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Chapter 1 Introduction 

1.1 Research background 

1.1.1 Motivation 

 Recently, the three dimensional (3D) magnetic field analysis with the finite 

element method (FEM) is widely used to develop high performance electric 

machines and magnetic devices. However, great efforts toward the finite element 

modeling and huge computation costs are required in the magnetic field analyses of 

complete models composed of distributed components, such as a laminated core [1], 

a building [2-3], Open-Type Magnetically Shielded Room (MSR) [4] etc. To 

overcome these problems, homogenization techniques [5-15], in which the 

complicatedly distributed materials are replaced with a homogeneous body, are 

discussed at this moment.  

In my research, homogenization techniques of a laminated core and a model 

composed of distributed components, are required to develop high performance 

electric machines and magnetic devices. 

 

1.1.2 Modeling of laminated core 

In electric machines, laminated cores are commonly used in order to reduce the 

eddy current losses. In the finite element analysis of the magnetic field in such a 

machine, the laminated core is normally modeled by a solid one in order to save 

computation cost. In the ordinary method, the eddy current in the core is neglected 

because the eddy current loops in laminated cores are much different from those in 

solid cores. However, it seems that the eddy current in the steel plate used for 
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laminating sometimes should not be neglected, such as in a machine with an inverter 

power supply in which the voltage has harmonic components. 

In the analysis of a magnetic shielding with thin magnetic conductive layers 

carrying eddy currents, it has been already proposed that the magnetic field inside a 

layer is evaluated analytically [5], [6]. Then, it has been applied to the linear 

magnetic field analysis of the laminated core [7]. In that analysis, the laminated core 

is modeled by a solid one with anisotropic permeability and conductivity, and the 

permeability is determined by the analytical solution of the magnetic field inside the 

steel plate carrying the eddy current. Next, the method is expanded to nonlinear 

analysis by using the one-dimensional (1D) finite-element eddy current analysis 

instead of the analytical solution [8]. The Newton–Raphson method is applied to 

nonlinear iteration, and the step-by-step method is used for time iteration. The 

proposed method can obtain accurate average values of the flux and eddy current 

densities except for near the sides of cores, and the accurate eddy current losses, 

within the applicable CPU time. Moreover, the proposed homogenization technique 

is extended into the loss calculation [9]. In this loss calculation, the hysteresis loss in 

the laminated core is calculated considering the skin effect of the flux in steel plates 

and the eddy current loss in the steel plate can be directly calculated. This proposed 

method is applied to the loss calculation in a reactor connected to inverter power 

supply. The configurations of the core and the plate are improved by the loss 

distribution obtained from the proposed method. The iron loss can be reduced by half 

due to improvements in the experiment. However, the proposed technique cannot be 

applied to motor cores because the rotational flux cannot be taken into account by 
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using the 1D sub-analysis.  

 

1.1.3 Modeling of models composed of distributed components 

For example, to calculate the magnetic disturbance due to a building by using the 

magnetic field analysis with the FEM, great efforts toward modelling complicatedly 

distributed magnetic materials in buildings are required [2-3]. Moreover, huge 

memory and CPU time are also required due to the large number of elements. To 

overcome these problems, homogenization techniques [16-21], in which the 

complicatedly distributed materials are replaced with a homogeneous body, have 

already been proposed. In several techniques, the technique [19] based on the energy 

conservation seems to be attractive because the complicated shape and the 

nonlinearity can be easily considered. In this technique, the equivalent permeability 

of the homogeneous body is determined so that the energy is equal to that of the real 

model. Then, the homogenization technique is applied to the magnetic field analyses 

of a building and an open type of MSR [20]. It is shown that the homogenization 

technique should be applied to not only the region of the magnetic materials but also 

the air region surrounding them. Moreover, even if the homogenization technique is 

applied, similar results with the real model can be obtained by the reproduction. 

Moreover, an open-type MSR composed of magnetic cylinders for a magnetic 

resonance imaging (MRI) of 3T designed by the homogenization technique is built in 

a hospital and the effectiveness of homogenization techniques is verified [21]. 

However, the homogenization technique for a periodic conductive components 

taking account of eddy currents seems not established. This is because a 2D or 3D 
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eddy current analysis of the cell model is required to determine the effective 

permeability, moreover, the eddy current distributions are affected by insulation and 

conduction between conductive components. 

 

1.2 Research purpose 

1.2.1 Modeling of laminated core 

In my research, the 1D eddy current analysis of one steel plate (sub-analysis) in 

the proposed homogenization technique is expanded to a 3D sub-analysis which can 

take account of the direction of the flux density, in the linear magnetic field analysis 

for simplicity. To investigate the effectiveness of the developed homogenization 

technique with the 3D sub-analysis, the proposed method is applied to a simple 

laminated core model under the rotational flux. The flux distribution, the eddy 

current distribution, and the eddy current loss obtained from using the proposed 

method are compared with those of the ordinary homogeneous solid core model with 

1D steel plate model and the real laminated core model. 

