically, the structure of an exoskeleton robot consists of joints and links which are cor-

responding to the human body. Exoskeleton robots can be classified according to the place

where it supports the human body. This includes upper extremity, lower extremity and

full body exoskeletons. Figure 2.1 shows examples for such mentioned three categories of

exoskeletons that have been reported.

2.2 Upper-limb exoskeletons

Upper-limb motions are vital for humans to maintain natural daily activities. However, for

people who do not privilege to have such functional upper-limbs, upper-limb exoskeletons

have been proposed to get external assistances. Human upper limb mainly consists of seven

degree of freedom (DOF). Some researchers have developed 7 DOF upper-limb exoskele-

ton robots [7,107] in order to assist the complete upper-limb motions. On the hand in some

of the proposed designs [10–12], number of DOFs have been limited than seven. Figure 2.2

depicts few examples of reported upper-limb exoskeleton systems.
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(a) (b)

Figure 2.2: Upper-Limb Exoskeletons (a) BONES, University of California [30] (b) University of
Zurich, Switzerland ARMin-Robot [31]

It is not a straight forward task to design the mechanical systems of an exoskeleton.

Many factors such as biomechanics of the upper-limb, safety measures, types of acquisi-

tions, power sources, material and weight of the systems need to be considered when de-

signing exoskeleton systems [6]. On the other hand, controlling upper-limb exoskeletons

according to human motion intention is not an easy task [13, 14] as well. When control-

ling an exoskeleton, the selection of a proper control input signal that reflect correct motion

intention of the user is really important. So far research is being carried out considering dif-

ferent biological signals and especially Electromyography(EMG) have shown a promising

potentials. On the other hand, with the advances of brain signal monitoring methods, Elec-

troencephalography (EEG) signals based control approaches for upper-limb exoskeletons

have been gained much attention recently in addition to EMG-based methods.

2.3 Electromyography (EMG)

Electromyography(EMG) signal indicates the amount of electrical potential generated by

the muscle cells when at contraction or rest. In other words, the EMG signal is the algebraic

summation of the motor unit action potentials within the measured area of the EMG elec-

trode being used [15]. In the case of muscle contraction, it can be voluntary or involuntary.

Because of the fact that EMG signal can directly reflet the motion intention, EMG signal is

often considered as a strong candidate to be used in control approaches of assistive robots
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as an input signal.

2.3.1 Characteristics of EMG signal

Amplitude of the EMG signals is usually stochastic or random in nature and so it can be

represented by a Gaussian distribution function approximately. The peak to peak value

of the EMG signal amplitude is usually within 0-10 [mV] range. The usable energy of the

signal is typically around 0 to 500 [Hz] frequency range, with the dominant energy being in

the 50-150 [Hz] range [16]. Variations of EMG signals are different from person to person.

Moreover, EMG signals are differed for the same motion even with the same person. On

the other hand, physical conditions such as tiredness, muscle fatigue, sleepiness, etc. and

psychological conditions such as stress, etc. can affect the EMG signals. Therefore, these

characteristics should be considered carefully when developing control method for assistive

robots such as exoskeletons using EMG signals.

2.4 EMG signal acquisition systems

Recorder with 
A/D 

Converter 

Electrical 
Signal Isolator

Personal 
Computer/ 

LaptopEMG signals

EMG 
electrodes

Figure 2.3: Typical set up of EMG signal acquisition

Typical equipments in EMG signal acquisition setup is shown in fig 2.3. First step

of the EMG signal acquisition is the detection of EMG signals using electrodes. Detec-

tion of EMG signals can be done mainly in two ways namely non-invasive and invasive

methods. The EMG signals detect from skin surface of the muscles are called surface

EMG which is a non-invasive method. On the other hand, the EMG signals acquire from

inside of the muscles or by invasive methods are called as intramuscular EMG. Both of
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these EMG recording methods have their own advantages and disadvantages. Placement

of surface EMG electrodes is comparatively easier than intramuscular EMG electrodes.

Moreover, surface EMG works well for the large muscles and muscles which are easily

accessible. However, for a small muscle or a deep muscle which can not be accessible us-

ing surface EMG, intramuscular EMG is beneficial. Also, intramuscular EMG can be used

when specifically a muscle need to be isolated from a muscle group. In this context for the

practical applications like exoskeletons or prosthetics, surface EMG is preferred over the

intramuscular EMG simply because of non-invasive nature of the surface EMG.

To record the surface EMG, the electrode should be placed over the interested muscle

after cleaning the skin surface. Usually, alcohol based liquids are applied to removal of

dirt, oil, and dead skin. Under ideal conditions shaving excess hair should be carried out

if necessary though, it is not feasible in many practical cases. There are a several types of

surface electrodes that can be found in the field. Some types need a gel [17] to be applied

between the skin and the electrode whereas other type [18] use an adhesive tapes to ensure

proper contact between the muscle and the electrode instead.

(a) (b) (c)

Figure 2.4: Commercially available EMG acquisition systems. (a) Bio Semi [19] (b) Delsys [18]
(c) Nihon Kohden [17]

Then signals from the electrodes are passed into an input box and subsequently fed to
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an amplifier. In order to cancel out the noise, a differential amplifier is used when ampli-

fying the weak EMG signal. There after, the output of the amplifier is fed into an analog

to digital converter (A/D converter) to digitized the amplified analog EMG signal. Finally,

this digitized signal is sent to a personal computer or a laptop to use in the whatever the

application. However, in order to safely isolate the electrical connection between com-

puter side and the user (through EMG electrodes), an electrical isolation method is used in

between. There are a number of commercially developed EMG acquisition systems avail-

able [17–20]. Most of them can be used for both clinical and research purposes. Some

of the existing EMG acquisition system manufacturers are Nihon Kohden Co. [17], Del-

sys [18], BioSemi [19], and Cambridge Electronic Design [20]. Some of these systems are

shown in fig. 2.4.

2.5 A brief review on EMG-based methods proposed for assistive robots

control

EMG-based control methods have commonly been used in many of the assistive robots

such as exoskeletons. Basically, EMG based control methods of assistive robots can be

categorized based on the structure of the EMG control method. Considering the archi-

tecture of the controller, the EMG based control methods can be categorized mainly as

pattern recognition based and non-pattern recognition based [22, 23]. Non-pattern recog-

nition based control method consists only a few steps and basically a simple structure. In

most cases it uses simple ON/OFF type controllers [22,27]. Therefore, the accuracy of this

method basically is not high with compared to the pattern recognition based methods. On

the other hand, simple on-off control is one of the primary levels of controlling assistive

robots such as exoskeletons and practically this type of prosthetic/ exoskeletons control

may not adequate to be used in assisting the complex daily life activities.

Therefore, many control methods for assistive robots are implemented with pattern

recognition based control methods and they provide accurate controls compared to non-

pattern recognition based EMG based control [22]. Basically, pattern recognition based
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EMG processing consist of four major stages namely; EMG data acquisition, data segmen-

tation, feature extraction and classification as shown in fig 2.5. Moreover, fig 2.6 depicts

different methods and algorithms typically find in each of these steps. Usually, the accuracy

of pattern recognition based control methods can be improved by selecting proper feature

extraction methods and applying appropriate classification algorithms [22, 23].

EMG
acquisition

Data 
segmentation

Feature
extraction

Classification

Figure 2.5: Typical EMG processing flow in pattern recognition based control

In EMG pattern recognition based methods, data segmentation is performed after the

data acquisition. Data segmentation can be performed with two major techniques as over-

lapping segmentation [22, 23] or disjoint segmentation which uses segments with prede-

termined length for feature extraction. However, overlapping segment method increases

processing time [23] and better for the data segmentation [22].

After data segmentation, feature extraction is carried out. Practically, it is difficult to

provide all the data of EMG signals directly to the classifier [26, 107] due to large number

of EMG channels and random nature of the raw EMG signals. Furthermore, success of any

pattern recognition methods depends on accurate selection and extraction of relevant fea-

tures. On the other hand, dimension of the feature vector should be minimized as possible

without discarding the important information. According to the previous studies on this

field, basically these features fall into one of three categories as time domain, frequency

domain and time scale domain [23]. Many assistive robots have used time domain features

in most cases and RMS is widely adapted for feature extraction [25, 107]. On the other

hand, assistive robots based on frequency domain and time frequency domain are not often

be found.

Extracted features then need to be classified into respective classes for the recognition

of the desired motion patterns. Speed of the classifier is a vital aspect for generating re-

quired output from the controller. Usually training of the classifier is necessary to improve
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EMG data acquisition

Invasive method:
Use of needle electrodes

Non invasive method:
Use of surface electrodes

Signal conditioning

Noise rejection/filtering

Amplifications

Data segmentation

Disjoint segmentation

Overlap segmentation

Feature extraction

Time 
domain

Frequency 
domain

Mean absolute value (MAV)

Root mean square (RMS)

Wave form length (WL)

Zero crossing (ZC)

Slope sign changes (SSC)

Auto regressive coefficients (ARC)

Frequency median (FMD)

Time frequency 
domain

Frequency median (FMD)

Modified frequency median (MFMD)

Frequency ration (FR)

Frequency mean (FMN)

Wavelet transform (WT)

Short time fourier transformation (STFT)

Wavelet packet transform (WPT)

Classification Neural networks (NN)

Bayesian classifiers (BC)

Fuzzy logic (FL)

Linear discriminant analysis (LDA)

Support vector machine (SVM)

Hidden Markov model (HMM)

Fuzzy –Neuro (FN)

Figure 2.6: Different methods used in each step of pattern recognition based EMG processing as
presented in [21]
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the response of the control system of the assistive robot. Depending on the performance of

the subject, practice required for rehabilitation etc can be customized through training of

the classifier. In previous studies, several methods have been used for EMG features clas-

sifications. Some of the popular methods are Neural network [22, 25], Fuzzy logic [23],

Neuro-fuzzy [22, 23], Probabilistic approach etc.

Instead of aforementioned non pattern recognition based EMG based control methods

such as simple on-off/binary control of robots using EMG signals, proportional controlling

methods been developed [24, 28]. The rationale behind those methods are that the control

output is estimated by a proportional controller, where the level of the assistance or propor-

tionality constant of the exoskeleton is controlled by varying the gains linked to each EMG

signal. In the meantime, muscle models such as Hill-based muscle model [29] are also

employed in some studies [11] . However, due to the nature of the biological signal such

as EMG which is usually a non-linear and non-stationary signal, aforementioned types of

control methods might have to suffer from few challenges in complex control of exoskele-

tons or prosthetics. Moreover, EMG signals are known to be user dependent and therefore,

a custom developed controller for a particular user may not be used by another user without

any modifications to the EMG-based controller. These reasons urge the importance of the

use of adaptive EMG-based control methods [26, 106]. In these types of EMG-based con-

trol methods, it has the possibility to adapt the assistive robot or exoskeletons to be used

with any user by the means of learning.

On the other hand apart from the basic requirement of assisting, it is required to ad-

dress the other related issues in EMG-based control as well. Effects of physical tremor or

unintentional limb movements on EMG-based control is one of the challenges in EMG-

based control. The tremor is a commonly found disorder especially in older people, which

causes rhythmic oscillation of a body part. People with upper limb tremor, in particular,

usually show difficulties in performing activities of daily living. These unintentional move-

ments generate EMG signals that do not represent the actual motion intentions of the users.

Therefore, it is important to identify and cancel the tremor effects on EMG-based control



2.6. BRAIN MACHINE INTERFACE (BMI) 17

approaches of the assistive robots such as exoskeletons. Several research groups have stud-

ied on this area already and they have proposed few solutions [44–46] to compensate this

problem. However, these methods need to be perfected and suggest the important of further

research requirements.

Most of these assistive robots such as exoskeleton systems assume that the user has

good environment perception abilities. However, this assumption may not valid for each

and every user. For an example, elderly or disabled individuals may suffer from not only

reduced motor ability, but also limited environment-perception ability as well. For such

individuals, it is important for exoskeletons to have some sort of environment perception

ability in order to prevent undesired or accidental motions performed by the user. In light of

these requirements, perception-assist control methods have been proposed for exoskeletons

[40–43] in addition to the basic power assist. Nevertheless, more research effort is needed

to further improve and verify these methods.

On the other hand, effects of muscle fatigue on EMG-based control is one of the other

issues which has not been paid much attention to date. This issue also needs to be consid-

ered in order to enhance the reliability and robustness of the EMG-based control.

2.6 Brain Machine Interface (BMI)

Even though, the advances of EMG-based control methods in assistive robots such as ex-

oskeletons are enormous, these EMG-based control approaches used alone have some dis-

advantages that depend on the user and on the application. In cases where the user cannot

generate enough muscle signals, EMG-based approaches are not beneficial as an input. For

example, a person who has a totally paralyzed upper limb may not be able to use a device

such as an exoskeleton because of the lack of getting control signals from the muscles of

the paralyzed limb.

On the other hand, with recent advancements of technology, brain machine interfaces

(BMI) have attracted a lot of interest in the bio-robotics area. A BMI is a direct communi-

cation pathway between the brain and an external device. This device or application can be
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Figure 2.7: Brain Machine Interface (BMI)

a simple cursor control program on a computer, intermediate application such as control-

ling a wheel chair or controlling a complex device such as a prosthetic or an exoskeleton.

Fig 2.7 shows a systematic diagram of such a BMI system. These interfaces may open new

paths to directly decode the users brain signals to control equipment such as prosthetics,

exoskeletons or wheelchairs as mentioned; for example, even though a user cannot make

any efficient movements of his limbs, he may still be capable of generating commanding

brain signals, which can be used in such a brain control interface to drive an exoskeleton.

There are several methods exist to study about the brain functions or brain neural sig-

nals (see fig. 2.8) such as functional magnetic resonance imaging (fMRI), positron emis-

sion tomography (PET) , magnetoencephalography (MEG), nuclear magnetic resonance

spectroscopy, electrocorticography (ECoG), Single-photon emission computed tomogra-

phy, near-infrared spectroscopy (NIRS), and Event-related optical signal (EROS) other than

EEG. Each of these methods has respective advantages and disadvantages.

Among these several methods of capturing brain signals, electroencephalography (EEG)
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(a) (b)

(c) (d)

Figure 2.8: Sevaral brain function monitoring methods other than EEG. (a) fMRI (Toshiba [36])
(b) MEG (Elekta Neuromag TRIUX [37]) (c) ECoG (Adopted from [38]) (d) NIRS
(LABNIRS [39])

is identified as a non-invasive and convenient method which may be suitable for practical

systems. Therefore in next section, a brief introduction of EEG signals, its characteristics,

relative advantages and disadvantages of EEG signals are discussed.

2.7 Electroencephalography(EEG)

Electroencephalography (EEG) is the recording of electrical activity along the scalp pro-

duced by the firing of neurons within the brain. The EEG can be defined as electrical ac-

tivity of an alternating type recorded from the scalp surface after being picked up by metal

electrodes and conductive media [33]. Local current flows are produced when brain cells

(neurons) are activated. The EEG measures mostly the currents that flow during synaptic
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excitations of the dendrites of many pyramidal neurons in the cerebral cortex [34]. Differ-

ences of electrical potentials are caused by summed post synaptic graded potentials from

pyramidal cells that create electrical dipoles between soma (body of neuron) and apical den-

drites (neural branches) [34]. Brain electrical current consists mostly of Na+, K+, Ca++,

and Cl- ions that are pumped through channels in neuron membranes in the direction gov-

erned by membrane potential [35]. When large populations of active neurons produce

electrical activities it can be measured on the head surface using EEG electrodes. How-

ever, between electrodes and neuronal layers there exist many layers such as skin, skull

and several other layers which cause weakening the current signal. Therefore, these weak

electrical signals discovered by the EEG electrodes are needed to massively amplify before

use.

Despite the relatively poor spatial sensitivity of EEG, it gives several advantages over

other methods or techniques in studying brain functions mentioned previously. Some of

the advantages of EEG include:

• Noninvasive

• EEG has high temporal resolution

• EEG sensors can be applied in more places than other brain signal monitoring meth-

ods such as fMRI or MEG, since those methods often consist of bulky and immobile

equipments.

• Hardware costs are relatively lower with compare to most other techniques

• EEG does not involve user to get exposure in such as high-intensity magnetic fields

etc.

However, there are few relative disadvantages as well.

• Low spatial resolution on the scalp.

• EEG can pickup poorly the neural activity that occurs in the cortex.

• Signal-to-noise (SNR) ratio is poor, therefore advanced data analysis and relatively

large numbers of subjects are require to extract useful information from EEG.

• EEG system preparation and connection time to subject may take long time and may

complex depend on the type of the EEG system used.



2.8. EEG SIGNAL ACQUISITION SYSTEMS 21

Considering these points, many research attempts can be found that using EEG signals

in bio robotics applications such exoskeletons, prosthetics etc. Especially with the rapid

development of the technology, some of the latest version of EEG systems have been able

to reduce or even avoid some of the mentioned disadvantages. Therefore, the popularity has

been increased of using EEG signals among researchers as a potential method of acquiring

brain signals.

2.7.1 Characteristics of EEG signals

As discussed earlier, the EEG is a recording of the electrical activity of the brain from

the scalp. The measured waveforms reflect the cortical electrical activity. Signal intensity

of EEG activity is often quite small and measured in microvolt (µV) range. On the other

hand, it is possible to differentiate EEG signal as alpha (α), beta (β), delta (δ), and theta

(θ) waves as well as spikes associated with epilepsy [52] based on signal frequency. The

alpha waves are known to be in the frequency spectrum of 8-13 Hz and can be measured

from the occipital region in an awake person when the eyes are closed. The frequency

bandwidth of the beta waves is 13-30 Hz and beta waves can be detected over the parietal

and frontal lobes. The delta waves have the frequency range of 0.5-4 Hz. The delta waves

are detectable in usually infants and sleeping adults. The theta waves are in the frequency

spectrum of 4-8 Hz and these waves also are obtained from children and sleeping adults

[52].

2.8 EEG signal acquisition systems

EEG acquisition system is one of the most important parts in any application that used

EEG signals. Different types of EEG signal acquisition systems have been developed and

their features and capabilities may different from each other. However, basically in any

EEG acquisition system, EEG signals are measured by EEG electrodes. Normally these

EEG electrodes are holding on a cap that can be wore over the head. Then as the measured

signals are weak, they are amplified. Finally, those amplified analog signals are digitized

before sending to a computer. Figure 2.9 depicts some of the existing EEG acquisition
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systems that are being used among research community.

(a) (b) (c)

(d) (e)(d) (e)

Figure 2.9: EEG acquisition systems. (a) Emotiv EEG Headset [47] (b) g.Nautilus wireless EEG
system [48] (c) DSI 10/20 Dry sensor interface [49] (d) NeuroSky MindWave headsets
[50] (e) EGI dense array EEG [51]

Some of the EEG acquisition systems need more time to prepare the EEG system.