 

1.2.2 Modeling of models composed of distributed components 

 In my research, the homogenization techniques for periodic conductive and 

non-magnetic components are investigated using models of open-type 

electromagnetic shielding walls piled using square cylinders with and without gaps in 

linear ac steady-state eddy current problems. Two homogenization techniques are 

examined in both models. One is the technique homogenized by using a magnetic 

body with effective anisotropic complex permeability and without eddy currents. 
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This technique is based on that for the homogenization of laminated core. The other 

is the technique homogenized by using a non-magnetic conductive body with 

modified anisotropic conductivity. To clarify the suitable technique for each model 

with or without gaps, the shielding effects obtained using both homogenization 

techniques are compared with those obtained using the real models. Moreover, the 

methods for determining effective permeability and modified conductivity in both 

techniques are proposed and verified. 

 

1.3 Organization of Thesis 

In Chapter 1, the research background of this thesis is presented with an important 

viewpoint that the homogeneous techniques is important for modeling of laminated 

cores and models composed of distributed components.   

Chapter 2 expresses the method of 3D eddy current analysis. First, the 

fundamental equations are introduced. Then, the discretization is carried out by 

FEM.  

Chapter 3 expresses the homogenization technique of laminated cores under 

rotational fluxes. The homogenization technique with 3D sub-analysis is proposed. 

The proposed method is verified a simple laminated core model under the rotational 

flux. 

Chapter 4 expresses the homogenization techniques of models composed of 

distributed components with and without gaps in linear ac steady-state eddy current 

problems. Two techniques using magnetic and conductive bodies are investigated. 
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Both techniques are applied to two models, in which each component is insulated 

and connected, and the results are verified.  

Chapter 5 is the conclusion and recommendation for future work. 
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Chapter 2 Methods of 3D Eddy Current Analysis     

2.1 Fundamental Equations 

A. Maxwell equations [22-23] 

The electromagnetic field follows the four Maxwell equations in differential form 

as follows: 

t




D
JHrot                                          (2-1) 

t




B
Erot                                                    (2-2) 

Ddiv                                                (2-3) 

0div B                                                       (2-4) 

where B, H, J, D, E are the magnetic flux density, the magnetic field intensity, the 

electric current density, the electric flux density and the electric field density, 

respectively. 

The constitutive relations, which define the relationship between the field 

quantities in a linear, homogeneous, and isotropic medium are 

HB                                            (2-5) 

EJ                                                 (2-6) 

ED                                    (2-7) 

where , andare the permeability, the conductivity and the permittivity, 

respectively. 

In Quasi static field, the displacement current in Eq. (2-1) is negligible. So Eq. 

(2-1) becomes: 
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JH rot                          (2-8) 

In this case, the displacement current D is removed from the Maxwell equations 

and the following equation for the continuity of current is considered in stead of Eq. 

(2-3).  

0div J                                (2-9) 

 

B. The fundamental equations of A method [24] 

In this section, the fundamental equations of A- method taking account of the 

eddy current will be given. 

First, the magnetic vector potential A is introduced. It guarantees that the Maxwell 

magnetic divergence equation divB = 0 will always be satisfied if the flux density B 

is to be expressed in terms of an auxiliary vector A as: 

AB rot                                       (2-10) 

And when the current density J is expressed with the exciting current density J0 

and eddy current Je, Eq. (2-8) becomes: 

e0 JJH rot                                           (2-11) 

Substitute Eqs. (2-5) and (2-9) in Eq. (2-10), it becomes: 

  e0 JJA rotrot                                        (2-12) 

where is reluctivity. 

Substitute Eq. (2-5) in Eq. (2-18), it becomes: 

0rot 













t

A
E                                      (2-13) 

E is expressed as: 
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grad





t

A
E                     (2-14) 

where  is electric scalar potential. 

Substitute Eqs. (2-6) and (2-14) in Eq. (2-12), it becomes: 

  












  gradrotrot

t

A
JA 0                             (2-15) 

Substitute Eqs. (2-6) and (2-14) in Eq. (2-17), it become: 

0graddiv 





















 

t

A
                             (2-16) 

Eqs. (2-15) and (2-16) are the fundamental equations of A- method including 

eddy current.  

In the region where the eddy current is not considered, the fundamental equation 

becomes: 

  0JA rotrot                                            (2-17) 

 

2.2 Discretization by Fnite Element Method 

In this section, the edge finite elements are introduced. The 1
st
-order hexahedral 

elements with twelve vector edges in global coordinate system (x, y, z) and local 

coordinate system (, , ) are shown in Fig. 2.1 [25-27].  

The scalar shape functions Ni for node i in the nodal hexahedral finite element are 

defined in the local coordinate system and expressed as follows:     

     81i111
8

1
～  iiiiN      (2-18) 

where the local coordinates iii  ，，  for the nodes are given in the Table 2.1. 

The vector shape functions Nj for edge j in the edge hexahedral finite element are 
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defined in the local coordinate system and expressed as follows:     

    

    

    





















129jgrad11
8

1

85jgrad11
8

1

41jgrad11
8

1

～

～

～







jj

jj

jj

jN     (2-19) 

where the local coordinates iii  ，，  for the edges are given in the Table 2.2. 