In those types of systems, it takes considerably long time to connect a subject to EEG,

as it needs accurate placement of many electrodes around the head and the use different

kinds of gels, saline solutions, and/or pastes to keep them in place [51] . However, recently

introduced EEG systems do not need such an extensive preparation. Some of them are using

dry EEG electrode technologies [49] and therefore, those systems can be connected to an

user much faster. Moreover, newer version of EEG acquisition systems are comparably

small in size and are capable of wireless data transmissions [48] . Another important fact

is the number of EEG electrodes. Some of the EEG systems are only consisted of few EEG

electrodes [47, 50], whereas several EEG systems boast high density EEG electrodes such

as 128 or 256 electrodes [51]. High density EEG systems are helping to increase the spatial
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resolution of EEG signals. Moreover, most of these EEG acquisition systems can measure

or record EEG signal data at high sample rates such as even up to the 20 [kHz] in some

cases.

As mentioned above, there are some advantages as well as limitations of each EEG

acquisition system, therefore it is necessary to select an appropriate EEG acquisition system

that required for particular research application or device.

2.9 International 10-20 system: standard locations of scalp EEG elec-

trodes

In order to measure the EEG signals of a subject, EEG electrodes should be placed over

his/her brain using arrangements such as shown in fig 2.9. The placements of EEG elec-

trodes should have some sort of standard in order to make sure the reproducibility of the

results across the subjects and over the time. International 10-20 system [53] is an inter-

nationally recognized method to describe and apply the location of scalp electrodes in the

context of an EEG test or experiment. This method is based on the relationship between

the location of an EEG electrode and the underlying area of cerebral cortex. The ”10” and

”20” refer to the actual distances between adjacent electrodes are either 10% or 20% of the

total front back or right left distance of the skull. In this system, 21 electrodes are located

on the surface of the scalp as shown in fig 2.10.

Each channel location has a letter to identify the lobe and a number to recognize the

hemisphere location. Frontal,central,temporal, parietal, and occipital lobe areas of brain

are represented by letters F, C, T, P and O, respectively. An electrode placed on the midline

is referred to ”z” (zero). On the other hand, the letter A, Pg and Fp are used to represent

the earlobes, nasopharyngeal and frontal polar areas respectively. Even numbers refer to

EEG electrode positions on the right hemisphere and odd numbers represent to those on

the left hemisphere of the brain. It is necessary to position these EEG electrodes over the

scalp. Two anatomical landmarks are normally used for this purpose as shown in fig 2.10

(b). They are the nasion and the inion points. In addition to these basic 21 electrode sites,

intermediate 10% electrode positions have been introduced (see fig 2.11) [54] as well.
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(a) (b)

Figure 2.10: The international 10-20 system seen from (A) left and (B) above the head. A = Ear
lobe, C = central, Pg = nasopharyngeal, P = parietal, F = frontal, Fp = frontal polar,
O = occipital (Adopted from [52])

Figure 2.11: Location and nomenclature of the intermediate 10% electrodes, as standardized by
the American Electroencephalographic Society (Adopted from [52])
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2.10 EEG artifacts

One of the biggest challenges in monitoring EEG signals is artifact. Unlike in EMG, there

are several types of artifacts commonly found in EEG. However, basically EEG artifacts

can be classified in to two main groups. One of them are patient related artifacts such as

movement, sweating, ECG, eye movements [55]. Other artifacts are related to technical

problems such as 50/60 Hz main lines artifact, cable movements, electrode paste-related

[55] etc. Many artifact rejection and removal methods have been proposed [56,57] in order

to deal with the problems when utilizing EEG signals. However, each of these artifacts

may have to be handled differently according to the situation or application.

2.11 A brief review on EEG-based methods proposed for assistive robots

control

As discussed previously, large number of EMG-based control methods have shown high

effectiveness in assistive robots control such as upper-limb exoskeletons control. How-

ever, given the potential advantages of using EEG-based control methods, increase number

of researches are reported on designing and developing EEG-based control methods for

assistive robots. In fact during the last decade, it has shown remarkable advances in neu-

ral decoding and assistive brain machine interfaces to reconstruct motor function, control

of robotic limbs, and orthoses in real time. Dexterous control of assistive robot such as

upper-limb exoskeleton using direct EEG signals is a challenging task even at the present.

However, researchers have already taken initiatives target this goal.

Different characteristics of brain signals have been explored by the researchers in or-

der to use in control methods of assistive robots. Motor imagery (MI) [59] is one of the

mental activities that has frequently been used to build BCIs. MI represents the result of

conscious access to the content of the intention of a movement that is normally performed

unconsciously during movement preparation. It has been found that a physical movement

or preparation for the movement of a particular limb is usually accompanied by the µ and

β waves decreasing. This variation is called event-related desynchrohization (ERD) [64].
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Moreover, an increase of µ waves ( this is called event-related synchrohization (ERS) [64])

is observed during and post limb movements. More importantly, these ERD and ERS vari-

ations are also observed during motor imagery and classifications of these variation can be

used in assistive control methods.

EEG signal 
acquisition

Signal 
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Device control 
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Left hand 
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Figure 2.12: Structure of an interface that use motor imagery (MI) related EEG signals to control
assistive devices

For an example, as shown in fig 2.12 when person imagine his or her left and right

hands movement, EEG signals variations from the right side and left side of the brain can

be used to identify the respective imaginary motions. Processed EEG signals then can

be mapped in to control devices such as exoskeletons or prosthetics. As a reference, MI

based method has been used to control of a hand orthosis [58]. This system is capable of

driving the powered orthotic hand which opens and closes the subjects hand to be used

in rehabilitation processes following a stroke. In that study of hand orthosis control, MI

of hand motions were classified using EEG signals and those classification results were

mapped in to the control of hand orthosis open/close motion. However, this simple on-off

type control can be taken as the basic level of exoskeleton control. Recently, a research

on the feasibility of using motor imagery EEG-based brain computer interface in chronic

tetraplegics for assistive robotic arm control has been reported [60]. In this study, four

mental tasks of motor imagery as left,right,foot and relax were classified using EEG signals

to control the external assistive robot arm. Moreover, a recent paper discusses about the
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possibility of the rehabilitation of patients with motor disorders through the BCI based on

motor imagery and the upper-limb exoskeleton control [62].

As shown in above studies, motor imagery can be recognized using EEG signals and

can be used in control methods of assistive robots such as exoskeletons. By improving

accuracy of the classifications, therefore more robust and reliable control can be archived.

Many classification algorithms such as linear discriminant, support vector machines, neural

networks classifiers and probabilistic classifiers have been used in the reported studies.

A comprehensive review of classification algorithms for EEG-based BCI interfaces can

be found in [63]. These classifiers are trained using EEG data of training sessions and

those trained classifiers are used to classify the new EEG data. One of the most important

requirements is the real time control of the assistive robots. Therefore, classification and

control methods should be capable of working real time.

Real time methods open new paths to improve the EEG based control methods in as-

sistive robots. Especially, in real time systems feedbacks can be given to the user when

he or she control assistive device such as an upper-limb exoskeleton using EEG signals

during training sessions. These feedbacks may improve the emission of particular brain

signals along with the training period and therefore might improve the classification re-

sults. Therefore, these feedbacks are critical in a MI-based assistive robot controls. For

example, a similar approach has been reported in a study that use left vs right vs rest motor

imageries to control a hand orthosis [69]. In that study, two training stages were carried

out. In the first training stage, a fresh subject was trained to control a cursor position using

motor imaginary movements. During this training stage visual feedbacks were displayed to

the subject. Once the subject achieve higher success rate in controlling the cursor, he was

trained to control the hand orthosis through BCI during the second training stage. Results

of that study observed that pre-training with visual feedback made the subjects perform

imaginary movements efficiently, so that the subjects could operate the orthotic hand accu-

rately. In another attempt, in order to address the question whether proprioceptive feedback

affects the regulation of brain oscillations and therefore the final control, a study has been

conducted using a BCI coupled on-line with a robotic hand exoskeleton [61]. Results of this
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study showed that proprioceptive feedback (feeling and seeing hand movements) improved

BCI performance significantly. However, this type of motor imagery-based BMIs to con-

trol orthosis normally requires long training times to gain control over brain waves. This is

a major disadvantage of motor imagery based approaches for assistive robots control.

Use of visual evoked potential (VEP) is one of the other approaches that some of the

proposed BCI and BMI have used. VEPs are generated by sensory stimulation of a person’s

visual field, and visual information processing mechanisms are reflected in the brain [66].

VEP based BCI is a tool that can identify a target on which a user is visually fixated via

analysis of concurrently recorded EEG. Fig. 2.13 shows the system diagram of a VEP based

control interface. In a VEP based BCI, each target is prepared to emit a unique stimulus

pattern which in turn evokes the relevant VEP pattern.

LED stimulators
Control  signals/
commands

EEG signal 
acquisition

Signal 
processing

LED stimulators
EEG 
signals

commands

Figure 2.13: Structure of an interface that use visual evoked potential (VEP) related EEG signals
to control assistive devices

Steady-state VEPs (SSVEPs) is a sub class of VEPs which occurs when the brain reac-

tion to stimuli of a frequency higher than 6 Hz [65]. SSVEPs are less susceptible to artifacts

occurred by blinks and eye movements and to EMG noise contamination [67] and there-

fore are typically used for BCI and BMI. As an example, control of an electrical prosthesis

with an SSVEP-based BCI has been proposed in [78]. In that study, an asynchronous

(self-paced) four-class BCI based on SSVEPs was used to control a two-axes electrical

hand prosthesis. That hand prosthetic consisted with four light emitting diodes and each of

them associated with a control command. From the results of that study suggested that the

SSVEP-based BCI while operating in an asynchronous mode can be used for controlling
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the neuro prosthetic devices with the flickering lights mounted on its surface. In similar

attempt, a SSVEP BCI to control a hand orthosis for persons with tetraplegia has been

proposed [70]. In recently published paper, a BMI-based occupational therapy assist suit

which asynchronous control by SSVEP has been proposed [68]. In that study, the subjects

were able to control BMI-based occupational therapy assist suit effectively using SSVEP.

EEG signals recorded from the visual cortex were used in classification. Paper also con-

firmed that the system could be operated with little training and system could be driven

asynchronously whenever the wearer wished to. These studies shows the effectiveness of

the SSVEP based approach to control assistive robots like exoskeletons. One of the major

advantages of SSVEP-based approach to control assistive robots such as exoskeletons is it

needs less training time than motor imagery-based control. However, it requires focused

attention to the external stimulus such as blinking lights mounted on an orthosis which

consider as a disadvantage.

On the other hand, several research groups have introduced combine use of several

approaches to control assistive devices such as exoskeletons. Recently, a self-paced control

of SSVEP-based orthosis with MI based brain switch has been proposed and evaluated [71].

The brain switch based on ERS in MI was used to activate the four-step SSVEP-based

orthosis only when required for control and to shutoff the flickering LEDs during resting

periods. In this case, two EEG channels; as one over the motor cortex and one over the

visual cortex were used.

One of the problems in almost all the previously mentioned approaches such as MI

or SSVEP based methods is that they are discrete systems which capable of sending only

a limited set of commands to the device such as an exoskeleton. However, ultimate goal

should be the dexterous control of assistive robot such as upper-limb exoskeleton using

direct EEG signals. In this context, recently some researchers have shown interest in de-

coding natural actions using EEG signals. This approach aims to decode the natural motor

plan to control the impaired or intact limb. Basically in this approach at first, a decoder that

maps neural activity to natural limb movements is prepared. Then it is used to predict limbs

movements from only the recorded neural activity. Several studies have been reported on
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decoding of upper limbs movement such as decoding hand directions [72], decoding elbow

joint velocities [74] and reconstructing three dimensional hand movements [73] using EEG

signals. These studies are important because, successfully predicted kinematics of limb

movements can be used to continuous control of assistive robots such as exoskeletons as

contrast to the previously mentioned discrete approaches.

Nevertheless, it can be observed that EEG signal has gained as a potential biosignal to

use in control approaches of assistive robots such as exoskeletons. Given the advantages

of using EEG signals, there are still many challenges to sort out in these EEG-based ap-

proaches. Especially, BCI or BMIs which use the EEG signals alone as the primary input

are not yet fully acceptable in applications like in assistive robots due to difficulties such as

low reliability, low accuracy, low user adaptability and low data transfer rates [79, 91, 92].

2.12 Hybrid EMG-EEG based control approaches

In order to compensate problems with both EEG and EMG based control methods, a com-

bination of both systems, building on the merits of each signal while diminishing the limi-

tations of each might be a promising approach. For example, in a device like exoskeletons,

some muscles needed for acquiring EMG signals might be disconnected or paralyzed, or

some nerves to the relevant muscles might be disconnected. In these cases, EEG can be

used to compensate for the missing EMG signals. Even if all needed muscles for EMG are

available, EEG can still be applied to get rid of the effect of fatigue or undesired tremor.

The main idea behind a hybrid EMG-EEG based control interface is the fusing of EEG

and EMG signals in the control method. Figure 2.14 depicts a typical graphical interpre-

tation of such a hybrid EMG-EEG based control interface. The fusion of the signals may

be carried out in many different ways, and may depend on factors such as the specific ap-

plication, and the abilities of the users. Applications of the hybrid approaches may change

from a simple game control application for an healthy person through to a artificial robotic

arm control application for an amputee subject. As discussed previously, there are many

different ways to fuse the EMG and EEG signals, within a particular control approach, to

enhance the effectiveness.
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Figure 2.14: A graphical interpretation of a typical hybrid EMG-EEG control interface

2.13 A brief review on hybrid EMG-EEG based methods proposed for

assistive robot control

The EEG or EMG signals can be used to control individual parts of a device, such as

parts in an assistive robotic device. On the other hand, all of them can be combined as

well. The latter approach will allow users to smoothly transfer from one control signal

to the other, depending on their preference and performance. Several criteria can be used

to distinguish the hybrid EMG-EEG control approaches in assistive robotic applications,

such as the particular applications/devices (e.g. prosthetics, exoskeleton, wheelchair) or

the input processing methods. As a two-input system, a hybrid EEG-EMG approach can
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either work on the inputs simultaneously or sequentially. Nevertheless, it is important to

ensure that, a higher effectiveness is achieved from the fusion approach of EEG-EMG

signals, than from methods that use either EMG or EEG signals alone.

Few studies [81–84] have attempted compensation for problems associated with the

EMG-based control methods in assistive robotics applications by using the hybrid ap-

proaches. One such problem which may be occurred when using EMG signals alone is

muscle fatigue. For such cases, instead of depending on the EMG signals alone, it is possi-

ble to utilize the EEG signals as an additional input signal to deal with the muscle fatigue

situation in the control approaches. Such an attempt of a fusion of muscle and brain sig-

nals for a hybrid-BCI were reported [81, 82]. In those papers, a parallel use of EMG and

EEG depending on the user availability and reliability were proposed for a hand-control

task. The experimental results of those studies suggested that the classification accuracy

improved with the combined approaches as compared to the approaches when EEG and

EMG inputs were used independently.

Recently, a novel multimodal sensor fusion approach for tremor suppression was pro-

posed [83]. In that study, a multimodal BCI-mediated soft, wearable robot capable of

compensating for upper limb tremor through functional electrical stimulation (FES) was

proposed. Moreover in that study, the control signal to drive the FES-based wearable robot

was supposed to be estimated based on a combination of EEG, EMG and inertial sensor

signals. The hybrid fusion method used in this case can be classified as a sequential fu-

sion method. This study emphasized the importance of fusion and integration of different

modalities in order to improve the accuracy, and the robustness, of the detection and char-

acterization of voluntary and tremorous components of movement.

Especially, the hybrid EMG-EEG control methods are effective when a particular per-

son lacks the ability to generate control signals to command an assistive robotic device such

as an active prosthetic arm. In the case of an above elbow amputee, for example, the mus-

cles which are required to generate forearm, wrist and hand motions are not present, even

if he/she may have the muscles for performing elbow joint motions. To address this issue,

a five degree of freedom (DOF) myoelectric arm which uses shoulder and elbow motions
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Figure 2.15: Combined use of EEG and EMG signals in controlling an artificial arm for an above-
elbow amputee

as additional input signals was proposed [85, 87] (fig 2.15). It was not, however, easy to

estimate various daily life motions with this method. Therefore, later on a combination of

upper-limb EMG signals and EEG signals was used to control this artificial arm [86]. Con-

trol of the forearm pronation/supination motions of the prosthetic arm was controlled using

EEG signals, whereas the elbow flexion/extension motions were operated by the EMG sig-

nals of the remaining bicep and triceps muscles. Therefore, this hybrid EEG-EMG based

control approach showed its potential advantages by realizing a control channel for the

additional degree of freedom (forearm pronation/supination). Even though, the aforemen-

tioned study was based on the upper-limb prosthetic, a similar method could be applied to

control an upper-limb exoskeleton in the case of user unable to generate adequate EMG

signals from particular muscles.

Moreover, few researchers have suggested the integration of EEG and EMG signals

in control approaches for use in assistive robotics applications such as exoskeletons. In

projects like MIND WALKER (Web: https://mindwalker-project.eu/), the researchers pro-

posed an integrated brain-computer approach basically based on EMG and EEG signals
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related to human locomotion. Then the same research group has also proposed a hybrid

BCI-based device with multimodal feedback to assist post-stroke motor rehabilitation of

the upper limb [88]. On the other hand, few studies [89,90] have introduced conceptual de-

signs of hybrid sensor fusion in BCIs. Not only EEG and EMG signals, but also additional

inputs such as signals from simple switches and motion sensors are fused in those designs

in order to enhance the effectiveness. These proposed design basically highlighted that

depending on the user preference and/or availability, the hybrid interfaces could be able

to decide which input channels, or combinations of fused channels, offer the most reliable

signals for controlling the assistive robotic devices.

In light of these background, several advantages of the hybrid EMG-EEG based control

approaches can be highlighted. The hybrid approaches can improve in several performance

criteria such accuracy, reliability or robustness in comparison to individual use of EEG or

EMG based control methods. Fusing EMG-EEG control approaches can also improve the

potential of assistive robotic applications such as prosthetics and exoskeletons by intro-

ducing an additional degree of freedom, and also improves the robustness of the control

approaches. For example, even if all necessary muscles for EMG-based control methods

are available, EEG signals can still be utilized during some common issues in the EMG-

based control such as undesired tremor or the effects of muscle fatigue. Furthermore unlike

fully EEG-based control approaches, where users may need to have high concentration on

his/her activity, these hybrid approaches may help to reduce the mental effort of the users

while they operating assistive robotic devices.

Even though with the aforementioned merits, there are several issues that have to be

encountered in the case of hybrid EMG-EEG approaches. One of the main challenges with

hybrid approaches is the difficulty in realizing flawless fusion of EMG and EEG based

methods. Although different techniques can be applied to combine EMG and EEG based

methods, it is important be cleared that not all the combinations are feasible and effective.

The performances of a non matching EMG-EEG combined approach may be less than that

of EEG or EMG alone. It is therefore vital to critically consider the ways of combining

both signals within the control approaches for a particular application in order to gain
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better results. On the other hand, all the issues involved in EEG or EMG based control

methods alone, will still be problems for the hybrid EMG-EEG approaches as well. In this

sense, the technology is one of the regulating factors for hybrid EMG-EEG based control

approaches. EEG systems with larger number of electrodes can explore a lot of details,

but it is sometimes not convenient to use such systems when they cover the whole head

of the user. Therefore, compact, low-weight and portable systems for EEG and EMG data

measuring need to be introduced. On the other hand, in the case of assistive robotics devices

such as exoskeletons or prosthetics, there is a high possibility of EEG signals being affected

by movement artifacts. It is, therefore, necessary to incorporate motion artifact filtering and

removal techniques in those control approaches. Moreover, because of the complexity of

hybrid EMG-EEG based control approaches, sometimes those systems may be difficult to

train or adapt by users. Therefore, additional consideration has to be focused to the training

experiments and protocols used in the hybrid EMG-EEG based control approaches.

2.14 Saga University upper-limb power-assist exoskeleton and its con-

trol method

In order to get a better understanding about the research work which is going to present

in this thesis, it is important to have an idea about the previous work done so far on this

research. Therefore, this subsection presents the details about the existing exoskeleton

hardware system and the EMG-based control methods which have been developed to date.

Latest version of the Saga University Upper-limb exoskeleton robot consists of 7 degree of

freedoms (DOF) [105, 107] and is shown in fig 2.16. It consists of seven dc motors and

those motors have in-built encoders or potentiometers to measure each joint angle. Apart

from those, force/torque sensors (PD3-32, Nitta Corporation) are fitted in the forearm and

wrist parts to monitor the force between the user and the robot.

In the exoskeleton system, the shoulder vertical, shoulder horizontal, shoulder rotation,

and elbow motions are controlled by the motor 1,2,3 and 4 respectively. The torques gen-

erated by these motors are transferred to the robot joints using pulleys and cable drives.

This exoskeleton was designed to be installed on a wheelchair as it is reasonable to think
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Figure 2.16: Structure of the upper-limb exoskeleton robot

that many physically weak individuals may prefer use a wheelchair. On the other hand, in

order to provide safety and the convenience of users, these motors have been placed to the

rear frame of the wheelchair. Rest of four motors are fixed to the robot directly using spur

gears. Three hook-and-loop-fastener type holders are used for the user to wear the robot.

They are located over the biceps, the forearm and on the palm.

As this exoskeleton continuously interacts with the user, the highest priority has been

given to safety of the user. Therefore, both in the software and the hardware safety mea-

sures are considered to prevent unexpected motions and accidents. In the software level,

maximum torque and maximum velocity are limited whereas in the hardware case, physical

stoppers are included for each joint in order to regulate the joint motion within the movable

range of human upper limb.

The primary way of controlling this exoskeleton is based on EMG signals. In the

proposed method, sixteen channels of EMG are utilized as main input signals to estimate

the upper limb motion intention of the user. The locations of EMG electrodes positions are

shown in fig 2.17. Each EMG channel basically corresponds to one muscle, as shown in

Table 2.1. In addition to those EMG signals, the forearm force , the hand force , and the
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Figure 2.17: Location of the EMG channels [77]

Table 2.1: Muscles related to each EMG channel

EMG channel Muscle
Ch.1 Deltoid-anterior
Ch.2 Deltoid-posterior
Ch.3 Pectoralis major-clavicular
Ch.4 Teres major
Ch.5 Biceps-short head
Ch.6 Biceps-long head
Ch.7 Triceps-long head
Ch.8 Triceps-lateral head
Ch.9 Pronator teres

Ch.10 Supinator
Ch.11 Extensor carpi radials brevis
Ch.12 Extensor carpi ulnaris
Ch.13 Flexor carpi radials
Ch.14 Flexor carpi ulnaris
Ch.15 Infraspinatus
Ch.16 Teres minor

forearm torque are also used as input signals for the controller. The overall structure of

the controller is shown in fig 2.18. In this control method, at beginning, user’s upper limb

joint torque vector is estimated based on EMG signals and/or force/torque sensor signals.
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Then, the user’s hand force vector is calculated based on the estimated joint torque vector.

Eventually, the impedance control is applied to generate the user’s hand force vector. In

a situation where the user does not activate the muscles actively, the force/torque sensor

based control is applied. However, in this case the robot only follows the user’s upper limb

motions without the power assist so that the robot does not obstruct the user’s motion [77].
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joint torque
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Figure 2.18: Overall structure of the controller

Basically, the raw EMG signals are not appropriate as input signals to the controller and

suitable features from the EMG raw signals should be extracted. Therefore, the root mean

square (RMS) of the EMG signal is calculated and used as an input for the controller in

this method. As mentioned before, the joint torque of the user is estimated based on EMG

signals and/or force/torque sensor signals. The input signals utilized for the joint torque

estimation are automatically switched depending on the EMG signal levels of the user. In

the case of EMG signal level of the user is high, EMG signals are used to estimate the

user’s motion to be assisted by the exoskeleton. Conversely, force/torque sensor signals are

used to estimate the user’s motion when the user’s muscle activation levels are low as the

increment of the noise ratio in the EMG signals. On the other hand, when the user’s EMG
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signal levels are in-between, both the EMG signals and the force/torque sensor signals are

simultaneously used in the control approach. Basically, the EMG levels of corresponding

muscles for each joint motion are employed to switch the signals for each joint motion.

The relationship between the joint torque vector and the 16 EMG RMSs used for the

EMG-based torque estimation is modeled as follows.

τest =



τ1

τ2

τ3

τ4

τ5

τ6

τ7


=



w11 w12 ... w115 w116

w21 w22 ... w215 w216

w31 w32 ... w315 w316

w41 w42 ... w415 w416

w51 w52 ... w515 w516

w61 w62 ... w615 w616

w71 w72 ... w715 w716





ch.1

ch.2

.

.

.

ch.15

ch.16


(2.1)

where τest is the joint torque vector and τ1-τ7 are the joint torques for each joint motion.

wij is the weight value for the j th EMG signal to estimate the joint torque τi, and chj

represents the RMS value of the EMG signal measured in channel j. This weight matrix

(i.e., the muscle-model matrix [106]) in 2.1 can be approximately defined using the priori

knowledge of human upper-limb anatomy and/or using the results of preliminary experi-

ments. Moreover, in this method, the initial weight matrix was prepared considering the

relationship between the muscle and the direction of the rotation of the joint. Thus, the

joint torque vector generated by the muscle force can be estimated if every weight for the

EMG signals is properly selected. It is not that easy, however, to define the proper weight

matrix for the user at the beginning because of the differences across the persons. More-

over, the posture of the upper limb have an influence in the relationship between the EMG

signals and the generated joint torques, because of anatomical reasons such as the change

of the moment arm. As a result, the effect of the posture differences of the upper limb need

to be considered in order to estimate the accurate upper limb motion for the power assist.

Therefore, a fuzzy-neuro muscle-model matrix modifier is introduced to take into account
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the effect of the upper-limb posture difference of the user.

The fuzzy-neuro modifier generates the coefficient for each weight of the muscle-

model matrix shown in 2.1 to modify the weight matrix in real time based on the upper-limb

posture of the user. The generated coefficients are applied to adjust the weight matrix in

real time (on-line) by multiplying the weight by the respective coefficient in accordance

with the upper-limb posture of the user in a way that the effect of upper-limb posture dif-

ferences can be effectively compensated. Moreover, it also produces the similar effect of

adjusting the weight matrix itself to be adapted for each user.

Figure 2.19: The structure of the fuzzy-neuro modifier [77]

The structure of the fuzzy-neuro modifier is basically similar to a neural network, and

the process of the signal flow in the fuzzy-neuro modifier is same as that in fuzzy reasoning

[77]. This fuzzy-neuro modifier has five layers (input, fuzzyfier, rule, defuzzifier, and

output layers) as depicted in fig 2.19. Input variables to this fuzzy-neuro modifier are

joint angles of the user’s upper limb and at first those input variables are fed in to the input
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layer. Then, three fuzzy linguistic variables are arranged for each joint angle in the fuzzifier

layer. The sigmoidal functions fs and the Gaussian functions fg are used to represent the

membership functions in the fuzzifier layer. In the rule layer, the coefficient for each weight

is reasoned for any combination of upper-limb joint angles. Finally, the output variables

from this fuzzy-neuro modifier are coefficients related to the components of the weight

matrix.

It is important to train the fuzzy-neuro modifier to adjust its output for each user during

the training before its normal operation. At first, the output of the fuzzy-neuro modifier

is set to be 1.0 for every weight of the muscle-model matrix. During the training period,

the exoskeleton is supposed to produce the motion as close as to the estimated motion of

the user in real time. In order to train the fuzzy-neuro modifier, the error-backpropagation

learning method is employed to minimize the squared error functions to minimize the error

of the muscle-model matrix. Therefore, if the muscle-model matrix with the fuzzy-neuro

modifier correctly performs, the generated exoskeleton motion are supposed to be similar

to the user’s motion. Here, the amount of the error can be measured using the force/torque

sensors, as the force/torque sensors measure the force/torque caused by the motion differ-

ences between the user and the exoskeleton. So, the squared error function used in this

research is calculated as follows.

E =
1

2
f 2
err (2.2)

where E and ferr is the error function to be minimized and the measured force/torque

between the user and the robot respectively. The output of the force/torque sensors should

become zero if the generated exoskeleton robot motion and the user’s intended motion are

identical [77]. Therefore, the joint torque vector of the user can be estimated based on the

muscle model matrix with the properly trained fuzzy-neuro modifier. On the other hand,

if user cannot move his/her upper limb adequately even though he/she can generate EMG

signals, a motion indicator which is manipulated by any other movable part of the user can

be used to prepare the amount of motion error for the learning [125].

Then hand force vector is calculated based on the estimated joint torque vector. In this
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step, the estimated joint torque vector is transferred to the hand force vector of the user

using the Jacobian matrix as follows:

Fhand = J−T τest (2.3)

Favg,hand =
1

N

N∑
i=1

Fhand(i) (2.4)

where Fhand is the hand force vector (6-D vector) of the user, J is the Jacobian matrix,

and Favg,hand is the average of Fhand in N number of samples. Then, the desired hand

acceleration vector is calculated as follows:

Ẍd =M−1Favg,hand (2.5)

where Ẍd is the desired hand acceleration vector (6-D vector) and M is the mass matrix of

the robot and the user’s upper limb. Then, in order to realize the user’s intended motion,

impedance control scheme as shown in following equation is applied to get the resultant

hand force vector F :

F =MẌd +B(Ẋd − Ẋ) +K(Xd −X) (2.6)

where Ẋd and Xd are the desired hand velocity vector and position vector, which are cal-

culated from 2.5, respectively. B and K are the viscous coefficient matrix and the spring

coefficient matrix, respectively. It has been known that the impedance parameters of the hu-

man upper limb are changed based on the upper-limb posture and the relationship between

agonist and antagonist muscles. Therefore, the impedance parameters of the exoskeleton

are also varied based on those factors in the proposed method in order to realize natural and

comfortable power assist [77]. In the proposed method, the impedance parameter matrix B

and K in 2.6 are varied based on the upper-limb posture and the activity levels of activated

upper-limb antagonist muscles in real time. Finally, the joint torque command vector for

the seven dc motors is derived as follows:
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τmotor = kJTF (2.7)

where τmotor is the joint torque command vector for the seven DC motors and k is the

power-assist rate.

Effectiveness of this proposed method has been experimentally validated in the previ-

ous studies and reported literature can be found in [77, 106, 107].

As mentioned in section 2.5, there are few other issues associated with upper-limb

exoskeletons control such as physical tremor, perception-assist and muscle fatigue. It is

important to pay attention to these problem as well. To this moment, several studies have

already been conducted to address some of these issues. Physical tremor and its effects

has been studied in detail and several methods have been proposed for compensation of the

effects of tremor in EMG-based control in the upper-limb exoskeleton [45, 46]. Moreover,

several studies have been carried out to include perception abilities to the exoskeletons [40–

43]. In those studies, for the individuals with deteriorated perception abilities, perception-

assist in addition to the power-assist has been proposed. Nevertheless, more research efforts

on these topics are needed to enhance the effectiveness, reliability and robustness of the

control methods for upper-limb exoskeletons.

2.15 Summery

This chapter introduced the background information of upper-limb exoskeletons and espe-

cially their controlling methods using EMG and EEG signals. Basics and characteristics

of EMG signals, a typical EMG signals acquisition method and different EMG signal ac-

quisition systems were studied. More importantly, different EMG-based control methods

which have been proposed for controlling upper-limb exoskeletons were reviewed. More-

over, existing problems and challenges in EMG-based control were highlighted. In ad-

dition to EMG signals, EEG signals measured from brain can be used as an input signal

to control assistive robots such as upper-limb exoskeletons. Therefore, EEG-based con-

trol methods proposed for assistive robots such as upper-limb exoskeleton were reviewed.
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Characteristics of EEG signals, standard use in EEG studies and various EEG signal acqui-

sition systems were studied. Moreover, challenges and limitations of EEG-based control

methods were discussed. To overcome the individual weakness of EMG and EEG, a rel-

atively new approach: hybrid EMG-EEG based control methods that have been proposed

for upper-limb exoskeletons and other similar assistive robotic applications were briefly

reviewed in this chapter. Moreover, potential advantages, disadvantages and challenges

in hybrid EMG-EEG based approaches were identified. This chapter also introduced the

existing EMG-based control methods that have been proposed for controlling Saga Univer-

sity Upper-Limb Exoskeleton. Also, limitations of the current methods and areas need to

be more focus were identified.



Chapter 3

Muscle Fatigue and Compensation of the Effects of
Muscle Fatigue on EMG-Based Control

This chapter reports a research work which aims to address one of the challenges in EMG-

based control: Muscle Fatigue. Numerous EMG based control methods have been pro-

posed, validated and implemented for assistive robotic applications such as exoskeletons,

prosthetics, rehabilitation robots to date as reviewed in the previous chapter. However,

some challenges still need to be addressed in the case of EMG based control methods. One

of the challenges that had not been considered in such EMG-based control in common is

the muscle fatigue. Muscle fatiguing effects of user can deteriorate the effectiveness of

the EMG-based control in the long run, because the effects of muscle fatigue can alter the

relationship between EMG signal and EMG-based control output. First half of this chapter

presents a study that carries out to find out the effects of muscle fatigue on EMG based

control in upper-limb power-assist control. Then, the second half of this chapter proposes

a method of using fuzzy-neuro modifiers for compensation of the effects of muscle fatigue

on EMG-based control to be used in upper-limb exoskeletons. Preliminary studies, pro-

posed methods for compensation of the effects of muscle fatigue on EMG-based control

and experimental validation of the proposed methods are comprehensively presented in this

chapter.

45
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3.1 Muscle fatigue

Muscle fatigue is basically the decline in the ability of a muscle to generate force. Muscle

cells work by detecting a flow of electrical impulses from the brain which signals them to

contract through the release of calcium by the sarcoplasmic reticulum [93]. Muscle Fatigue

can be caused by various mechanisms such as the accumulation of metabolites within mus-

cle fibres or the generation of an inadequate motor command in the motor cortex. However,

it is difficult to derive a global mechanism responsible for muscle fatigue. Relatively, the

mechanisms that cause fatigue are specific to the task being performed [94]. As the body

gets older, the skeletal muscle fibers become smaller in size and less in power which lead

to reduction of strength and endurance and tendency to fatigue rapidly [32]. Because of

these reasons, one could consider the possibility that especially such as older individuals

may have to face the muscular fatigue more often as they become more and more tired

of their physical actions. Analysis of Electromyography (EMG) signal is a well known

research method which have shown interest among researchers all over the world. Those

analysis permit them to look at muscle recruitment in various conditions, by quantifying

electrical signals. Especially, EMG signal based analyses are often been used to understand

the muscle fatigue conditions.

3.2 Relationship between EMG signals and muscle fatigue

Several previous studies have shown the evidence of strong relationship between muscle

fatigue and EMG signals. Of them many studies show that amplitude often increases and

spectral frequency features such as mean/median power frequency usually decreases with

fatigue conditions [95–97]. Nonetheless, the median power frequency is normally seen as

less sensitive to noise, but on the other hand mean power frequency (MPF) is proposed

as a more reliable measure of fatigue in practice, even though the MPF can be affected

by the noise [98]. On the other hand, it is important to understand the variations of these

amplitude and spectral features during the dynamic contractions, as in the most practical

applications such as exoskeletons, it is required to analyze the EMG features in dynamic

conditions. In many studies which were conducted to study on dynamic muscle fatigue
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conditions, the EMG amplitude has been observed to increase during dynamic tasks and

the EMG spectral frequency features have been reported as decreasing pattern during the

dynamic tasks [99, 100].

However, the explanation of muscle fatigue from the EMG signals for dynamic con-

ditions is considered to be much more difficult, as it introduces additional factors such as

effects of muscle kinematics that affect the characteristics of surface EMG amplitude and

frequency during muscle fatiguing dynamic contractions [99]. In this context, some studies

have proposed methods for monitoring the muscle fatigue continuously throughout dy-

namic movements that the results might be applicable to normal occurring activities [101].

However, most of these results indicate that, it is not a straight forward task to derive

an analytical model which associates the muscle fatigue with specific individual features

of the EMG signals. Therefore, to overcome these issues, different methods have been

proposed in the literature. One of the methods was the analysis of EMG amplitude and

spectrum changes in simultaneously to discrimination between fatigue-induced and force-

related EMG changes [102]. Several studies have used artificial neural networks (ANN) to

predict the muscle fatigue or related measurements [103, 104] by using time and spectral

domain features as the inputs. The main intention of these approaches was that the ANN

would estimate the relationship between EMG signals and the muscle fatigue by learning,

as oppose to an analytical approach that would be much more complex.

Therefore, these studies show the importance of analyzing the EMG signals during

muscle fatigue situations and necessity of studying about the effects of muscle fatigue on

EMG-based control.