The relation between the global and local coordinate systems is given by: 





8

1i

ii xNx                                                            





8

1i

ii yNy                                                           (2-20) 





8

1i

ii zNz                                                            

where Ni is the scalar shape function and xi, yi, zi are the global coordinates of node i.     

The scalar  in one hexahedral element for the magnetic field analysis is obtained 

using the i on each node of the element as follows: 





8

1i

ii  N                                                           (2-21) 

The vector A in one hexahedral element for the magnetic field analysis is obtained 

using the j on each edge of the element as follows: 




12

1j
jj ANA                                                         (2-22) 
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2

4

6

7

5

8

3

 



 

Fig. 2.1.1
st
-order hexahedral element. (a) Global coordinate system (x, y, z), (b) Local 

coordinate system (, , ): (i) for , and (ii) for edge element. 
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Table 2.1 Local coordinates for nodes.  Table 2.2 Local coordinates for edges. 

─

─

─

─

─

─

─

─

─

─

─

─

1112

1111

1110

119

118

117

116

115

114

113

112

111



















kkk


─

─

─

─

─

─

─

─

─

─

─

─

1112

1111

1110

119

118

117

116

115

114

113

112

111



















kkk


─

─

─

─

─

─

─

─

─

─

─

─

Edge number

1112

1111

1110

119

118

117

116

115

114

113

112

111



















kkkk 

─

─

─

─

─

─

─

─

─

─

─

─

1112

1111

1110

119

118

117

116

115

114

113

112

111



















kkk


─

─

─

─

─

─

─

─

─

─

─

─

1112

1111

1110

119

118

117

116

115

114

113

112

111



















kkk


─

─

─

─

─

─

─

─

─

─

─

─

Edge number

1112

1111

1110

119

118

117

116

115

114

113

112

111



















kkkk 

1118

1117

1116

1115

1114

1113

1112

1111















iii


1118

1117

1116

1115

1114

1113

1112

1111















iii


1118

1117

1116

1115

1114

1113

1112

1111















iiii Node number 

1118

1117

1116

1115

1114

1113

1112

1111















iii


1118

1117

1116

1115

1114

1113

1112

1111















iii


1118

1117

1116

1115

1114

1113

1112

1111















iiii Node number 

 

 

The integration expressed by x，y，z in the global coordinate system corresponds to 

that expressed by  ，，  in the local coordinate system as follows: 

  dξξdηddxdydz J      (2-23) 

where J  is the Jacobian matrix expressed as: 



























































ζ

z

ζ

y

ζ

x
η

z

η

y

η

x
ξ

z

ξ

y

ξ

x

J  ,                                                (2-24)                               

In this section, the discretization for fundamental equations of the electromagnetic 

field analysis using the edge hexahedral element is explained.  

By applying the weighted residual Galerkin method to Eq. (2-23) and (2-24), the 
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following residual equations can be obtained [28-30]:  

  























V
0ii

A
JANG 0gradrotrot dxdydz

t
           (2-25) 

 























V
idi

A
NG 0graddiv dxdydz

t
                  (2-26)                                                    

The first term in Eq. (2-26) can be changed as follows: 

 dxdydzAN
V

i rotrot    

       
V

dxdydzii NANA rotrotrotdiv   

        
V S

ii nANAN dSdxdydz rotrotrot   

        
V S

dSdxdydz nANAN ii rotrotrot     (2-27) 

where S is the boundary of V, n is the outward normal vector of S. In the proceeding 

above, the following vector operations and the Gauss’s theory are used: 

  BAABBA rotrotdiv               (2-28) 

     BACACBCBA            (2-29) 

The right term of Eq. (2-28) is zero to satisfy the weak boundary condition of H in 

the tangential direction. And then Gi becomes:  

    dxdydz
t 
































V
i0iii

A
NJNANG  gradrotrot   (2-30) 

The exciting current J0 in the element is expressed as follows by using the vector 

shape function Ni in Eq. (2-21). 





12

1

0

i

ii0 JNJ                                             (2-31) 

And  
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 

















12

1

12

1

rotrotrot
j

jj

j

jj ANANA                         (2-32) 

And  

 











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Substitute Eqs. (2-31), (2-32), and (2-33) to Eq. (2-30), Gi becomes: 
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In order to calculate the integration of the element, we should change the 

coordinate system from global to local, then Gi becomes:  
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where 
V

means the total elements in volume V. And by using the Gauss’s numeric 

integration with two integration points, Gi becomes: 
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where 
 nnn WWW ，，  is the weighted factor ， W1 and W2 are all 

-0.577350269189626 and 0.577350269189626, respectively． 

Eq. (2-27) is changed to:   
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In the proceeding above, the following vector operation and the Gauss’s theory are 

used. 

     AAA divgraddiv fff       (2-38) 

The second right term in Eq. (2-37) becomes zero to satisfy the electric conservation 

law weakly. So Gdi becomes: 
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By using the same numeric method as in Eq. (2-37) becomes:  
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2.3 Treatment for Eddy Current Term 

In the transient analysis, the backward difference method is used for the time 

differentiation in eddy current term in Eq. (2-38). 