3.3 EMG signal acquisition setup

In order to analysis the EMG signals, first step is to measure the EMG signals from human

subjects. Detection or measuring methods of the EMG signals vary according to its type

(i.e: based on invasive or non-invasive methods). As it is more practical and convenient

to use the non-invasive EMG signal recording methods and almost all of the EMG-based

control methods have used non-invasive surface EMG signals, the surface EMG signal
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Surface EMG electrodes
NE-101A, Nihon Kohden Co., 
Japan

EMG input box
JB-620J, Nihon Kohden Co.,
Japan

Interface card (A/D converter)
JIF-171-1,  JustWare Co., Japan

EMG amplifier
MEG-6108, Nihon Kohden Co., 
Japan

Computer

Figure 3.1: EMG signal acquisition setup

detection method is selected and it is discussed in this subsection. The same method is

used for the detection of EMG signals in all the experiments and studies in this thesis. A

typical measuring procedure of surface EMG signals is depicted in Fig. 3.1. First step of
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the EMG signal detection procedure is to attach the surface electrodes [NE-101A, Nihon

Kohden Co., Japan] over the skin surface of the interested muscles. Before attaching, EMG

electrodes and the skin are cleaned well using an alcoholic liquid such as ethanol. Then, a

conductive ionic paste is used between the skin and the electrode to reduce the static electric

insulation cause by the dry skin. In all studies demonstrate in this thesis, EEG paste [Z-

181JE, Nihon Kohden Co., Japan] is used as the conductive paste. In order to measure the

EMG signal of a particular muscle, a pair of surface EMG electrodes is attached over the

skin surface of the muscle with a separation around 1-1.5 cm. Moreover it is necessary

to have a reference EMG electrode for the system and that reference electrode is attached

on an electrically unrelated tissue. The EMG signals are then send to an input box which

consists of input channels for several electrodes and the reference electrode. The input box

[JB-620J, Nihon Kohden Co., Japan] used in this study consists of eight input channels

for eight electrodes and another one for the reference electrode. Then, the signals from

the input box are passed to a multi-channel amplifier [MEG-6108, Nihon Kohden Co.,

Japan]. The gain of the multi-channel amplifier is set to 50 V/V. Amplified EMG signals

are then send to a computer through an interface card [JIF-171-1, JustWare Co., Japan] by

converting analog signals to digital signals.

3.4 A study on effects of muscle fatigue on EMG signals and EMG-

based control

As highlighted in the section 3.2, to get a better understanding about the effects of muscle

fatigue on EMG-based control, a study was conducted based on set of muscle fatiguing ex-

periments. This section details about that conducted study which was basically a analysis of

EMG signal variations in set of upper-limb muscles during muscle fatigue exercises. Two

EMG features which consist of EMG amplitude and spectral features were calculated from

the raw EMG signals of four muscles of human upper-limb namely biceps, deltoid-anterior,

deltoid-posterior and supinator. Those muscles are often used in EMG-based control of hu-

man upper-limb power-assist exoskeletons. The two features interested in this study were

EMG Root Mean Square (RMS) and EMG Mean Power Frequency (MPF). In this study,
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subjects were asked to perform four basic motions of upper-limb namely shoulder abduc-

tion/adduction, shoulder vertical flexion/extension, elbow flexion/extension and forearm

pronation/supination at the beginning of the experiments. Then, in order to gain the muscle

fatigue conditions, a set of muscle fatiguing exercises were conducted. Finally, immedi-

ately after the fatiguing exercises, the same motions which conducted before the muscle

fatiguing exercises were performed again to measure and compare the effect of muscle

fatigue on each of the EMG features in each different motions of the upper-limb.

3.4.1 Method

In order to understand the EMG changes due to muscle fatigue, the EMG signals of the

upper limb muscles were monitored using the setup explained in the section 3.3. The EMG

signals of the biceps, deltoid-anterior, deltoid-posterior and supinator of the right upper-

limb were measured during the experiments. Locations of the EMG electrodes placed on

the upper-limb muscles are shown in Fig 3.2. Then, two 3-axis accelerometers attached

over the shoulder and forearm using adhesive tapes were used to measure the shoulder and

forearm angles respectively. A rotary encoder attached to the elbow joint using two rigid

links was used to record the elbow joint angle (refer Fig. 3.3).

Front view Rear view

Deltoid-
anterior

Deltoid-
posterior

Biceps

Supinator

Figure 3.2: Locations of the upper-limb muscles monitored in this study

Three healthy young men (age: 24-27) who did not have any history of previous
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Forearm 
accelerometer

Shoulder 
accelerometer Elbow encoder

Figure 3.3: Placement of angular measurement sensors
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Figure 3.4: Range of (a) elbow flexion/extension (b) forearm pronation/supination movements
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Figure 3.5: Range of (a)shoulder abduction/adduction (b) shoulder vertical flexion/extension
movements
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muscle disorders of upper limb participated in this study. Each subject was provided

with full instructions about the experimental procedure before the experiments commence.

The subjects were asked to perform four different upper limb motions; shoulder abduc-

tion/adduction, shoulder vertical flexion/extension, elbow flexion/extension and forearm

pronation/ supination. The initial positions and motion ranges of elbow flexion/extension

and forearm supination/pronation movements are shown in the Fig. 3.4 (a) and (b) respec-

tively. The initial positions and motion ranges of shoulder shoulder abduction/adduction

and vertical movements are shown in Fig. 3.5 (a) and (b) respectively.
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Figure 3.6: Order of the experiment phases

The experiments carried out in three phases as shown in fig. 3.6. The experimental pro-

cedure for only the elbow flexion/extension movements is described here for the simplicity

and other movement experiments were conducted in similar routines. At the first phase of

the elbow motion experiment, the subjects were asked to perform three repetitions of elbow

flexion/extension motion with holding a 2 kg weight in hand. The elbow motion range was

around 0-70 [deg]. Moreover, a software metronome was used in order to maintain a regu-

lar speed motions. This first phase of the experiment was carried out to measure the EMG

changes before the muscle fatiguing exercise/conditions. Then, one minute rest time was

given before the start of the second phase of the experiment. At the second phase of the

experiment, a muscle fatiguing exercise was carried out. In this phase, the subjects were

asked to carry out repetition elbow flexion/extension motions ( range of motion was around

0-90 degrees) with a 4 kg weight in hand and in line with the software metronome for
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maximum two minutes. In the meantime, verbal encouragement were given to motivate the

subjects during this phase. However, before end of the two minutes if the subjects felt they

could not complete the full two minutes, they were asked to stop. Nevertheless, immedi-

ately after finishing the second phase, the subjects were asked to repeat the motions similar

to the first phase of the experiment again in the third phase in order to measure the EMG

changes after the muscle fatiguing exercise. For shoulder abduction/adduction, shoulder

vertical flexion/extension and forearm pronation/supination same procedure was followed.

Around five minutes of rest times were given between the each motion experiments.

In the next step, a set of EMG features was calculated from raw EMG signals in real

time. The EMG RMS was calculated using raw EMG signals as the first feature because,

EMG RMS is often used as a primary control signal in real time EMG-based control meth-

ods. The EMG RMS is a time domain feature and it was calculated as follows.

RMS =

√√√√ 1

N

N∑
i=1

v2i (3.1)

where vi is the voltage value of EMG channel at ith sampling and N is the number of the

samples in a segment. N was set to 400 and the EMG sampling rate was set to 2 [kHz] in

this study.

In order to analysis the effects of muscle fatigue conditions using EMG signals, in ad-

dition to the time domain features, spectral or frequency domain features has often been

used. Main mechanism behind the muscle fatigue manifestation is when the muscle fatigue

occurs power spectrum density of the EMG signal is shifting towards the lower frequencies.

However in order to use this frequency spectrum shift in a useful manner as a measurement

or as an input, it is necessary to calculate it as a single indicator. Among such indicators of

muscle fatigue, EMG mean power frequency (MPF) and median power frequencies have

been recognized as the gold standard measures of muscle fatigue in not only engineering

studies but also in clinical studies. On the other hand, those two EMG features have com-

monly been used in most of the previous studies as muscle fatigue indicators. Many studies

have reported that amplitude features often increase and spectral frequency features such as



54 3. MUSCLE FATIGUE AND COMPENSATION OF THE EFFECTS OF MUSCLE FATIGUE...

MPF and median power frequency usually decrease with fatigue conditions [95–97]. Even

though the median power frequency has usually been considered as less sensitive to noise,

on the other hand the MPF has been suggested as a more reliable measure of fatigue in

practice. Especially, the MPF is a more reliable measure of spectral shift mainly because

of its lower standard deviation. Moreover, the MPF feature has shown a relatively better

performance in class separation than the median power frequency feature in few studies.

Therefore in this study, the EMG MPF was decided to use as the frequency domain fea-

ture. The MPF is the frequency of EMG signal at which the average power within the

segment/window is reached. The MPF was calculated based on the following equation.

MPF =

∑M
i=1 fiPSDi∑M
i=1 PSDi

(3.2)

where PSDi is ith line of the EMG power spectrum density , fi is the center frequency

value of the frequency bin i and M is the length of the power spectrum density (M =

512). The power spectrum density was calculated using Fast Fourier Transformation (FFT)

algorithm with 512 data point window and at every 128 data points of overlapping window.

During the 128 data points (approximately 50 ms) same value for MPF was kept for 128

times until a new value was calculated in order to synchronous with the EMG sample rate.

3.4.2 Results and discussion

Figure. 3.7 (a) and (b) depicts how the EMG RMS of biceps and deltoid-posterior muscles

of subject A were changed with the time during the muscle fatiguing exercise respectively.

The EMG RMS was increased with respect to time in each contraction. Similar results were

observed for other muscles and other subjects. Though it shows a clear increment in the

plots, it was difficult find a clear linear trend in EMG RMS patterns. Different patterns of

increment were found across the different muscles and the subjects. On the other hand, the

EMG MPF features of all interested muscles showed a decrement along with the number

of contractions. However as similar to the EMG RMS, the patterns of decrement were

different across the muscles and the subjects. Figure. 3.8 (a) and (b) show the variations of
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Figure 3.7: EMG RMS patterns of biceps and deltoid-posterior during the fatiguing exercise of
subject A
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Figure 3.8: EMG MPF patterns of biceps and deltoid-posterior during the fatiguing exercise of
subject A

the EMG MPF in each contraction for the biceps and deltoid-posterior muscles during the

relevant muscle fatigue exercises respectively.

On the other hand, fig. 3.9 (a) and (b) illustrate the variations of the EMG RMS feature

of biceps muscle during single elbow flexion/extension cycle of subject B, before and after

the muscle fatiguing exercise respectively. It appears that approximately for the same mo-

tions, respective EMG RMS value has been increased after the muscle fatiguing exercise.

Therefore, these results show the effects of muscle fatigue on EMG signals. However in
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Figure 3.9: Comparison of EMG RMS of biceps muscle during the workout,(a) before and (b)
after the fatiguing exercise of subject B

order to further understand the effects of muscle fatigue on EMG features, a quantitative

analysis was carried out. To do that, percentage variation of an EMG feature of a particu-

lar muscle after fatiguing exercises with respect to the initial conditions was calculated as

follows:

Percentage variation =

(
AV Gaf − AV Gbf

AV Gbf

)
.100% (3.3)

where AV Gbf and AV Gaf is the average of an EMG feature of a particular muscle across

the three successive contraction cycles before and after muscle fatiguing exercise respec-

tively. Calculated percentage variations are shown in Table. 3.1, Table. 3.2 and Table. 3.3

for subject A, subject B and subject C respectively.

It may reasonable to argue that these changes on each EMG features were due to mus-

cles fatiguing conditions, as all other conditions prior and posterior the fatiguing exper-

iment were approximately maintained same. The results clearly show that EMG RMS

feature has been affected by the muscle fatigue. Therefore these results urge the need of

focusing on muscle fatigue conditions whenever EMG RMS signals are used in controlling
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Table 3.1: Percentage variations of each EMG feature in subject A

EMG Feature Biceps Deltoid-posterior Deltoid-anterior Supinator

RMS +26% +28% +27% +19%

MPF -16% -22% -19% -12%

Table 3.2: Percentage variations of each EMG feature in subject B

EMG Feature Biceps Deltoid-posterior Deltoid-anterior Supinator

RMS +28% +26% +26% +20%

MPF -15% -18% -17% -11%

Table 3.3: Percentage variations of each EMG feature in subject C

EMG Feature Biceps Deltoid-posterior Deltoid-anterior Supinator

RMS +18% +21% +19% +18%

MPF -18% -20% -21% -15%

exoskeletons and other similar applications. For an example, in fig. 3.9 (a) represents the

relationship with EMG RMS feature and the elbow angle before muscle fatiguing exercise

was conducted. Let there is a controller which has trained for estimating the EMG-based

elbow joint torque and control a robot using EMG RMS changes with respect to relation-

ship between elbow angle during before the muscle fatiguing conditions. This controller

may not be able to effectively estimate the elbow joint torque and control the robot due to

different relationship between EMG RMS and the elbow angle (eg. as shown in fig. 3.9

(b)) after the muscle fatiguing exercises.

Therefore it might not be effective to use the EMG RMS alone as the input feature in

EMG-based control approaches, as exoskeleton users can be suffered by muscle fatigue due

to long term use and physical exhaustion. Moreover, this urges the necessity of a modifi-

cation method to EMG-based control approaches during muscle fatigue condition in order
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to compensate the effects of muscle fatigue and achieve a long term use of exoskeletons or

similar robot systems.

On the other hand, the above results can be used to support a claim that additional

frequency domain features such as the EMG MPF can be used to recognize the muscle

fatigue conditions. Therefore these results suggest that, a combination of these two features

might be a good option to be used as input features to EMG-based control approaches

in order to more effectively deal with muscle fatigue conditions when using upper-limb

exoskeletons or similar robot systems.

3.5 Compensation of the effects of muscle fatigue on EMG-based con-

trol

In the case of EMG-based control, one of the EMG amplitude features; the EMG RMS is

usually being used as the primary input signal to the controller. It is because, the EMG

RMS feature can be mapped in to the motion intention of the user and it can be calculated

in real-time (It is an important requirement for EMG-based control methods). However as

discussed in the section 3.4 the results showed that, the amount of EMG RMS signal can

be changed when the muscle get fatigued in addition to the level of contraction. This effect

may induce problems with the expected functioning of the exoskeletons or similar robots.

Therefore, this shows the importance of making necessary adjustment to the EMG-based

control methods to compensate for the effects of muscle fatigue on the overall EMG-based

control approaches to get an effective outcome during muscle fatigue conditions.

In this context, this section presents a novel method of using fuzzy-neuro modifiers

to compensate the effects of muscle fatigue on EMG-based control to be used in upper-

limb power-assist exoskeletons. Design and implementation of the proposed methods, ex-

perimental procedures and validations of the proposed methods are detailed within next

subsections.
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Figure 3.10: (a) Placement of the motion sensors (b) Robot arm used in the study
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Figure 3.11: locations of the EMG electrodes placed over the biceps and triceps of the upper-limb
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3.5.1 Experimental setup

In order to implement and validate the method going to propose here, certain muscles or

prominent muscles of upper-limb should be selected. The biceps and triceps are identified

as the most active muscles for the elbow flexion/extension motions which are involved in

the most of the daily motions. Moreover, biceps and triceps are bi-articular muscles that are

involved in the shoulder motion as well. Thus, the EMG signals of biceps and triceps were

monitored to control a robot arm similar to elbow joint based on the motion intention of

the user during muscle fatigue situation in this study. The robot used in this study is shown

in fig. 3.10 (b). It consists of two rotational joints which can simulate shoulder and elbow

joint motions in parallel to sagittal plane of the human body. Basically, these two joints (i.e.

shoulder and elbow) are controlled by two DC motors with in-built encoders. However, as

this study targeting on the elbow joint motions, the shoulder joint was remained lock during

the experiments. The robot was therefore used as an external robot arm which was required

to move according to the elbow flexion/extension motion of the user based on EMG signals

of biceps and triceps muscles. The effects and validations of the proposed method can

clearly interpret using this type of robot arm due to the possibility of measuring desired

elbow motions of the user and motions of the robot generated by the EMG-based controller

independently.

The EMG signals of the biceps and the triceps muscles were measured using surface

EMG electrodes with bipolar montage using the setup illustrated in the section 3.3. The

EMG sample rate was set to 2 kHz in this study. Additionally, elbow angle and shoulder

angles were measured at a rate of 2 kHz using a rotary encoder attached to elbow (using two

links and adhesive tapes) and a 3-axis accelerometer respectively. Moreover, the robot’s

elbow joint angle was measured using the in-built encoder of the motor at a rate of 2 kHz.

The motion sensors attachment and the locations of the EMG electrodes over biceps and

triceps are shown in fig. 3.10 (a) and fig. 3.11 respectively.
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3.5.2 Estimation of EMG-based joint torque using EMG signals

The EMG RMS has often been used as the primary input signal in many EMG-based con-

trol methods since it reflect the motion intention of user more effectively during non-muscle

fatigue conditions. Therefore at first, the EMG RMS of biceps and triceps muscles were

calculated based on the equation 3.1 in real time. In this study, N was set to 100. Basically,

all joint torques of upper-limb can be estimated based on the EMG RMS of relevant mus-

cles. According this rationale, the EMG-based joint torque for controlling the elbow joint

of the robot can be written as in equation 3.4. In fact this equation can be considered as

a simplified version of the muscle-matrix-model which was used in previous studies (see

the Background chapter for more details) to control the upper-limb power-assist exoskele-

ton [77, 106].
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τelbow =
[
welbow.biceps welbow.triceps

] chbiceps

chtriceps

 (3.4)

where τelbow, chbiceps and chtriceps are EMG-base elbow joint torque, EMG RMS of the biceps

muscle and EMG RMS of the triceps muscle, respectively. The weights welbow.biceps and

welbow.triceps are the corresponding weights related to the elbow joint torque, biceps and

triceps muscles which were estimated by a fuzzy-neuro modifier according to the variations

of upper-limb posture in real-time in order to adjust the influences of the changes of the

EMG signals. The structure of this fuzzy-neuro modifier is shown in fig. 3.12. Shoulder

vertical and horizontal angles, elbow joint angle and angular velocity (calculated using time

differentiation of the elbow joint angle) were fed into the fuzzy-neuro modifier in real time.

Those four input features were calculated using the motion sensors attach to the user as

illustrated in section 3.5.1.

The structure of the fuzzy-neuro modifier is basically similar to a common fuzzy-neural

network. This fuzzy-neuro modifier consists of five layers (input, fuzzyfier, rule, defuzzi-

fier, and output layers), as shown in fig. 3.12. In the input layer, the joint angles and

velocities of the user’s upper limb were acquired. These input information were then fuzzi-

fied in the fuzzifier layer. Three fuzzy linguistic variables namely zero (ZO), positive small

(PS) and positive big (PB) were prepared for each joint angle and velocity variables in the

fuzzifier layer. Sigmoid functions (fS) and Gaussian functions (fG) were used as the mem-

bership functions in the fuzzifier layer. The fuzzy membership functions for joint angles

and velocities in the fuzzyfier layer are shown in Fig. 3.13. Generally, fS and fG were

expressed as follows:
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Figure 3.13: Membership functions of the fuzzy linguistic variables of joint angles and velocities

fS(uS)=
1

1 + e−uS
(3.5)

uS(x)=wo + wix (3.6)

fG(uG)= e−u2
G (3.7)

uG(x)=
wo + x

wi

(3.8)

where wo is a threshold value, wi is a weight value, and x is the input value (i.e: in this

case the joint angles/velocities). The weight value, wi and threshold value, wo for the PB

membership function that relates to the sigmoid function were calculated as follows.

wi(PB)= log

[
1/H.rate− 1

1/L.rate− 1

]
/(w3 − w5) (3.9)

wo(PB)=(−1)log [1/H.rate− 1]− w5wi(PB) (3.10)

The weight value and the threshold value for the PS membership function that relates to

the gaussian function were calculated as:
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wi(PS)=

√
[(−)w3 + (w3 + w4)/2]

2

log [1/M.rate− 1]
(3.11)

wo(PS)=(−)w3 (3.12)

For the ZO membership function, weight value and threshold value (relates to the Sigmoid

function) were calculated as:

wi(ZO)= log

[
1/H.rate− 1

1/L.rate− 1

]
/(w3 − w1) (3.13)

wo(ZO)=(−1)log [1/H.rate− 1]− w1wi(ZO) (3.14)

H.rate, M.rate and L.rate are parameters which define the sigmoid and gaussian func-

tions. Basically, those parameters are responsible for the shape of the respective functions.

In this study, the values were set to H.rate = 0.98, L.rate = 0.02 and M.rate were

selected depending on the particular feature variations. Parameters w1, w3 and w5 were

decided considering the variations of upper-limb joint angles and velocities during upper-

limb motions. Next in the rule layer, defined fuzzy IF-THEN rules were applied. In the

rule layer, π is the multiplicand of the fuzzified inputs. One can notice that, there are two

outputs from each neuron in the rule layer(see fig. 3.12). One of them was multiplied by

the relevant weights and summed in the next defuzzyfier layer. The other was just summed

and then inverted in the defuzzyfier layer. The multiplied value of these outputs was used

as the output of the final/output layer. Therefore, generally an output (e.g: CWbiceps) of the

fuzzy-neuro modifier can be mathematically expressed as follows.

Output =

∑N
i=1wriyki∑N
i=1 yki

(3.15)

where, yki is the degree of fitness of ith rule, wri is the weight for ith rule, N is the number

of rules in the fuzzy-neuro modifier. Eventually, the two weights in equation 3.4 were

obtained by the product of initial weight values and the final outputs of the fuzzy-neuro
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modifier as shown in the following equations.

welbow.biceps = w0.bicpes × CWbiceps (3.16)

welbow.triceps = w0.tricpes × CWtriceps (3.17)

where w0.bicpes and w0.tricpes are initial weight values which were set to 1 and -1 respec-

tively.

3.5.3 Proposed fuzzy-neuro modifiers for compensation of the effects of muscle fa-

tigue on EMG-based control

Even though the estimated EMG-based elbow joint torque using only EMG RMS of biceps

and triceps as in equation 3.4 may effective during non muscle fatigued conditions, it may

not that effective if the muscles are fatigued. This is because as mentioned earlier, the

EMG RMS signals can be affected during the muscle fatiguing situations other than the

contraction level. Therefore, in order to compensate for the effects of muscle fatigue on

EMG-based control, a method of using another fuzzy-neuro modifiers which suppose to

consider the influences of muscle fatigue is proposed in this section.

As the first step of this method, the EMG-based elbow joint torque estimation equation

3.4 was modified. Two new coefficients were introduced to equation 3.3 and therefore in

the modified version; the EMG-based elbow joint torque was estimated as follows.

τelbow.FC =
[
welbow.biceps.wBFC welbow.triceps.wTFC

] chbiceps

chtriceps

 (3.18)

where τelbow.FC is the estimated EMG-based elbow joint torque with muscle fatigue com-

pensation. wBFC and wTFC are the two new weights introduced and they are supposed

to be changed according to another two fuzzy-neuro modifiers proposed for compensation

of the effects of muscle fatigue. The architectures of the fuzzy-neuro modifiers for com-

pensation of the muscle fatigue effects of the biceps and the triceps muscles are shown in
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Figure 3.14: Proposed fuzzy-neuro modifiers for compensation of the effects of muscle fatigue in
biceps (Top) and triceps (bottom)

fig. 3.14. The structure of each fuzzy-neuro modifier is almost similar to what was detailed

in section 3.5.2. In these fuzzy-neuro modifiers in addition to the EMG RMS, the EMG

MPF was used as an input feature. The EMG RMS and EMG MPF were calculated using

equation 3.1 and 3.2 respectively as introduced in section 3.4.1. Here N=100, M=1024
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Figure 3.15: Membership functions of the fuzzy linguistic variables of EMG MPF

and sample rate was 2 kHz. The EMG RMS and MPF features were divided into five re-

gions/five linguistic variables as very small (VS), small(S), large (L), very large(VL) and

ultra large(UL) in the fuzzifier layer where the input information is fuzzyfied. As similar to

the method discussed in section 3.5.2, two nonlinear functions (i.e. Gaussian function (fG)

and sigmoid function(fS)) were used to express the membership functions. For an example,

the membership functions for the EMG MPF feature is shown in fig. 3.15. Here, for VS and

UL the sigmoid functions were used whereas S, L, VL regions were represented by Gaus-

sian functions. The same membership function arrangement was used for the EMG RMS

feature as well. The functions fS and fG were calculated using the equations mentioned in

section 3.5.2 where input values were EMG RMS and EMG MPF in this case. However, in

order to calculate the respective wo and wi for each membership function, following set of

equations were used.

wi(UL)= log

[
1/H.rate− 1

1/L.rate− 1

]
/(v7 − v9) (3.19)

wo(UL)=(−1)log [1/H.rate− 1]− v9wi(UL) (3.20)
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wi(VL)=

√
[(−)v7 + (v7 + v8)/2]

2

log [1/M.rate− 1]
(3.21)

wo(VL)=(−)v7 (3.22)

wi(L)=

√
[(−)v5 + (v5 + v6)/2]

2

log [1/M.rate− 1]
(3.23)

wo(L)=(−1)v5 (3.24)

wi(S)=

√
[(−)v3 + (v3 + v4)/2]

2

log [1/M.rate− 1]
(3.25)

wo(S)=(−)v3 (3.26)

wi(VS)= log

[
1/H.rate− 1

1/L.rate− 1

]
/(v3 − v1) (3.27)

wo(VS)=(−1)log [1/H.rate− 1]− v1wi(VS) (3.28)

The parameters v1, v3, v5, v7 and v9 were selected considering the variations of EMG MPF

and EMG RMS features of biceps and triceps individually. Then in the rule layer, the

coefficient for each weight was reasoned in any combination of EMG RMS and EMG MPF

variations. There are two outputs form each neuron in the rule layer. One of them was

multiplied by the weight and summed in the next layer. The other was just summed and

then inverted in the defuzzyfier layer. The multiplied value of these outputs was the output

of the final/output layer. Finally, the outputs from these two fuzzy-neuro modifiers were

used to calculate the wBFC and wTFC in equation 3.18 as follows.
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Fuzzy-neuro modifier to consider the effects 
of posture changes in user’s upper-limb

Fuzzy-neuro modifier for compensation 
of the effects of Biceps’ muscle fatigue

Fuzzy-neuro modifier for compensation 
of the effects of Triceps’ muscle fatigue

Figure 3.16: Estimation of weights in EMG-based elbow joint torque calculation equation 3.18
using the fuzzy-neuro modifier for influencing the upper-limb posture changes and
newly proposed fuzzy-neuro modifiers for muscle fatigue effects compensation

wBFC = w0.bicpes.FC × CWbiceps.FC (3.29)

wTFC = w0.tricpes.FC × CWtriceps.FC (3.30)

where w0.bicpes.FC and w0.tricpes.FC are the initial weight values. Finally, it should be noted

that three fuzzy-neuro modifiers were employed in estimating the final EMG-based elbow

joint torque in the proposed method for compensation of the effects of muscle fatigue. For

better visualization, a graphical interpretation of the estimated final EMG-based torque as

in equation 3.18 is shown in fig. 3.16.

In order to drive the robot arm, the desired elbow angular acceleration of the elbow

motion was then calculated using the EMG-based elbow joint torque as follows.

τelbow.FC.avg =
1

Nf

Nf∑
k=1

τelbow.FC(k) (3.31)

θ̈d =M−1τelbow.FC.avg (3.32)

where τelbow.FC.avg is the average of τelbow.FC in Nf number of samples, θ̈d is the desired
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elbow angular acceleration and M is the moment of inertia of the part below elbow joint of

the robot arm. Then in order to control the robot arm based on the desired motion intention

of the user, the following torque was generated by the robot.

τmotor =Mθ̈d + kv(θ̇d − θ̇r) + kp(θd − θr) +G(θr) + Ffri(θ̇r) (3.33)

where τmotor is the elbow joint motor torque command generated. kv and kp are the control

gains. θ̇d and θd are desired elbow angular velocity and angle, which were calculated based

on the equation 3.32 respectively. Then θ̇r and θr are the joint angular velocity and angle

of the robot arm respectively. G(θr) and Ffri(θ̇r) represent the gravity and the robot joint

friction functions respectively.

3.5.4 Adaptation of fuzzy-neuro modifiers

Adaptation of the each fuzzy-neuro modifier itself to each user is necessary. Each fuzzy-

neuro modifier is trained to adapt itself to each user based on the information of the user’s

elbow joint angle and the robot’s joint angle. In other words, an error-back propagation

learning algorithm was employed to minimize the squared error function (E) as shown

below:

E =
1

2
(θh − θr)2 (3.34)

where θh is the angle measured from the user’s elbow joint using the rotary encoder. As

there are three fuzzy-neuro modifiers that need to be trained for each user, following method

was introduced in the training procedure. At first, each user was asked to train the robot

without the two fuzzy-neuro modifiers for compensation of the effects of muscle fatigue in

effect. This was achieved by maintaining the two coefficients, wBFC and wTFC to 1 dur-

ing training. In other words, the training loop of the two fuzzy-neuro modifiers related to

muscle fatigue compensation were turned off (This was achieved by setting learning rates

of the fuzzy-neuro modifiers for fatigue compensation to zero). Nevertheless during this

training period, the users were asked to avoid their muscles getting fatigued. Therefore,
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several short time training periods were carried out by providing proper rest times in be-

tween the training sessions. After the sufficient level of control accuracy of the robot arm

was reached, the first stage of training was stopped. Then the adaptation of two fuzzy-neuro

modifiers for compensation of effects of muscle fatigue was started. However during this

training period, the learning of the fuzzy-neuro modifier for influencing the posture changes

in the upper-limb was set to zero and allowed two fuzzy-neuro modifiers for compensation

of the effects of muscle fatigue to learn. In this case, the users were asked to perform the

elbow flexion/extension motions while allowing the two coefficients (i.e: wBFC and wTFC)

to change according to the variation of the EMG MPF and RMS signals of the two muscles

until they felt muscle fatigue. This second step was conducted for several times for each

user in order to properly adapt the two fuzzy-neuro modifiers for variations of the muscle

fatigue effects by minimizing the error between the desired and measured angles. In this

study, all the training procedures were carried out in real-time and the number of data used

in the training was depended on the duration of the training time and the sample frequency.

In this study, the sample frequency was set at 2 kHz as mentioned before and for all three

fuzzy-neuro modifiers, learning rates were set to 0.0001.

3.6 Evaluation of the proposed methods

3.6.1 Experiments

Experiments were carried out in order to validate the proposed fuzzy-neuro modifiers for

compensation of the effects of muscle fatigue on EMG based control. Since, the effective-

ness of the fuzzy-neuro modifier which takes the effects of postural changes was verified

already in the previous studies [77, 106], the effectiveness of the proposed method against

the muscle fatigue was evaluated in this study. Three healthy men (subject A (age-27),

subject B (age 25), subject C (age 23)) who did not have records of previous upper-limb

muscle disorders participated in the experiments. Complete instructions about the experi-

mental procedure were given to each subject before the study commence.

As first, teaching processes for three fuzzy-neuro modifiers were conducted for each

subject as illustrated in the section 3.5.5 in order to adapt the EMG-based controller to
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each user. The subjects were asked to hold a 2 kg weight in their hands while doing the

elbow flexion/extension motions. After the training sessions, the subjects were asked to

perform the testing experiments to evaluate the performance of the proposed method. In the

testing sessions, the subjects performed the elbow flexion/extension motions until they felt

fatigued and unable to continue the motions while holding the 2 kg weight. In the testing,

the subjects were instructed to perform the elbow motions with slow and fast phases during

separate sessions. A software metronome was used to guide the slow or fast motions. The

subjects were instructed to follow the metronome beat (which was set to beat at 1Hz) and

performed the elbow motions along with the metronome beats. All subjects were provided

with a time to practice in following the metronome sound prior to the testing phase. In the

slow motion testing, each elbow flexion/extension cycle was spanned around 5 [s] periods

(5 beats) and for the fast motion it was approximately 1 [s] period (1 beat). Sufficient rest

times were given to the subjects between the testing sessions.

It is important to clear that the robot was controlled by the elbow joint EMG-based

torque estimated under the all three fuzzy-neuro modifiers are in effect (i.e.: EMG-based

elbow joint torque estimation using equation 3.18 ) during these experiments. But in

order to evaluate the effectiveness of the proposed methods, it is important to compare

the performance of the robot without employing the proposed two fuzzy-neuro modifiers

for compensation of the effects of the muscle fatigue (i.e.: estimation of the EMG-based

elbow joint torque using equation 3.4). Moreover, it is important to compare the methods

with and without muscle fatigue compensation with respect to the similar input conditions.

Therefore, EMG RAW signals and human motions data were recorded for each and every

session during the testing experiments. Therefore in order to test the EMG-based controller

performance without the muscle fatigue compensation, the recorded data were fed into the

program in real time and allowed the robot to perform according to the generated EMG-

based joint torque using equation 3.4.
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Figure 3.17: (a) EMG RMS [mV] of the biceps (b) Mean Power Frequency (MPF) [Hz] of the bi-
ceps variations of Subject A during a sample period of a fast elbow flexion/extension
experiment

3.6.2 Results and discussion

In order to evaluate the effectiveness of the proposed method, the experimental results

were analyzed. Figure 3.17 depicts variations of (a) EMG RMS and (b) MPF features

of the bicep muscles of subject A during a fast elbow flexion/extension motion. It can

be observed that the EMG RMS is increasing and the EMG MPF is decreasing towards

lower frequencies (The EMG MPF feature variation using 2 [s] moving average window

is shown in the plot only for aiding the better visualization)with respect to time or number

of contractions. As discussed in previous sections, these results suggest an indication of

muscle fatiguing conditions. Similar variations were obtained for the subject B and C as

well. However, the EMG features of triceps did not show much variations with respect

to the biceps during most of the testing experiments. This may probably due the nature

of the experiments where the activity level of the biceps was prominent throughout the

experiments. Though with different variations of the EMG RMS and EMG MPF during

different levels of the muscle fatigue conditions of the biceps and the triceps muscles across

the each subject, the proposed two fuzzy-neuro modifiers for compensation of the effects of

muscle fatigue should be able to adapt to those changes through proper learning. Therefore,
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if the proposed method effectively able to estimate the EMG-based elbow joint torque

according to the motion intention of the subject during the muscle fatigue conditions, the

measured motion of the robot should follow closely to the subject’s desired elbow motion.

Desired elbow motion

Robot motion with muscle fatigue compensation

Robot motion without muscle fatigue compensation

EMG-based torque with muscle fatigue compensation

EMG-based torque without muscle fatigue compensation

Figure 3.18: (a) Elbow and robot angle variations and (b) EMG based torque variations during
two consecutive elbow flexion/extension cycles near to the start of a slow elbow
motion experiment, (c) Elbow and robot angle variations and (d) EMG based torque
variations during two consecutive elbow flexion/extension cycles near to the end of
a slow motion experiment, of Subject A

Experimental results of the subject A during a slow elbow flexion/extension testing

session are shown in fig. 3.18. Figure. 3.18 (a) represents the variations of the user’s elbow

angle and robot’s joint angle during two successive elbow flexion/extension cycles near to
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the start of the experiment with and without the two fuzzy-neuro modifiers for compen-

sation of the effects of muscle fatigue in effect. As the fig. 3.18 (a) represents a starting

phase of the experiment, it can be considered as a non-fatigue conditions of the two mus-

cles. From the results of fig. 3.18 (a), one can see that the robot has been able to move

closely to the desired elbow motions in both with and without the muscle fatigue compen-

sation method. Nevertheless in order to compare the effectiveness, the average peak angle

difference between desired elbow motion and the robot’s motion is calculated as follows:

Average peak angle difference =

∑cycle
i=1 |peak anglerobot(i)− peak angleelbow(i)|

cycle
(3.35)

where peak anglerobot and peak angleelbow are the peak angle of robot’s motion and desired

elbow motion during single elbow flexion/extension cycle respectively. cycle is the number

of elbow flexion/extension cycles and in this case two successive elbow flexion/extension

cycles (cycle = 2) such as appear in the fig 3.18 (a) are considered. The calculated average

peak angle difference for the results shown in the fig 3.18 (a) are 4 [deg] and 3 [deg] with

respect to the approaches with and without the proposed fuzzy-neruo modifiers for fatigue

effect compensation respectively.

On the other hand, fig. 3.18 (c) shows two successive elbow flexion/extension cycles

during an ending phase of the same experiment session. Such an ending phase of the exper-

iment can be considered as the time period where the subject’s muscles in fatigued condi-

tions. As expected, a clear overshoot can be seen in the robot motion without the proposed

two fuzzy-neuro modifiers for compensation of the effects of muscle fatigue. The reason

for this overshoot of the robot’s angle during muscle fatigue conditions is the increment of

the EMG RMS which ultimately causes increment to the EMG-based elbow joint torque

estimation. However if the proposed method was effective, the robot’s motion should be

much closer to the desired elbow motion of the subject even during the muscle fatigue con-

ditions. The robot’s motion with the proposed fuzzy-neuro modifiers for compensation of

the effects of muscle fatigue is shown in blue color curve in the fig 3.18 (c). Clearly one can

observe that, the robot’s motion with the muscle fatigue compensation is closely following
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Table 3.4: Average peak angle differences during two successive elbow flexion/extension cycles
near to the end (which reflect the muscle fatiguing conditions) of slow motion exper-
iments for each subject with and without the proposed two fuzzy-neuro modifiers for
compensation of the effects of muscle fatigue

Subject with fatigue compensation without fatigue compensation

A 5 [deg] 37 [deg]

B 8 [deg] 37 [deg]

C 2 [deg] 15 [deg]

the desired elbow motion than the robot’s motion without the muscle fatigue compensation.

Therefore, this result shows the effectiveness of the proposed method.

Even though only the results of the subject A being analyzed here, similar results were

observed for subject B and C as well. Table 3.4 includes the average peak angle difference

(during two successive elbow flexion/extension cycles) for with and without the proposed

method for muscle fatigue compensation during ending phases of slow elbow motion exper-

iments for each subject. Results of the table 3.4 further suggest that the proposed method

with the two fuzzy-neuro modifiers has been able to compensate the effects of muscle fa-

tigue on EMG-based control so that the average peak angle difference between desired and

the robot’s motion is reduced.