The derivative of a function f at a point t is defined by the limit: 

h
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                                             (2-41) 

Then a reasonable approximation for that derivative would be to take: 
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A backward difference uses the function values at t and t − h, instead of the values 

at t + h and t: 
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So the time differential term t  tt
A using the backward differential method is 

expressed by: 

tt 






  ttttt
AAA

                                               (2-44) 

Because the differentiation term t  tt
A  is the tangential of f at point t+t as 

indicated by the dashed curve in Fig. 2.2, so the A
t+t

 obtained is A
t+t

*, which is the 

approximated value of the magnetic vector potential at time t+t as shown in Fig. 2. 
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2. However, if the time interval t is small enough, this error is negligible. 
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Fig. 2.2.Backward difference method. 

In the linear ac steady state analysis, the phasor method is used for the time 

differentiation in eddy current term in Eq. (2-38). In this method, the time variation 

of the unknown A(t) is represented as follows: 

tjeAtA )( ,                                                   (2-45) 

where the upper script (.) denotes to the complex number which represents the phase 

difference. So, the time derivative term is represented as follows: 

tjeAj
t

tA  


 )(
,                                             (2-46) 

 

2.4 Eddy Current Loss Calculation 

  After the eddy current is obtained, eddy current loss We is calculated as follow: 
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where Je
(ie) 

is the eddy current of the element ie, V
(ie)

 is the volume of ie. 
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Chapter 3 Homogenization Technique of Laminated 

Core Under Rotational Flux  

3.1 Introduction 

In the finite element analysis of the magnetic field in an electric machine, the 

laminated cores are normally modeled by using a solid one and the eddy currents in 

the steel plates are neglected [31]. However, it seems that the eddy currents in the 

steel plates should not be neglected in some cases [9, 12, 32-33], such as in a 

machine driven by an inverter power supply in which the current has harmonics. 

Therefore, the homogenization technique, in which a laminated core is modeled by a 

three dimensional (3D) solid one (main-analysis) with anisotropic permeability and 

conductivity, and the permeability is determined by a one dimensional (1D) steel 

plate model (sub-analysis), which takes account of eddy currents in the steel plates 

and the structure of laminations [6], has already been proposed [7-8, 11-14]. In this 

method, the skin effect in steel plates and the effect of gaps between steel plates can 

be taken into account within practical computer costs. However, the proposed 

technique cannot be applied to motor cores because the rotational flux cannot be 

taken into account by using the 1D sub-analysis.  

In my research, the 1D eddy current analysis of one steel plate (sub-analysis) in 

the proposed homogenization technique is expanded to a 3D sub-analysis which can 

take account of the direction of the flux density, in the linear magnetic field analysis 

for simplicity. To investigate the effectiveness of the developed homogenization 
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technique with the 3D sub-analysis, the proposed method is applied to a simple 

laminated core model under the rotational flux. The flux distribution, the eddy 

current distribution, and the eddy current loss obtained from using the proposed 

method are compared with those of the ordinary homogeneous solid core model with 

1D steel plate model and the real laminated core model. 

 

3.2 Method of Analysis 

3.2.1 Laminated core and solid core model 

A real laminated core and a solid core model are shown in Fig. 3.1. The core is 

constructed by laminating steel plates with permeability * and conductivity * in 

the z-direction, and it is modeled by using the solid core model with anisotropic 

effective permeabilities x y, and z and conductivies x, y, and z in this paper. 

The superscript (*) denotes the real quantities of the steel plates.  

As both paths of the eddy currents, Jexy* and Jexy, parallel to the plane of the steel 

plate, in the laminated and solid core models are the same, as shown in Fig3. 1, Jexy 

is directly considered in the solid core model. Then, x and y are given by the 

following equation using the space factor F considering that the gaps between the 

steel plates are non-conductive: 

* Fyx   ,                                                (3-1) 

On the other hand, the perpendicular components, Jez*and Jez, of the eddy currents 

are much different in the two models shown in Fig. 3.1. Therefore, Jez is not directly 

considered in the solid core model, but the effect of Jez* is considered in the process 
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of modifying * to the effective permeabilities x, y and z. Namely, the 

conductivity z becomes zero as follows: 

0z  ,                                                             (3-2)  

 The effective permeabilities taking account of the effect of Jez*are determined by 

using the eddy current finite element analysis of one steel plate (called 

“sub-analysis”). 
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Fig.3.1.(a) Laminated core and (b) solid core models [8]. 

 

3.2.2 Flowchart 

The flowchart for the proposed method is shown in Fig.3.2. The sub-analysis is 

carried out for each element ie of the solid core model (called “main-analysis”). The 

methods of main-analysis and sub-analysis are described below, respectively. 
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  Fig.3.2. Flowchart of the proposed method [8]. 