Furthermore, the estimated EMG-based elbow joint torques related to the conditions in

(a) and (c) are shown in fig. 3.18 (b) and (d) respectively. Even though no significant differ-

ence can be seen in the case of non-fatigue conditions (as in (b)) between with and without

the muscle fatigue compensation, one can observe that during the muscle fatigue conditions

(as in (d)) the estimated EMG-based torque based on the proposed method for compensa-

tion of the muscle fatigue appears to be lower with respect to the estimated EMG-based

torque without the muscle fatigue compensation. Anyhow, in order to get a quantitative

idea on the reduction of torque due to proposed method for compensation of the effects

of muscle fatigue, percentage reduction of the average torque was calculated as the ratio

between difference (with and without the muscle fatigue compensation) of average torques

to average torque without the muscle fatigue compensation. The average torque reduction
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during the two successive elbow flexion/extension motions near to end of the experiments

for the subject A, B and C were 9%, 10% and 8% respectively. Therefore, these result also

support that the proposed method is effective during muscle fatigue conditions to control

the robot.

Desired elbow motion

Robot motion with muscle fatigue compensation

Robot motion without muscle fatigue compensation

Figure 3.19: Desired elbow motion and respective robot’s motion during two consecutive elbow
flexion/extension cycles near to the start of a fast elbow motion experiment of the
subject B

Figure 3.19 shows the results of two successive elbow flexion/extension cycles near

to the start of a fast elbow motion experiments of subject B. In this conditions, it can

be considered that subject’s muscles in non fatigued conditions. Similar to the results of

slow motion experiments, during the starting phase of the experiment, both approaches

(i.e: with and without two fuzzy-neuro modifiers for compensation of the effects of muscle

fatigue)appear to estimate the desired elbow motions of the subject effectively as shown in

fig. 3.19. For the results shown in 3.19, the average peak angle difference between desired

elbow motion and the robot’s motion with and without the two fuzzy-neuro modifiers for

muscle fatigue compensation are 3 [deg] and 4 [deg] respectively.

On the other hand, fig 3.20 depicts the results for two successive elbow flexion/extension

cycles during the ending period of relatively fast elbow motion experiments of subject A, B

and C. It appears that for all the subjects, the EMG-based controller without the proposed
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Subject A

Subject B

Desired elbow motion
Robot motion with muscle fatigue compensation
Robot motion without muscle fatigue compensation

Subject C

Figure 3.20: Desired elbow motions and respective robot’s motions during two consecutive elbow
flexion/extension cycles near to the ending phases of the fast elbow motion experi-
ments of subject A, B and C

two fuzzy-neuro modifiers for muscle fatigue compensation have not able to effectively es-

timate the desired motion of the subjects. This can be recognized by the overshoots appear

in the red colored curves of 3.20. Beside, it can be observed that the blue colored curves
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Table 3.5: Average peak angle differences during two successive elbow flexion/extension cycles
near to the end of the fast elbow motion experiments (which reflect the muscle fatiguing
conditions) for each subject with and without the proposed two fuzzy-neuro modifiers
for compensation of the effects of muscle fatigue

Subject with fatigue compensation without fatigue compensation

A 4 [deg] 12 [deg]

B 10 [deg] 34 [deg]

C 6 [deg] 19 [deg]

appear to be closer to the desired elbow motions curves. The blue colored curves repre-

sent the robot’s motion with muscle fatigue compensation. Therefore, these results suggest

that the EMG-based controller with the proposed muscle fatigue compensation method has

been able to effectively estimate the subject’s elbow motion so that the difference between

the desired elbow motion and the robot’s motion has been reduced.

Table 3.5 reports the average peak angle difference between the desired elbow mo-

tion and the robot’s motion, with and without the fatigue compensation with relevant to the

results shown in fig 3.20. Furthermore, as similar to the slow motion experiments, the per-

centage reduction of the average torque during the two successive elbow flexion/extension

motions near to the ending phase of fast motion experiments were calculated and those val-

ues were 9%, 18% and 12% for subject A, B and C respectively. Therefore, these results

also suggest the effectiveness of the proposed methods. Nevertheless, it was observed that

sometimes the effectiveness of the proposed method during the fast elbow motion with re-

spect to the slow elbow motion has been slightly deteriorated. One of the possible reasons

for causing this may be the variations of the accuracy of the MPF feature estimation using

the FFT algorithm during the fast elbow motions.

When a particular subject is not in the biceps or triceps muscles fatigue conditions,

variations of the EMG RMS and the EMG MPF should be normal. However as the subject

proceed with the muscle fatigue conditions, the EMG RMS and the EMG MPF features

are changed and this variations are influenced on EMG-based control. But, the proposed

fuzzy-neuro modifiers for compensation of the effects of muscle fatigue are adapted to
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Figure 3.21: Example variations of wBFC and wTFC weights during (a) 10 [s] near to the start
of the slow elbow motion experiment (b) 10 [s] near to the end of the slow elbow
motion experiment , of the Subject A

these changes in real-time. As a result, the outputs of these fuzzy-neuro modifiers; the two

coefficients wBFC and wTFC are modified according to the muscle fatigued conditions. For

an example fig. 3.21 (a) and (b) show the filtered variations of wBFC and wTFC coefficients

during two successive elbow flexion/extension cycles in the start (results related to fig 3.18

(a) and (b)) and ending (results related to fig 3.18 (c) and (d)) phase of the slow elbow mo-

tion experiment of the Subject A, respectively. It can be observed that, thewBFC coefficient

has been decreased during the muscle fatigue situation (as in fig. 3.21 (b)) with respect to

the non fatigue situation (as in fig. 3.21 (a)). On the other hand, the wTFC coefficient has

not showed a considerable difference in between these two conditions which may due the

nature of the experiment where the activity level of the biceps muscle was prominent over

the triceps muscle. Nevertheless, these results also backup the effectiveness of the proposed

method during muscle fatigue.

Therefore from the overall analysis, it turns out that the proposed method based on the

multiple fuzzy-neuro modifiers with the EMG RMS and the EMG MPF features as inputs

could be beneficial for compensation the effects of muscle fatigue on EMG-based control.
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3.7 Summery

This chapter presented a study which mainly focused on one of the issues in EMG-based

control methods: muscle fatigue. At first, this chapter illustrated about a study which

was carried out to find out the effects of muscle fatigue on EMG based control in upper-

limb power-assist. The results of that study suggested that the importance of using EMG

frequency domain features in addition to time domain features as the inputs for EMG-based

control methods during muscle fatigue conditions. Then, a novel fuzzy-neuro modifiers

based method for compensation of the effects of muscle fatigue on EMG-based control of

human upper-limb power-assist was proposed. Effectiveness of the proposed method for

compensation of the effects of muscle fatigue on EMG-based control was experimentally

evaluated with providing a detailed discussion. The results of that evaluation suggested that

the proposed method can be applied to compensate the effects of muscle fatigue on EMG-

based control. With increasing number of EMG-based control approaches for assistive

robots such as upper-limb exoskeletons, the proposed method can be beneficial in order to

deal with the problem of muscle fatigue on EMG-based control.



Chapter 4

Investigating the Feasibility of EEG Signals for
Evaluation of Perception-Assist Control in

Upper-Limb Exoskeletons

This chapter presents a research that aims to investigate the feasibility of EEG signals for

evaluation of the perception-assist control in upper-limb exoskeletons. The perception-

assist control has been introduced to upper-limb exoskeletons in addition to power-assist

control in order to safely interact with surrounding environment for the users with dete-

riorated perception abilities. In the perception-assist control, the exoskeletons generate

additional motion modification to the user’s motions based on information of environment

monitoring sensors to ensure the safety of the user. As it is difficult for the exoskeleton

to plan all proper perception-assist for each and every task, tool, and environment, basi-

cally exoskeletons are required to learn the proper perception-assist by its own. In this

learning process, it is necessary to judge the correctness or incorrectness of the perception-

assist performed by the exoskeleton. At the beginning, this chapter investigates the use

of EMG signals to judge performed perception-assist. Results of that analysis show that

EMG signals are sometimes not adequately changed for the judgments and that could lead

to eventually jeopardize the learning of process of perception-assist. Therefore in addition

to EMG signals, this chapter investigates the possibility of utilizing EEG signals measured

from brain of the user to judge the performed perception-assist in upper-limb exoskeletons.

Moreover, this chapter highlights the potential abilities and benefits of using EEG signal

alone instead of EMG signals for the evaluation of perception-assist to be used in learning

process of perception-assist in upper-limb exoskeletons.

82
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4.1 Perception-assist control for upper-limb exoskeletons

Even though with a lot of promising results, most of the existing power-assist exoskeleton

robots assume the proper environment perception abilities of the users. However in the

case of physically weak persons, the perception ability is also deteriorated sometimes. For

an example, with advancing the age; vision, environment perception ability and reaction

time may decline as well for the physically weak people. In such situations, a user might

do some unintended actions unconsciously and the exoskeleton robot might assist the user

to be involved in an unexpected accident. Therefore, it is important to assist the sensing

ability of such persons with the help of additional sensors of the robotic exoskeleton to

avoid those situations. In this context, the concept of perception-assist has been introduced

in some of the exoskeleton designs in addition to the power-assist capabilities [111–113]

to prevent such unexpected accidents.

EMG-based 

Sensors to monitor 
interaction between 

user and environment

Perception-

Stereo camera

EMG-based 
Power-Assist 

Control

Perception-
Assist 

Modification

Upper-Limb 
Power-Assist
Exoskeleton

EMG

7DOF upper-limb
Exoskeleton

(a) (b)

Figure 4.1: (a) 7-DOF upper-limb power-assist exoskeleton with the capability of perception-
assist control [113] (b) Basic structure of the perception-assist control with EMG-
based power-assist control

In the perception assist control, the exoskeleton robot modifies the user’s motion au-

tomatically by generating perception-assist torque in addition to the power-assist torque if
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the exoskeleton robot locates any troubles in the user’s motion. General idea of this con-

cept can be graphically represented as in fig 4.1(b). In order to recognize such issues in the

user’s motion, the exoskeleton robots are equipped with different environment monitoring

sensors such as cameras, ultrasonic sensors and laser range finders. As an example, fig

4.1 (a) shows the setup uses for the perception-assist control of the Saga University 7DOF

upper-limb exoskeleton. In this setup, a stereo camera is used to monitor the interaction

between user and environment. With this proposed perception-assist control method, the

upper-limb exoskeleton can assist not only the motion of the user but also the perception of

the user intelligently, when he/she is going to interact with the environment. Based on the

environmental information acquired from the sensors of the exoskeleton robot, the motion

of the exoskeleton user is modified if there are any disturbances in the motion trajectory of

the user’s hand when the user tries to interact with the environment.

For an example, imagine a situation where a exoskeleton user tries to move his/her

hand towards an object, grab it and return it to an initial position. If the user is performing

this task with a correct hand trajectory, the perception-assist control system recognizes it

with the information gained from the environment sensors and allows the correct motion.

In other words, no perception-assist is introduced if the system identify the hand trajectory

of the user as a correct one. However, if the user is going to grab the object with a wrong

hand trajectory, then the exoskeleton automatically corrects the trajectory of the user’s

hand motion to grab the object by assisting the perception of the user. This is realized by

introducing a perception-assist torque in addition to the power-assist torque in the upper-

limb exoskeleton control method.

There could be various situations where perception-assist might be required based on

a task performed by the user, a tool he/she is using or specific environment. However prac-

tically, it is difficult to prepare perception-assist for each and every situation. Therefore,

the perception-assist is carried out in pre-estimated situations and basically the exoskeleton

robot is required to learn the perception-assist in non-estimated condition [113]. In this

learning process, evaluation of the performed perception-assist modification is necessary.

Because, the ability of recognizing errors made by the exoskeleton during perception-assist
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is crucial for improving the performance of the perception-assist control method.

4.2 Evaluation of the perception-assist: Towards identifying EMG and

EEG as potentials signals

One of the possibilities of evaluating a performed perception-assist control task by the ex-

oskeleton is the analysis of EMG signals. If the perception-assist control of the exoskeleton

is correct, respective EMG signals should become smaller as the user recognizes the risk of

his own motion and follows the motion modification. Conversely the EMG signals should

become larger, if the performed perception-assist control of the exoskeleton robot is in-

correct as the user tries to act according to his/her own motion intention and resists the

erroneous motion modification. However, the respective EMG signals should be become

larger enough during the incorrect perception-assist in order to identify the difference be-

tween correct and incorrect instances. If the EMG signals do not change adequately for a

judgment during an incorrect perception-assist, the learning process might not be success-

ful.

On the other hand, if the exoskeleton make a mistake in the perception-assist control

and tries to assist the user in a wrong way, he/she should be able to feel something goes

wrong and he/she can recognize it as well. This recognition is a part of the brain process of

the particular exoskeleton user. Brain signals related to feeling of error has been explored

in recent studies and suggested the existence of error-related potentials in the EEG recorded

just after the occurrence of an error event [114]. Moreover, several studies [115, 116] have

reported that similar erroneous related brain signals/potentials are usually originated in the

brain region of anterior cingulate cortex (ACC). Also several recent studies [117–119] have

reported the conducted studies on utilizing the EEG error related potentials in brain ma-

chine interfaces and similar applications. Therefore in light of these background, the EEG

signals make another potential candidate for identifying the correctness or incorrectness of

the perception-assist.

In this context, the objective of the research work presents in this chapter is to study

about the variations of EMG signals during perception-assist control and investigate the
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Figure 4.2: A graphical interpretation of the concept highlights in this research

feasibility of EEG signals to judge the correctness or incorrectness of the perception-assist

to be used in learning process of perception-assist control in upper-limb exoskeletons. A

graphical interpretation of the concept which is highlighted in this research is shown in fig.

4.2.

4.3 Experimental setup

Overall experimental setup use in this research is shown in fig 4.3. This setup mainly

consists of a wrist assist exoskeleton, an EMG acquisition system, an EEG acquisition

system and a personal computer. Specific details of each part are illustrated in following

subsections.

4.3.1 Wrist assist exoskeleton

In this research, a wrist assist exoskeleton is used for the experiments. During the experi-

ments, EEG signals generate from the user’s brain are monitored. However, it is a known

that the EEG signals can sometimes suffer with body movements artifacts. Especially, in

the case of upper-limb exoskeletons, EEG signals can be in affected by the motions of the

shoulder or elbow as they are closer to the head (i.e. the EEG sensor net). In this context,

the use of a wrist assist exoskeleton in this research is more reasonable as it may provide the
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EEG signals with less motion artifacts during the experimental period. Fig. 4.4 shows the

wrist assist exoskeleton robot that used in this study. It can assist the wrist flexion/extension

motions of the user. The wrist assist exoskeleton is attached to the user with the help of a

forearm sleeve, a palm holder and a thumb finger holder.

4.3.2 EMG-based power-assist

EMG signals directly reflect the muscle activations and so the motion intention of the user.

Therefore skin surface EMG signals were used to control the power-assist wrist exoskele-

ton. The EMG signals of flexor carpi radialis and extensor carpi ulnaris muscles were

identified as the responsible muscles for wrist flexion/extension motions and so, they were

used as the input signals to EMG-based power-assist controller of the wrist exoskeleton

robot. The EMG signals were measured using the same arrangement that was explained in

section 3.3. In this study, the EMG signal acquisition rate was set to 2 kHz. Moreover, the

power-assist control method use for controlling this wrist assist exoskeleton was similar to

the method described in chapter 2, section 2.3.5.

4.3.3 EEG signal acquisition

This section introduces the system that used for acquisition of EEG signals in this re-

search. The EEG signals were measured using Geodesic EEG acquisition System (Electri-

cal Geodesics Inc.). Hardware system of this EEG acquisition system mainly consists of a

sensor array and an amplifier. An application software called Net Station [109] provided

with the system is used for controlling various parameter during the EEG signal acquisi-

tion, real time signal visualization and recording of the EEG signals. Moreover, facilities

to use custom made programs instead of relying of Net Station application for EEG signal

acquisition are also supported by the system. Fig. 4.5 shows the overall hardware system.

Several steps must be followed for preparation of the EEG system before using it. The

EEG array consists of 256 non-dry type electrodes. Prior to the experiments, all electrodes

are prepared by soaking the EEG sensor array in a mixer of granular or powdered potassium

chloride (KCl), a drop of baby shampoo and water. Normally, the soaking is needed for

at least 5 minutes to ensure adequate wetting of the sponges of the EEG electrodes. An
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Figure 4.5: Hardware setup of the Geodesic EEG acquisition system (Electrical Geodesics Inc.)

example set up of this process is shown in fig. 4.6.

Figure 4.6: Soaking arrangement of the sensor array in the electrolyte bucket

Before applying the Geodesic Sensor Net over a subject’s head, several head measure-

ments are needed to ensure the correct use of the sensor net. Therefore, the first step is to

calculate the proper net size. This can be done by measuring the largest part of the head
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Figure 4.7: A subject who wearing the EEG sensor net during this study. (Land marks use for
measuring circumference of the head and determine the vertex point are marked in
the figure) [110]

circumference with a measuring tape and select the appropriate net size using the given

manual. Then, in order to correctly place the sensor net over the subject’s head, a vertex

point is determined. The vertex; on the top of the head, is the midpoint between the na-

sion (the indented area where the bridge of the nose meets the skull) and inion, centered

between the preauricular points (the indented area in front of each ear flap, where the jaw

meets the skull). Figure. 4.7 shows these land marks positions. In the experiments, it is

important to place the sensor net as precisely as possible in order to compliance with the

standards. More details about this process can be found in Geodesic sensor net technical

manual [110].

The vertex point of this EEG system as mentioned above is also represented by the

Cz electrode position in the international 10-20 EEG electrode referencing system. More

information about the 10-20 system are presented in the chapter 2, section 2.4.3. In the

Geodesic sensor net, the electrode positions related to 10-20 system have been marked
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already by the manufacturer and fig. 4.8 shows the respective electrode positions map.

 

Figure 4.8: Location map of 256 EEG electrodes (10-20 electrodes are circled in red color)

4.4 Experiment protocol for introducing virtual perception-assist con-

trol

In the experiments, subjects sat on a chair in front of a PC monitor as shown in fig 4.3.

Then the subjects were asked to wear the wrist assist exoskeleton and do the wrist motions

according to the commands visible on the PC monitor. Each command visible on the

monitor were displayed based on a timing diagram. Timing diagram of a single trial is

shown in fig. 4.9.

Each trial began with a ready symbol. At the start of 3 [s], left or right command was

displayed on the monitor and subjects were asked to operate the wrist exoskeleton with

power-assist according to the showing direction. Then at 3.5 [s], the exoskeleton robot
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Figure 4.9: Timing diagram of a single trial

randomly introduced an additional wrist joint torque for a 1.5 [s] period either in the same

or opposite directions to the subject’s intended motion (It should be noted that, during this

action no symbols on the PC monitor were indicated). Basically, this added torque could

be considered as a virtual perception-assist torque during the power-assist control of the

exoskeleton robot. If the introduced virtual perception-assist torque was generated in the

subject’s indented direction, the subject simply followed the modified motion by judging

it as a correct perception assist. On the other hand, if the added torque was acting against

the subject’s motion intention, it was judged as a wrong perception-assist where subject

tried to resist the modified motion of the exoskeleton robot. Nevertheless in the next 5

[s], subjects were instructed to return their hand to the original position and prepare for

the next trial. Therefore, a single trial was spanned with 10 [s] and an experiment session

was consisted of such 10 single trials. Those ten trails were distributed with error/correct

perception-assist trial ratio of either 5/5, 6/4 or 4/6. However as mentioned previously, the

order of the correct or wrong perception-assist was randomly maintained.