 

3.2.3 Main-analysis  

The 3D linear eddy current analysis with the first order edge finite elements of the 

solid core model is carried out. The fundamental equation is as follows:  
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where A and is the magnetic vector potential and the electric scalar potential, 
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respectively.  is the anisotropic conductivity x,y, and z as described above and is 

anisotropic x, y, and z obtained from the sub-analysis explained in the next 

section.  

The magnetic field is applied by the Dirichlet boundary condition in this paper. 

The simple iteration method is used for the convergence of the flux densities. The 

step-by-step method with the back-ward difference method is used for the time 

iteration. 

 

3.2.4 Sub-analysis 

In this section, the 1D sub-analysis used in the ordinary modeling homogenization 

is expanded into the 3D sub-analysis to take account of the rotational flux. 

 Fig. 3.3. shows the mesh for the 3D sub-analysis of one steel plate with thickness 

2d, which is assumed to be infinite in the x-, y-directions. Only half region of one 

steel plate is analyzed due to symmetric. je and jp denote the element and node 

numbers in the sub-analysis. In the 3D sub-analysis, the x-, y-components Bx
(ie)

 ,By
(ie)

 

of the flux density obtained from the main-analysis are imposed on the steel plate 

model, the x-, y- components Bx
(ie)

 ,By
(ie)

 of the flux density and Jex
(je)

, Jey
(je) of the 

eddy current density are calculated. The same method of magnetic field analysis with 

the main-analysis, but real *and *of the steel plates are used in the 3D 

sub-analysis. The A method neglecting in (3-3) is performed for the 3D 

sub-analysis. All z-component Az 
(jp)

 of A is set to be zero in the whole region. The 

other components A0x 
(jp)

,
  

A0y 
(jp) on the symmetric surface at z = 0 are also set to be 

zero, and Adx
(jp) 

and Ady
(jp)

determined by the following equations using Bx
(ie)

and 
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By
(ie)

obtained from the main-analysis are imposed on the upper surface at z = d: 

dBA ie

y

jp

dx

)()(  ,                                            (3-5) 

dBA ie

x

jp

dy

)()(  ,                                          (3-6) 

The periodic boundary conditions are applied on each corresponding side surfaces. 
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Fig. 3.3.Mesh for the 3D steel plate model (3D sub-analysis, half region) 

 

The time differential term is discretized by the backward difference method. 

Therefore, for the calculation at the instant t+t, the potentials Ax
(jp)

 and Ay
(jp)

 at each 

node jp in the sub-analysis are stored for each element ie in the main-analysis at the 

instant t. 

Finally, the permeabilities x
(ie)

 and y
(ie) given back to the main-analysis is 

determined by the following equation: 
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where Hx
(jair) and Hy

(jair)
 are the magnetic field strength in the air obtained from the 

sub-analysis. The permeability z
ie 

is determined by the following equation so that 

the reluctances of real and solid core models coincide with each other in the 

z-direction: 

FF

ie
z

0
*

0
*

)(

)1( 





  ,                                        (3-9) 

z
ie 

is always not changed in the linear analysis. 

 

3.2.5 Eddy Current Losses 

In my research, the eddy current losses Weddy in the laminated core are also 

evaluated. In the proposed method, the eddy currents Je
*(ie)

 (=Je
(ie)

/F) and Je
*(je)

 are 

obtained from the main- and sub- analyses, respectively. In order to calculate the 

eddy current losses, they should be added up with each other. Namely, the eddy 

current losses Weddy are calculated by the following equation: 
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where l
(je) is the thickness of the element je in the sub-analysis. V

(ie)
 is the volume 

of the element ie in the main-analysis. And Nej
 
is the number of elements in the 

conductive region in the sub-analysis. 
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3.3 Verification 

3.3.1 Model description  

As the real model analysis can not be carried out by the real motor due to a large  

number of elements，to investigate the effectiveness of the proposed 3D sub-analysis, 

the linear eddy current analysis of a simple laminated core model under the rotational 

flux shown in Fig. 3.4 is carried out. Only half region is shown due to symmetry in 

Fig. 3.4. The laminated core is constructed by laminating 4 sheets of steel plates 

(relative permeability: 2000, thickness: 0.5mm) in the z-direction, and the space 

factor F is equal to 0.96. The magnetic characteristic of the steel plates is assumed to 

be linear in this paper for simplicity. The laminated cores with dimensions l of 2000 

mm, respectively, shown in Fig. 3.4 are analyzed. The uniform flux density B of 

0.01T rotating anti-clockwisely at 1,670 rpm from x-direction to y-direction is 

applied as shown in Fig. 3.4.  

The meshes of the real and solid core models with the first order edge finite 

elements are shown in the Figs. 3.5 and 3.6. The mesh near the upper surface of the 

solid core model and the 3D mesh for the sub-analysis in the proposed method are 

the same as that in the corresponding part of the real model. The total numbers of 

elements for the real and homogeneous solid core models are 9,747 and 3,610, 

respectively.  
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 Fig. 3.4.Simple laminated core model (half region). 
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Fig. 3.5.Mesh of the real laminated core model (half region). 
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Fig.3.6. Mesh of the solid model (half region). 