4.5. EXPERIMENTS 93

4.5 Experiments

In the experiments, three healthy young subjects participated. Details of the subjects are

reported in table 4.1. Complete information and instructions about the experimental proce-

dure were given to all the subjects prior to the experiments. The subjects were instructed to

follow the aforementioned experiment protocol during this study. For each subject, 10 ses-

sions were carried out. Therefore, total number of perception-assist trials per subject were

100 (50 trials related to error perception-assist and 50 trials related to correct perception-

assist). A sufficient rest time was given to all subjects in between each session in order to

prevent any fatigue conditions during the experiments.

Table 4.1: Details of the subjects participated for recording of the data

Subject Gender Age [Years]

Ta Female 24

Th Male 28

Ha Male 30

4.6 Results of the analysis of EMG signals during perception-assist

In order to identify the variations of the EMG signals during perception-assist, an analysis

of EMG signals was conducted. Top plot of the fig. 4.10 show the results of EMG RMS of

the two muscles; flexor carpi radialis and extensor carpi ulnaris along with the wrist joint

torque during a correct perception-assist trial of the subject Ta. In this trial, the subject

was instructed at 3.0 [s] the command appeared in the monitor to move the wrist to the

right side (i.e: to perform flexion motion of the left wrist). As the subject moved her wrist

to the right side, at 3.5 [s] the virtual perception-assist torque was added to the wrist joint

torque so that the resulted direction of the motion modification of the exoskeleton was also

to the right side. As this modification was agreed with the initial motion intention, this trial

can be considered as a correct perception-assist trial. The shaded areas in blue color in the

plots represent the time periods where the perception assist torques were added. As it can
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Figure 4.10: Variations of EMG and torque signals during perception-assist trials of subject Ta.
Top: a correct perception-assist trial, Center: an error perception-assist trial showing
high EMG variations. Bottom: an error perception-assist trial showing low EMG
variations. (Shaded area in blue color represents the time period where the perception
assist torque was introduced)

be seen from the figure, the EMG signals became smaller during the perception-assist (over

the shaded area) because, the subject recognized the correct perception-assist added by the



4.6. RESULTS OF THE ANALYSIS OF EMG SIGNALS DURING PERCEPTION-ASSIST 95

Correct 
perception-assist 
trial

Error
perception-assist 
trial
(High EMG variations)

Error
perception-assist 
trial
(Low EMG variations)

Figure 4.11: Variations of EMG and torque signals during perception-assist trials of subject Th.
Top: a correct perception-assist trial, Center: an error perception-assist trial showing
high EMG variations. Bottom: an error perception-assist trial showing low EMG
variations. (Shaded area in blue color represents the time period where the perception
assist torque was introduced)

exoskeleton and followed the motion modification. Moreover, observed EMG variations

for subjects Th and Ha during correct perception-assist trials are shown in the top plots of
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Figure 4.12: Variations of EMG and torque signals during perception-assist trials of subject Ha.
Top: a correct perception-assist trial, Center: an error perception-assist trial showing
high EMG variations. Bottom: an error perception-assist trial showing low EMG
variations. (Shaded area in blue color represents the time period where the perception
assist torque was introduced)

fig. 4.11 and fig. 4.12 respectively.
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On the other hand, the EMG signals should become larger if the performed perception-

assist by the exoskeleton robot is incorrect, as the user tries to act according to her own

motion intention and resist the erroneous motion modification. Center plot of the fig. 4.10

depicts the EMG signals and the torque signals variations during a wrong perception-assist

trial of subject Ta. In this trial, the subject was instructed at 3.0 [s] by the command ap-

peared in the monitor to move the wrist to the right side. However, at 3.5 [s] the virtual

perception-assist torque was added to the wrist joint torque so that the resulted direction of

the motion modifications of the exoskeleton was to the left side (i.e: extension motion of

the left wrist). As this modification was against the motion intention, this can be considered

as a wrong perception-assist trial. As it appears in the figure, the EMG signals have been

increased with compare to the correct perception-assist trial (i.e top plot of the fig. 4.10) in

the shaded area where the virtual perception-assist torque was introduced. The reason for

the increment of the EMG signals in this case was the subject tried to resist the erroneous

modified motions of the exoskeleton. Furthermore, center plots of fig. 4.11 and fig. 4.12

show the similar increment of EMG signals during error perception-assist trials with com-

pare to respective correct perception-assist trials of subject Th and Ha respectively. If

similar EMG signals increments can be obtained for each and every time for any subject,

EMG signals could have been used easily for judging the performed perception-assist.

Bottom plot of fig. 4.10 shows the EMG signals and the torque signals variations during

a wrong perception-assist trial of subject Ta. The experimental scenario was same with the

previously described error perception-assist trial. However, in this case it can be observed

that the EMG signals have not increased even with the resistive intension of the subject.

Bottom plots of fig. 4.11 and fig. 4.12 also depict such low levels of EMG signal variations

during error perception-assist trials with compare to respective center plots. When such low

EMG signals occur during error perception-assist trails as shown in those bottom plots, it is

difficult to distinguish such error perception-assist trials from the correct perception-assist

trials.

Therefore, these results yield that sometimes EMG signals do not change enough even

if the subject tries to resist the erroneous perception-assist motion which may eventually
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lead the evaluation of the performed perception-assist based on EMG signals is difficult.

Moreover, some muscles of the upper-limb are difficult to be monitored as they are placed

more deep inside the limb. In those instances, monitoring proper EMG signals might be

difficult. Also in some cases, for a particular user such as paralyzed person, some of the

muscles may not available for measuring the EMG signals. Therefore in light of these facts,

it is encouraged to utilize other input signals such as EEG as discussed previously for the

evaluation of the perception-assist control of upper-limb exoskeletons.

4.7 Support Vector Machines (SVM)

As from the results appeared in the previous subsection, it is reasonable to think that a

simple threshold based method on EMG signals might not provide a better recognition

between the correct or incorrect perception-assist trials performed by the exoskeleton. The

differences between users and the differences between EMG output ranges of muscles make

it difficult to use such simple EMG signal threshold level based method for judging the

perception-assist. On the other hand, this problem can be taken as a two class (i.e: correct

vs error perception-assist) classification problem. There are different methods reported for

realizing of such two class classification problems [108]. However among those methods,

Support Vector Machine (SVM) is identified as one of the established methods especially

for two class classifications.

The SVM is a classification technique originally introduced by Vapnik [121]. The

SVM has known to perform well in a number of real world problems which including EEG

signals classification studies as well [122]. In the case of two class classification problem, a

set of labeled patterns can be represented as {(x1, y1), (x2, y2), ....., (xp, yp)}where patterns

xp ∈ <d and labels yp ∈ {−1, 1} which referring to two different classes. The SVM

algorithm basically tries to separate the data of the two classes by finding a hyperplane

yielding the largest possible margin. Here, the margin is the distance between nearest data

points of different classes, as presented in fig. 4.13. Such a SVM classification using linear

decision boundaries is known as a linear SVM. A parameter called regularization parameter

(C) is used in the linear SVM and value of the C is responsible for dealing with outliers and
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Figure 4.13: A graphical illustration of linear SVM

allowing errors on the training set. Therefore, finding a suitable value for C is an essential

part of the model selection process. If no prior knowledge is available for choosing C, it

has to be estimated based on training data using techniques such as cross validation.

On the other hand, it is possible to build nonlinear decision boundaries without highly

enhancing the classifier’s complexity, using a technique called kernel trick. The kernel

trick deals with implicitly mapping of the data to another space (usually of much higher di-

mensionality) using a kernel function. Some of the common kernel functions are Gaussian

radial basis function, polynomial function, etc.

Due to several advantages, the SVM has became one of the popular methods among

two class classification algorithms. The SVM is known to have good generalization prop-

erties [123, 124] and known to be insensitive to over-training [124] as well. Moreover,

it known be resistant to curse of dimensionality [123]. On the other hand, the SVM has

only few hyper parameters that need to be defined such as the regularization parameter C

in the linear SVMs. Therefore in this research work, it was decided to use the SVM for

classification between correct and incorrect perception-assist trials.



100 4. INVESTIGATING THE FEASIBILITY OF EEG SIGNALS FOR EVALUATION...

4.8 Evaluation of the perception-assist using EMG and EEG signals

As highlighted in the section 4.2, EEG might be a potential signal that can be used to har-

ness the information about the correctness or incorrectness of the performed perception-

assist. Therefore, this section aims to investigate the feasibility of EEG signals for eval-

uation of the perception-assist in addition to the EMG signals. This section details the

attempted approaches for evaluation of perception-assist control using EMG and EEG sig-

nals during this research work.

4.8.1 Evaluation of the perception-assist with multiple SVM based method

EMG RMS (Fs = 2 kHz)

Down sampling (Fs = 25 Hz)

Extracting 1 [s] time segments

SVM 2
401- 600 [ms] 

SVM 3
601- 800 [ms] 

SVM 1
201- 400 [ms] 

Final classification decision

Figure 4.14: Flow chart of the method that used EMG alone. Here Fs is the sample rate.

In this approach, a multiple SVM based method for evaluation of the correctness or

incorrectness of the perception-assist using EMG and EEG signals was proposed. In order

to compare the effectiveness of this approach that used both the EMG and EEG signals

for perception-assist judgment, it was compared with a method that used only the EMG

signals.

The method that utilized only the EMG signals is illustrated with a flow chart as shown
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in fig. 4.14. First the EMG RMS signals were down sampled from 2 kHz to 25 Hz in order

to reduce the high dimensionality. As described in the experiment protocol, the perception-

assist was introduced during 3.5[s] to 5[s]. Therefore, the EMG or EEG feature extraction

should be done within this time period. In this research, therefore 1[s] time segments that

counted from the instant where the perception-assist torque started as shown in fig. 4.15

were extracted from all the trials. This made data set of 100 one second time segments for

the analysis.

Instead of using one SVM classifier, multiple SVM classifiers were employed in this

approach. The main idea behind using several classifiers was to reduce the dimensionality

of the input feature vector to a particular SVM classifier. Furthermore, there is a possibil-

ity that several classifiers could jointly outperform a single classifier if they appropriately

combined. In this study, EMG temporal signals data were used as the input features. A

time window of 200-800 [ms] from the 1 [s] time segment was selected for EMG temporal

feature extraction. The selection of this time window was decided based on preliminary

analyze of recorded EMG signals. In the proposed method for only using EMG signals,

three independent SVM classifiers were implemented. The EMG temporal data from the

time windows of 201-400 [ms], 401-600 [ms] and 601-800 [ms] were fed to those three

SVM classifiers as the input vectors. Therefore, 10 data points (from the two EMG chan-

nels) were produced as the feature vector to each SVM classifier. Eventually, to get the

final classification decision, the outputs of the three SVM classifiers were combined with

the majority vote method.

A 10-fold cross validation method was used to verify the performance of the classifica-

tion results of each subject. In this method, in a particular fold, testing of the classifier was

carried out using one of the experiment sessions (10% of all data) where data of the other

nine sessions (90% of all data) were used to train the SVM classifiers. Same process was

followed other nine folds. Moreover, in each fold it was ensured that the tested data was

unseen to the SVMs during SVM training.

On the other hand, fig. 4.16 shows a graphical representation of the method that was

proposed in combine EMG-EEG approach for the evaluation of the perception-assist. In
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Figure 4.15: 1[s] time segment extracted from a single trial

this approach, the first step was to use a common average reference (CAR) as the spatial fil-

ter [120] for raw EEG signals. As such error related EEG signal is known to be a relatively

slow cortical potential, the EEG signals were band pass filtered between 1-10 Hz in the

next step. Then, in order to reduce the high dimensionality of data, the EEG signals were

down sampled from 250 Hz to 25 Hz. In the next step, the EEG signals during 1[s] time

windows related to each single trial were extracted from all EEG channels as illustrates in

4.16.

Even though, the EEG signals were recorded using the 256 EEG electrodes sensor net,

not all those channels may carry the relevant information. Therefore, it is important to

select the relevant EEG channels. In previous studies such as in [84], a sum of cosine angle

based selection algorithm was proposed for selecting the EEG channels. In that study, the

selected channels were varied based on the subject and the task he/she performed. However,

such selection of sensors using preliminary experiments is a time consuming task and may

be a tedious work for the subjects to perform over many experiments.

On the other hand, similar error related brain signals/potentials are believed to be orig-

inated from Anterior Cingulate Cortex (ACC) of the brain. Several studies [115, 116] have

researched this in details. The relevant region (ACC) of brain is located near to the frontal
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Figure 4.16: Flow chart of the method that used combine EMG-EEG. Here Fs is the sample rate.

lobes and along with the walls which divide the left and right hemisphere. Furthermore,

several studies have reported that electrode positions FCz and Cz (based on the interna-

tional 10-20 standard) can be used to monitor such error related EEG signals effectively.

In fact, these two EEG channels are placed basically above the location of the ACC. On

the other hand, more number of EEG electrodes will cause a high dimensional input fea-

ture vector. However, it is usually advantageous to reduce the number of input features or

reduce the dimension of the input vector to a classifier in order to have a better predictive

results and a less computationally intensive approach. When a large input feature vector is

supplied to a classifier, usually it needs a large number of training data in order to avoid

over fitting of the classifier as well. Furthermore, recording such a large number of training

data from subjects especially in this type of applications might not be practical. On the

other hand, if it is possible to use common and generally available EEG channels for the
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Figure 4.17: Selected EEG channels (ch 15 and ch 81) for feature extraction

EEG signal feature extraction that might be useful as well. Therefore after considering all

these reasons, it was decided to use the EEG channel FCz and Cz (as shown in fig. 4.17) for

the EEG feature extraction in this study. However as Cz is the reference electrode of this

EEG acquisition systems, channel 81 was used instead of Cz (which is the nearest channel

to Cz). Moreover, channel 15 represents the FCz position of the sensor array.

Basically there are two ways of fusion of EEG signals with the EMG signal based

SVM classifiers. One way is using EEG features as the input features to those EMG signal

based SVM classifiers. This can be considered as input or feature level fusion. The second

possibility is to use separate SVM classifiers for the EEG signals and then final decision

is calculated based on combine decision of all EMG and EEG classifiers. This can be

considered as decision level fusion. However, the mentioned first approach will further

increase the size of the input vector to SVM classifiers. Moreover, the time window for

feature extraction of EEG signals may differ from the time window used for extracting

the EMG features. Due to these reasons, the second approach was utilized in this study.

As similar to the method described for the EMG signal based method, temporal data of

the selected two channels were prepared as the inputs features to the SVMs. Based on

the average EEG signal variations across all three subject and across two EEG channels
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results, the time window for EEG feature extraction was selected as 200-600 [ms]. Two

independent SVM classifiers were used for classification based on EEG features. Thus,

10 data points (from the two EEG channels) were prepared as the feature vector to each

SVM classifier. Finally, decisions from the three SVM classifiers based on EMG signals

and decisions from the two SVM classifiers based on EEG signals were fused using the

majority vote scheme to estimate the final recognition output as shown in fig. 4.16. As same

as the EMG only approach, a 10-fold cross validation method was employed to evaluate

the performance.

4.8.2 Results and Discussion

In order to analysis the performance of the proposed methods, recognition rates for error

and correct perception-assist were calculated based on following performance matrix as

shown in fig. 4.18.
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Figure 4.18: Performance matrix

Figure 4.19 reports the recognition rates (calculated by averaging the accuracy rates

of 10-fold cross validation) of all the subjects based on the approach that used only EMG

signals to judge the correctness or incorrectness of the performed perception-assist. Only

using EMG signals, it was able to correctly recognize the error perception-assist trials with

a overall accuracy of 80.5% across all subjects. In learning process of the perception-assist,

it is required to accurately identify the erroneous perception-assist as much as possible

and use that results to learn accordingly. On the other hand, there was an average 64.4%

probability of recognizing the correct perception-assist trials correctly across all subjects.
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More importantly, both the correct and error perception-assist recognition rates should

be increased together for better overall accuracy of the perception-assist evaluation. If the

classifier mistakenly recognizes an error perception-assist trial as a correct one, it will not

much influence on the learning process of the perception-assist. It will only be a missed

chance (miss hit) in the learning process. However much more damage may be done to

the learning process, if the classifier mistakenly judge a correct perception-assist trial as

an error perception-assist trial (false alarm). Therefore, not only improving the accurate

identification of error perception-assist trials, but also decreasing the miss classification of

correct perception-assist trials as the error perception-assist trials is vital for the learning.
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Figure 4.19: Performance matrix for EMG only approach

On the other hand, fig. 4.20 shows the accuracy rates for the combine approach that

used both the EMG and EEG signals to judge the performed perception-assist. For all

the subjects, accuracy rates for correctly identifying the erroneous perception-assist have

been improved for the case of using both the EMG and EEG signals in comparison to the

case of using only EMG signals. Using both the EMG and EEG signals, it was able to

correctly judge the erroneous perception-assist with a overall accuracy of 84.53% across

all the subjects. As shown in fig. 4.20, the recognition rates of the correct perception-assist

in respective subjects have also become increased with the relevant values in fig. 4.19. On

average a 68.6% accuracy rate has shown for the recognition of the correctly performed

perception-assist trials. Although the improvements when the method that used both the

EMG and EEG signals are varied with each person, the recognition of the correctness or

incorrectness of the perception-assist performed by the exoskeleton using both EMG and
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EEG is effective from these experimental results.

Error Correct
E

rr
or

C
or

re
ct

Recognized outcome
A

ct
ua

l 
Pe

rc
ep

tio
n-

as
si

st

79.3%

74.0%

20.7%

26.0%

Error Correct

E
rr

or
C

or
re

ct

Recognized outcome

88.8%

67.9%

11.2%

32.1%

Error Correct

E
rr

or
C

or
re

ct

Recognized outcome

85.5%

63.9%

14.5%

36.1%

Subject Ta Subject Th Subject Ha

Figure 4.20: Performance matrix for combine EMG and EEG approach

Therefore, the overall experimental results show that the recognition of error percep-

tion assist by using both EMG and EEG signals is relatively higher than that of using

EMG signals alone. Moreover, the classification rate of correctly recognizing a correct

perception-assist trial is also increased with the combine approach of using EMG and EEG

signals. Therefore, these results show that EEG signals can be used to improve the recogni-

tion of the correctness or incorrectness of the perception-assist in upper-limb exoskeletons.

4.9 A study of investigating the possibility of using only EEG signals

for evaluation of the perception-assist

The primary objective of this study was to explore whether can EEG signals alone be used

to judge the correctness or incorrectness of perception-assist. Even with adequate levels of

changes in EMG signals, it is required to recognize EMG signals of which muscle/muscles

is/are changed during perception-assist in order to properly recognize the perception-assist.