 

3.3.2 Analyzed Conditions 

  The linear transient analysis with only 9 steps at the time interval t of 1 ms 

is carried out. Namely, the applied flux density rotates at 10 deg. per step. The 

rotational flux densities are applied by using the Dirichlet and periodic boundary 

conditions of the A which are the same with those for the sub-analysis mentioned 

above in the real and solid models. No boundary condition for is given in the real 

model because the steel plates do not contact with any boundaries of analysis 

region. The Dirichlet boundary condition of is imposed on the symmetric 

surface z = 0 in the solid core model. For comparison, the ordinary 1Dsub-analysis 

method is also carried out.  

 

3.3.3 Results and Discussion 

  In this section, the comparison between the real and homogeneous solid core 

models is carried out. 
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A. Flux Distribution 

 Fig. 3.7 shows the flux distributions in the upper surface of the laminated core 

at t = 9ms, when the applied flux density is in the y direction, obtained from the 

real model and the main-analysis of the proposed homogenized solid core model 

with the 3D sub-analysis. There is discrepancy at the corner of cores between both 

results. This is because the edge effect of the steel plate cannot be taken account of 

in the solid core model due to the assumption of infinity.  

Fig.3. 8 and Fig.3. 9 shows the distributions and the error distributions of the 

average flux density in the upper steel plate at t = 9ms. As we can see in the Fig.3. 

8, the average flux density in the upper steel obtained from two models are in good 

agreement with each other. The errors are within 1% as it was shown in the Fig.3. 

9. Only at the corner, the errors are large, in the other place, the errors are almost 0. 

Fig. 3.10 shows the distributions of y-component By of flux densities in the steel 

plate in the thickness direction at the center (x = y = 0) and the side (x =1000mm, y 

= 0). For reference, the homogenized model with 1D sub-analysis and the average 

values including gaps in the real model are also shown. The flux distributions 

obtained from both homogenized models with 1D and 3D sub-analyses are the 

same and they are in good agreement with the average values in the real model in 

this model.  
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Fig. 3.7. Flux distributions in upper surface of core (z = 1mm, t = 9 ms): (a) real 

model, (b) main-analysis of solid model. 
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Fig. 3.8. Distributions of the average flux densities in the upper steel plate (t = 9 ms): 

(a) Real model, (b) Solid model. 
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Fig. 3.9. Error distributions of the average flux densities in the upper steel plate (t = 9 

ms) 
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Fig. 3.10. Distributions of the y-component By of flux densities in the steel plate (t= 9 

ms): (a) x=y=0, (b) x=1, y=0. 

 

B. Eddy current distribution 
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 Fig. 3.11 shows the eddy current distributions in the upper surface of the 

laminated core at t = 9 ms. The eddy current distribution obtained from the proposed 

method is much different from the real model, because the effect of the eddy current 

Jez* in the steel plate is taken into account by using effective permeability but Jez* is 

not directly calculated in the main-analysis of the solid core model.  

However, when the eddy current densities is averaged in the steel plate, the 

distribution of the average eddy current densities obtained from the main-analysis of 

the solid model are in good agreement with that obtained from the real model as 

shown in Fig. 3.12 and Fig.3. 13. Fig. 3.12 and Fig.3. 13 are the distributions and the 

error distributions of the average eddy current densities in the upper steel obtained 

from the real model and the main-analysis of the solid model at t = 9ms, respectively. 

As it can be shown in the Fig.3. 13, the errors of the average eddy current density are 

within 1%. The same with the error distributions of the average flux densities, in the 

corner, the errors of the eddy current densities are larger compared with other region, 

the errors in the other places are almost 0. 
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Fig. 3.11. Eddy current distributions in upper surface of core (z = 1mm, t = 9 ms):  

(a) Real model, (b) Main-analysis of solid model. 

 

 

y

x0

y

x0

(b)(a)

0 1.5x106A/m2

y

x0

y

x0

(b)(a)

0 1.5x106A/m2

Fig. 3.12. Distributions of the average eddy current densities in the upper steel plate 

(t = 9 ms): (a) Real model, (b) Solid model. 
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Fig. 3.13. Error distributions of the average eddy current densities in the upper steel 

plate (t = 9 ms). 

 

C. Eddy current loss 

Fig. 3.14 shows the distributions of eddy current loss densities We in the steel 

plate in the thickness direction at the center (x = y = 0) and the side (x =1000mm, y = 

0). At the center of the steel plate, the eddy current loss densities obtained from the 

homogenized model with 3D sub-analysis are in good agreement with the average 

values in real model, whereas those obtained from the homogenized model with 1D 

sub-analysis are much smaller as Fig. 3.14 (a). This is because the eddy currents 

generated by rotating flux can not be considered in 1D sub-analysis. Therefore, 3D 

sub-analysis is required when the flux is rotating.  

On the other hand, at the side of the steel plate, the eddy current loss densities 

obtained from both homogenized models with 3D and 1D sub-analyses are much 

different from those obtained from real model. This is because the edge effect does 
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not be taken account of in the homogenized model.  

Fig. 3.15 shows the time variations of the eddy current loss We in the steel plates. 

The accuracy of the homogenized model can be improved by using the 3D 

sub-analysis compared with the 1D sub-analysis. Moreover, the eddy current loss We 

obtained from the homogenized model with 3D sub-analysis is in good agreement 

with those obtained from the real model because the effect of edge effect can be 

neglected in this model. Therefore, the effectiveness of the proposed 3D sub-analysis 

can be shown. However, a little error still occurs due to the neglect of the effect of 

the core edge in the 3D sub-analysis. 
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Fig. 3.14. Distributions of the eddy current loss densities we in the steel plate (t =9 

ms): (a) x=y=0, (b) x=1, y=0. 
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  Fig.3.15. Time variation of the average eddy current losses. 

 

D. CPU time 

Table 3.1 shows Discretization Data and CPU time of the real laminated core and 

its homogenization model. As it was shown in the table, the CPU times for the real 

and homogenized models are 1477 and 1623 seconds @Intel Corei7, 3.4GHz. 

Compared with the real model, the number of elements of homogenized models is 

smaller as mentioned above but the CPU time is larger. This is because determining 

the permeability for the proposed homogenization technique requires three iterations 

for the linear problem. However, in the nonlinear case, the iterations are not a 

burden. 
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Table 3.1 Discretization data and CPU time of the real laminated core and its 

homogenization model. 

Number of nodes

Number of unknowns

Number of elements 

Total Memory 

requirements(MB)

Total CPU time (s) 

Computer used : Intel Core i7 3.4GHz

Convergence criterion for ICCG method : 10-10

Number of edges

Number o iterations

of  ICCG method* 

Model real homogenization

iterations

9,747

11,200

32,080

31,181

6,790

1

1,477 1,623

2,314

16 5

10,108

12,360

4,400

3,610

3

In the nonlinear case 1 0.3

Number of nodes

Number of unknowns

Number of elements 

Total Memory 

requirements(MB)

Total CPU time (s) 

Computer used : Intel Core i7 3.4GHz

Convergence criterion for ICCG method : 10-10

Number of edges

Number o iterations

of  ICCG method* 

Model real homogenization

iterations

9,747

11,200

32,080

31,181

6,790

1

1,477 1,623

2,314

16 5

10,108

12,360

4,400

3,610

3

In the nonlinear case 1 0.3

 

3.4 Summary 

To apply the homogenization technique of laminated core taking account of eddy 

currents in the steel plates to motor cores, the 3D sub-analysis model of steel plate is 

proposed. The accuracy is much improved by the 3D sub-analysis compared with the 

ordinary 1D sub-analysis. However, the error due to the edge effect of the core 

occurs because the steel plate is assumed to be infinite in the proposed 3D 

sub-analysis.  

The 3D sub-analysis model taking account of the nonlinearity and the edge effect 

of steel plate will be developed and applied to an actual motor in future.  
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Chapter 4 Homogenization Technique of Model      

      Composed of Distributed Component 

4.1 Introduction 

Great efforts toward the finite element modeling and  huge computation costs are 

required in the magnetic field analyses of models composed of distributed 

components, such as a building [3]. The homogenization techniques are effective to 

circumvent these problems by modeling the distributed components using a 

homogeneous body [16]. Several homogenization techniques has already been 

proposed [17-20]. In magnetostatic analyses, the homogenization technique using 

effective permeabilities based on the energy conservation has already been proposed 

[19]. It has been applied to the analyses of the magnetic disturbances of buildings 

[20] and the magnetic shielding performances of open-type magnetically shielded 

rooms composed of magnetic square cylinders [21]. On the other hand, the 

homogenization technique for a laminated core taking account of the eddy currents in 

the steel plates using effective permeabilities determined by using one-dimensional 

(1D) eddy current analysis of one steel sheet has also been proposed [7-8, 11, 14]. 

However, the homogenization technique for a periodic conductive components 

taking account of eddy currents seems not established. This is because a 2D or 3D 

eddy current analysis of the cell model is required to determine the effective 

permeability, moreover, the eddy current distributions are affected by insulation and 

conduction between conductive components. 
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In my research ， homogenization techniques for periodic conductive and 

non-magnetic components are investigated using models of open-type 

electromagnetic shielding walls piled using square cylinders with and without gaps in 

linear ac steady-state eddy current problems. Two homogenization techniques are 

examined in both models. One is the technique homogenized by using a magnetic 

body with effective anisotropic complex permeability and without eddy currents. 

This technique is based on that for the homogenization of laminated cores [7, 8, 

11-14]. The other is the technique homogenized by using a non-magnetic conductive 

body with modified anisotropic conductivity. To clarify the suitable technique for 

each model with or without gaps, the shielding effects obtained using both 

homogenization techniques are compared with those obtained using the real models. 

Moreover, the methods for determining effective permeability and modified 

conductivity in both techniques are proposed and verified. 

 

4.2 Homogenization Techniques 

4.2.1 Model description 

In this thesis, the real model of an open-type shielding wall piled with conductive 

and non-magnetic square cylinders shown in Fig. 4.1(a) is investigated. Only 1/8 of 

the whole model is analyzed due to symmetry. The shielding effect of the wall is 

calculated under a uniform sinusoidal magnetic filed B0x of 1T applied in x direction. 