In other words, for different perception-assist tasks different muscle or combinations of

muscles have to be monitored. But, due to the complexity of the upper limb motions

during day to day life activities, this might not be a straightforward task. On the other

hand it may possible to argue that, the user may experience the similar feeling about any

error perception-assist irrespective of different types of perception-assist tasks or motions.

Therefore, if it is possible to judge the correctness or incorrectness of the perception-assist

solely based on EEG signals, definitely it will be an advantage.
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In this study, all the analyses and methods for evaluating the perception-assist were

carried out based on the experimental sessions described in section 4.5. Pre-processing of

EEG signals was almost similar to the steps followed in the previously explained approach.

As the first step, raw EEG signals were spatially filtered using common average reference

method. Then such error related EEG signals are known to be relatively slow cortical po-

tentials, the EEG signals were band pass filtered between 1-10 Hz. In order to reduce the

higher dimensionality of the EEG data, it was then sub sampled to 25 Hz. Then as men-

tioned in previously, 1[s] time segments were extracted from every single trials. Therefore,

data set of 100, 1[s] time segments were prepared.

All EEG 1[s] time segments
(pre processed)

( 10 sessions = 100 trials)

Testing Data set
( 2 sessions = 20 trials) 

Training Data set
( 8 sessions = 80 trials) 

Fold 1

Fold 2 Fold 3 Fold 4 Fold 5

SVM Training
with 8-fold 

cross  validation

In each fold, 70 trials
use for training and 
10 trials use for 
cross validations

Final 
SVM Training

Selected  
SVM regularization parameter 
and time window for feature extraction

Trained SVM 

Unseen test data for 
final classification

Step 1

Step 2

Step 3

Step 4

Trained SVM 

Classification
Results for fold 1

Figure 4.21: Flow chart of the steps used for SVM training, cross validation and testing for EEG
data

Similar to the previous study, it was decided to use SVM as the classifier to judge

whether the performed perception-assist is correct or incorrect in this study. In the previous
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approach, the time window for extracting the temporal input features of EMG and EEG

signals was fixed for all the subjects. However due to the variations of EEG signals across

the subjects, it is important to select a suitable EEG feature extraction time window for

each subject respectively. Therefore in this study, a method was prepared to select the

appropriate time window for EEG feature extraction in each subject during SVM training

phase.

Flow chart of the method that proposed in this study is illustrated in fig. 4.21. For

any kind of classifier, it is required to have a training based on training data. After that, the

trained classifier is applied to classify the test data in order to verify the effectiveness. More

importantly, those test data must be completely unseen data set for the classifier. In other

words, the test data set must not be used by any means for the classifier training. Therefore

considering these points, it was decided to use 80% of the all recorded data for training the

SVM classifier and use rest of the 20% data for testing the classifier. It is basically using of

data sets of 8 sessions to train the classifier and test the effectiveness of the classifier based

on rest of the 2 sessions. Nevertheless, as the total data set consisted of relatively a low

number of single trials (i.e: 100 data set of 1[s] time segments), it was decided to evaluate

the classifier based on a 5 fold training-testing process. This is the first step of this method

as marked in fig. 4.21. Moreover, column 2 and 3 of the table 4.2 report the sessions used

for training and testing data sets in this process for each fold, respectively. Main intention

of this 5 fold training-testing process was to get a relatively better generalized performance

of the classifier rather than based on single training-testing process.

Table 4.2: Training and testing data set partition

Fold Sessions used for Training Sessions used for Testing

1 1 to 8 9 and 10

2 1 to 6, 9 and 10 7 and 8

3 1 to 4, 7 to 10 5 and 6

4 1 and 2, 5 to 10 3 and 4

5 3 to 10 1 and 2
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At each fold, the SVM classifier was required to learn based on the available training

data. For any classifier, it makes the output result based on the input features. Therefore,

the selection of a set of relevant input features is important issue in most of the classifiers.

Pre-feature selection methods are usually employed and the basic idea behind the feature

variable selection is to pick the most relevant set of features that can result in acceptable

predictive performance. Thus based on the reasons mentioned in the previous approach,

two EEG channels namely; channel 15 and 81 were selected for EEG feature extraction in

this study.

Figure 4.22: 55 possibilities of time window considered for classification during classifier train-
ing. (1 [s] time window starting from 3.5 [s] in single trial)

The second step of the flow chart in fig. 4.21 is to train the SVM with a cross validation

method to find the SVM model parameters and appropriate time window for EEG feature

extraction. Classification must be done for each and every perception-assist task during

each trial. As the perception-assist task started after 3.5 [s] in each trial, it is reasonable

to think that if any variation of EEG signals related to perception-assist should be existed
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after 3.5 [s]. Length of the time window (which start from 3.5 [s]) for EEG feature extrac-

tion were selected independently per subject based on the classification performance of the

classifier over the training data set. In this selection process, 55 possibilities of time win-

dows were considered for classification as shown in fig. 4.22. The smallest time window

length was considered as 100 [ms] and the largest was 1000 [ms] (which the total length

of the 1[s] time segments). Thus, the selection of the appropriate time window for EEG

feature extraction and SVM hyper parameter selection (In this case, the linear kernel was

used as the kernel function of the SVM and therefore only one hyper parameter was needed

to find) were required to carry out based on the training data. In order to realize this, a 8-

fold cross-validation method was used. In this cross-validation method, in each fold, the

validation of the classifier was done based on one of the experiment sessions (validation

data set) and data of the other 7 sessions were used to train the SVM classifiers. Then, the

hyper parameter and the time window with highest cross-validation accuracy were selected

to model the final SVM classifier based on whole training data set (trained using all 8 ses-

sions) and this step is illustrated as step 3 in the fig. 4.21. Finally, the effectiveness of this

trained classifier was evaluated based on the respective data of two sessions used for testing

as shown in table 4.2 (unseen 20 data). This step is marked as step 4 in the fig. 4.21.

4.9.1 Results

The variations of EEG signals across subjects and along the time are not consistent. Due

to high variability of EEG signals, it is sometime difficult to spot the straightforward dif-

ferences between error and correct perception-assist related EEG signals during a single

trial. However if there are any differences between EEG signals of error versus correct

perception-assist trials, the trained classifiers will be able to make use of them.

In this study, a SVM based method was used for recognition of the correctness or

incorrectness of the perception-assist trials and the results for the subjects are reported in

fig. 4.23. It shows the recognition rates (as calculated based fig. 4.18) for the correct and

error perception-assist trials for each subject based on average classification performance

over the 5 folds as mentioned in table 4.2. In this study, the correctly performed perception-

assist trials were able to recognize at an average rate of 57.4% across all three subjects
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Figure 4.23: Performance matrix for EEG only approach (average over 5 folds)

whereas, the error perception-assist trials were able to identify with a 61.6% rate.

Table 4.3: Selected time windows during 5 folds of testing for all subjects

Fold Subject Ta Subject Ha Subject Th

1 100-800 [ms] 300-800 [ms] 100-800 [ms]

2 200-800 [ms] 300-900 [ms] 300-800 [ms]

3 100-1000 [ms] 1-900 [ms] 300-800 [ms]

4 200-800 [ms] 200-900 [ms] 1-800 [ms]

5 200-800 [ms] 1-900 [ms] 400-700 [ms]

Moreover, table 4.3 reports the selected time windows for classification during 5 folds

of training-testing for all the subjects. For the subject Ta, results across five folds showed a

relatively higher consistency of selected time window periods whereas, for the subject Ha

and Th selected time window across 5 folds were not relatively consistent. Furthermore,

the classification results signify that inter-subject differences have stronger influence on the

classification performance.

Even though the recognition rates are not highly encouraging in comparison to the

results obtained for the EMG only or EMG-EMG combine approaches, the recognition

rates are grater than the chance level. Thus, these moderate recognition rates suggest that

the feasibility of using EEG signals to recognize the correctness or incorrectness of the

performed perception-assist in upper-limb exoskeletons. Depending on the situation and
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condition of the subject either EMG, EEG or combination of EME-EEG can be switched

in between to judge the correctness or incorrectness of the perception-assist. Especially, in

the case of an exoskeleton user who does not have required muscles to measure the EMG

signals or simply difficult to measure the EMG signals, the EEG signals based evaluation

might be useful. As mentioned previously, even with adequate variations in EMG signals,

it is required to recognize EMG signals of which muscle/muscles is/are changed during

perception-assist in order to properly judge it. Therefore, for different perception-assist

tasks different muscle or combinations of muscles have to be monitored. However, due

to the complexity of the upper limb motions during daily life activities, this might be a

difficult task. On the other hand, the brain response to the error situations in the context

of this application might be same about any error perception-assist irrespective of different

perception-assist tasks or motions. In such situations, the evaluation of perception-assist

based on only EEG signals might be beneficial. Nevertheless, this investigation can be used

to back the possibility of using EEG signals to judge the correctness or incorrectness of the

performed-perception assist in upper-limb exoskeletons. However, further research effort

is needed to improve the effectiveness.

4.10 Summery

This chapter investigated the feasibility of EEG signals for evaluation of the perception-

assist control performed by the upper-limb exoskeletons. Based on existing knowledge

and previous studies, EMG and EEG signals were identified as potential candidates for

evaluation of the perception-assist control. Three healthy subjects carried out experiments

using a wrist assist exoskeleton with perception-assist while monitoring EMG and EEG

signals. Results of the analysis of EMG signals during perception-assist yielded that the

EMG signals are sometimes not adequately changed for the judgments of the perception-

assist. Therefore in addition to EMG signals, this chapter investigated the possibility of

using EEG signals for this purpose. In that case, the correctness or incorrectness of the

perception-assist was judged using a combination of EMG-EEG signals based on multiple

SVM based method and the results showed a relatively higher accuracy compared to the
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approach based on only EMG signals. Later on the study, an attempt was made to judge

the perception-assist based on only EEG signals. However, the accuracy of the recognition

was not that encouraging even though it was above the chance level. On the other hand, it

was lower than that of the EMG only or EMG-EEG combine approaches. Therefore, it was

suggested that to use both EMG and EEG signals in combination for a higher recognition

accuracy of the perception-assist. Furthermore, it was highlighted that depending on the

situation and condition of the user either EMG, EEG or combination of EMG-EEG can be

switched in between to evaluate the correctness or incorrectness of the perception-assist.



Chapter 5

Conclusions and Future Work

An upper-limb exoskeleton robot is one of the most effective assistive robots that can be

used to assist or rehabilitate the motions of upper-limbs of a physically weak individual.

Controlling upper-limb exoskeletons however, requires sophisticated technologies, as they

always interact with human users. It is necessary to control the upper-limb exoskeletons

based on the motion intention of the user. EMG and EEG signals have been identified

as potential input signals to the control methods of upper-limb exoskeletons since EMG

and EEG signals reflect the motion intention of the user. Even though there has been re-

markable progress in the recent past in control methods for upper-limb exoskeletons based

on EMG and EEG signals, there are several problems which need further research effort.

Therefore, the objective of this thesis was to address issues related to the control of upper-

limb exoskeletons using EMG and EEG signals. More specifically, this thesis focused on

the issue of muscle fatigue in EMG-based control and investigating the feasibility of EEG

signals for evaluation of the perception-assist in upper-limb exoskeletons.

The structure of the thesis consists of five chapters where the first chapter was used

to explain the motivation behind the work of this thesis with a brief introduction. Second

chapter basically presented the background on upper-limb exoskeleton control methods

based on EMG and EEG signals. Notably, challenges and gaps to be filled in existing

EMG and EEG control methods that have been proposed for upper-limb exoskeletons were

identified and discussed in the second chapter. Major contributions of this thesis are two

fold and they were presented in chapters three and four.

The first half of the thesis addressed the problem of muscle fatigue on EMG-based

control and the relevant research work is reported in chapter three. Muscle fatigue can

considerably modify the EMG to EMG-based torque relationship as muscle fatigue has an

115
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influence on variations of the EMG amplitude. At the beginning, experiments were carried

out with three healthy young subjects to find out the effects of muscle fatigue on EMG

signals and EMG-based control in human upper-limb power-assist. The results of these

experiments signified that an EMG amplitude feature such as EMG Root mean square

(RMS) only is not adequate as an input signal for an effective EMG-based control during

the muscle fatigue conditions. Therefore, the necessity of using frequency domain EMG

features as additional input features to recognize the muscle fatigue conditions and utilize

in EMG-based control was highlighted.

In order to compensate for the effects of muscle fatigue on EMG-based control, this

thesis proposed a novel method based on multiple fuzzy-neuro modifiers which used EMG

MPF in addition to EMG RMS as an input to identify the muscle fatigue conditions. Dur-

ing the experiments three healthy young subjects were asked to perform repeated elbow

flexion/extension motions to control a robot arm using EMG-based control. Results were

analyzed and it was observed that the robot is over shooting without muscle fatigue com-

pensation method as a result of increasing EMG RMS during muscle fatigue conditions.

On the other hand, the proposed method for the compensation of the effects of muscle fa-

tigue was able to effectively reduce the overshoots of the robot motions. Therefore from

the overall analysis it turned out that the proposed method based on multiple fuzzy-neuro

modifiers with EMG RMS and MPF features as inputs can be effectively used to compen-

sate for the effects of muscle fatigue on EMG-based control. With an increasing number

of EMG-based control approaches for assistive robots, the proposed method is beneficial

to deal with the problem of muscle fatigue.

The second half of the thesis investigated the feasibility of EEG signals for evaluation

of the perception-assist control performed by the upper-limb exoskeletons. This research

work was presented in chapter four. Perception-assist has been introduced apart from the

power-assist for upper-limb exoskeletons to avoid the undesired motion intentions by the

users with deteriorated perception abilities. Perception-assist needs to be learned by the

exoskeleton itself and in this learning process, it is required to judge the correctness or

incorrectness of the perception-assist performed by the exoskeleton.
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In this research work, EMG and EEG signals were identified as potential candidates for

evaluation of the perception-assist control. Experiments were carried out with three healthy

young subjects to control a wrist assist exoskeleton with perception-assist while monitoring

EMG and EEG signals. Results of the analysis of EMG signals which were acquired from

two muscles, flexor carpi radialis and extensor carpi ulnaris during perception-assist sug-

gested that EMG signals sometimes do not adequately change according to the judgments

of the perception-assist. Moreover, for a particular user, it might be difficult to measure the

EMG signals or required muscles may simply be unavailable. For these reasons, in addition

to EMG signals, this thesis suggested to explore the possibility of utilizing EEG signals.

In this context, correctness or incorrectness of the perception-assist was judged using a

combination of EMG-EEG signals. Multiple SVM based methods were applied to classify

the error vs correct perception-assist trials. Temporal data of EMG RMS of the aforemen-

tioned muscles and pre-processed temporal data of EEG channels 15 (FCz) and 81 (an

electrode near to Cz) during pre-selected time window from where the perception-assist

was introduced in each trial were used as the input features to multiple SVMs. Results of

the method that used a combination of EMG and EEG signals showed a relatively higher

accuracy compared to the method that used only EMG signals to judge the perception-

assist. Moreover, an attempt was made to judge the perception-assist based on only EEG

signals. In that attempt, pre-processed temporal data of EEG channels 15 and 81 during

a time window that was selected based on SVM training stage was used to extract the in-

put features. Even though the accuracy of the recognition between correct vs incorrect

perception-assist trials was above the chance level in this attempt, it was lower than that

of EMG only or EMG-EEG approaches. Therefore, this research work suggested that, a

combination of EMG and EEG signals can be used to realize higher judgment accuracy of

the perception-assist. Moreover, this thesis highlighted that depending on the situation and

condition of the user either EMG, EEG or combination of EMG-EEG can be switched in

between to judge the correctness or incorrectness of the perception-assist.
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5.1 Future Work

Although the results presented in this thesis have demonstrated the effectiveness of the

proposed methods and approaches, they could be further improved in a number ways. As

presented in the first half of this thesis, the proposed method based on multiple fuzzy-neuro

modifiers with EMG RMS and MPF features as inputs was able to effectively compensate

the effects of muscle fatigue on EMG-based control. Basically the effectiveness of the this

method relies on input features to the fuzzy-neruro modifiers and better estimation of those

features during dynamic experiments or real life situations. Therefore, other measures

of muscle fatigue in addition to EMG MPF and EMG RMS can be tested as the input

features to the proposed multiple fuzzy-neuro modifiers based method in future studies to

investigate whether the effectiveness can be further enhanced. Moreover, robust methods

for estimating frequency domain EMG features during dynamic conditions can be further

studied.

In this thesis, the method proposed for compensation of the effects of muscle fatigue

on EMG-based control was only evaluated with three healthy and young subjects. How-

ever, real end users of these assistive robotic systems such as upper-limb exoskeletons may

considerably differ from those young subjects. Therefore in future studies, it is important

to evaluate and improve the proposed methods with a larger pool of subjects including at

least a few end users such as physically weak or old.

On the other hand, the research work on investigating the feasibility of EEG signals

for evaluations of the perception-assist presented in the second half of this thesis opens up

many future work. Results presented in chapter four have shown the feasibility of using

EEG signals to evaluate the correctness or incorrectness of the perception-assist in upper-

limb exoskeletons. Even though, the recognition accuracy was increased to a certain extent

with the combined approach of EMG and EEG signals in comparison to the EMG only

approach, the results of the EEG only approach was not that encouraging. Therefore, it

is important for future studies to work on improving EEG based recognitions. That will

enable to improve the combined EMG-EEG based approach as well. On the other hand,

in this research work, only two EEG channels over the brain ACC area were used for the
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feature extractions as those two electrodes were known to be suitable for error related brain

activity monitoring. However, it will be interesting to find out other EEG channels that

could be used to enhance the recognition of error related brain activities. Nevertheless, the

number of EEG channels used for feature extraction should be considered carefully as the

dimension of the input vector to classifier will depend on that as well. Especially, in real

conditions it may be difficult to perform many training sessions for a user to record more

data for training of the classifiers. Therefore, future studies should focus on classifier train-

ing with less number of training trials. Moreover, from this investigation it was made clear

that time window for feature extraction varies across subjects and even between sessions of

the same subject as well. Therefore, more adaptive techniques for the selection of the time

window for EEG feature extraction could lead to better recognition rates.

In this investigation, perception-assist experiments were limited to only wrist move-

ments and the experiment was synchronized with time (using signal trial protocol). How-

ever, the actual scenario could be a person wearing a 7-DOF upper-limb exoskeleton and

performing self paced movements (without time driven protocol using the images shown

in the monitor). Therefore, in future studies the experiment protocol should be modified in

order to test the approaches in real life conditions. On the other hand, in the case of 7-DOF

upper-limb exoskeletons in more dynamic conditions, relatively higher level of movements

are inevitable and those movement will affect the EEG signals as well. Therefore, suitable

EEG artifact removal or filtering methods must be used for EEG signals.

Finally, the research work related to perception-assist evaluation presented in the thesis

was carried out with only three healthy young subjects. Future studies could extend to

experiment with more subjects including at least a few end users such as physically weak

or old people to evaluate and improve the effectiveness of the methods.
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