Two models, in which cylinders are piled up with gaps G of 2 mm and without, are 

used. In the model without gaps, length L, width W, and thickness t of the cylinders 

are 10, 100, and 4 mm, respectively, and the frequency f of the magnetic field is 

chosen as 50 Hz. If the same L and f are applied for the model with gaps, the 
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shielding effect becomes too small. Therefore, L and f are changed to 50 mm and 500 

Hz in the model with gaps. The conductivity and relative permeability s of the 

cylinders are 2×107 S/m and 1, respectively. 

Fig. 4.1 (b) shows the homogenization model with the same outer dimension of the 

real model. In this thesis, two homogenization techniques are applied: using a 

magnetic, non-conductive body and a conductive, non-magnetic body. 
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Fig.4. 1. Shielding wall, (a) real model and (b) homogenized model (1/8 region). 

 

4.2.2 Eddy Current Analysis of Real Model 

For the real model, linear ac steady-state eddy current analysis is performed using 

the 1st order brick edge finite element method with A- method (A: magnetic vector 
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potential, : electric scalar potential) and the phasor method with complex variables 

[37]. The fundamental equations are 

 

  *)grad*(*rot rot   AA j  ,                                 (4-1) 

   0*grad*div   Aj ,                                     (4-2) 

where the superscript (*) indicates complex variables,  and  are the angular 

frequency and the reluctivity, respectively. 

 Due to the eddy currents, the x, y, and z components of B have different phase 

angles, therefore, the maximum absolute flux density |B| for evaluation is calculated 

as follows. 

|)||||||(|21|| 222222

zyxzyx BBBBBBB   ,                         (4-3) 

 

4.2.3 Homogeneous Magnetic Body 

In this technique, the real model is homogenized by the magnetic, non-conductive 

body and the magnetostatic analysis is performed. The effect of the eddy currents is 

considered by using the effective anisotropic complex permeability h*. The 

fundamental equation is 

  0*rot*rot Ah  ,                                             (4-4)                                          

The post-processing of A and B are the same with above. 

 

4.2.4 Homogeneous Conductive Body 

  In this technique, the real model is homogenized by using the conductive and 

non-magnetic body with the modified anisotropic conductivity h. The eddy current 

analysis with h instead of  in the equation (4-1) and (4-2) is performed. 
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4.3 Verification for Homogenization of Real Model With Gaps 

4.3.1 Model description 

Fig.4.1 shows the real model with gaps of 2 mm ,length L, width W, and thickness 

t of the cylinders are 50, 100, and 4 mm, f is 500 Hz in the model. The conductivity 

and relative permeability s of the cylinders are 2×107 S/m and 1, respectively. 

 

4.3.2 Selection of suitable technique 

First, to clarify the suitable homogenization technique for the real model with gaps, 

the distributions |B|p-q’s of the maximum absolute flux densities on the line p-q 

shown in Fig. 4.1, which is assumed as the evaluation line, obtained using both 

homogenization techniques are compared with that using the real model.  

In this section, the effective permeability hp* of the magnetic body and the 

modified conductivity hp of the conductive body are isotropic and they are 

determined so that the maximum absolute flux densities |B|p’s at point p obtained 

from both homogenization techniques coincide with that obtained from the real 

model. 

Fig. 4.2 shows Bp-q’s obtained using the real model and its homogeneous magnetic 

and conductive bodies. The determined relative permeability hpr* and conductivity 

hp are denoted in Fig. 4.2. In the technique with the conductive body, large error 

occurs because the eddy current path in the homogeneous conductive body is much 

different from that in the real model shown in Fig. 4.3 due to the gaps. Fig. 4.2 also 

shows that the homogenization technique with the magnetic body is suitable for the 
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real model with gaps. 
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Fig. 4.2. Flux distribution on line p-q obtained using the real model with gaps and its 

homogeneous bodies (G = 2, L = 50, f = 500Hz).  
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Fig.4. 3. Eddy current distribution of the real model with gaps at x=50 at instant 

when applied field is (a) maximum and (b) zero (G = 2, L = 50, f = 500Hz). 

 

4.3.3 Determination of effective permeability of magnetic body 

For example, the x-component hx* of h* of magnetic body suitable for the real 

model with gaps can be determined as follows. The linear ac steady-state eddy 

current analysis of the cell model in the uniform ac flux density B0x, shown in Fig. 

4.4, is carried out by using (4-1) and (4-2). The cell model is one square cylinder 

surrounded by air with thickness of 1 mm. The obtained magnetic field Hair,x* in the 

air surrounding the cylinder is the generated magnetic field intensity without the 

compensation magnetic field due to the eddy currents [7]. Therefore, hx* can be 

determined by using the following equation:  

*
,0

*
xairxhx HB ,                                                  (4-5)  

)(

1

)(

1

)(**
,

ieairN

ie

ieairN

ie

ie
xxair VVHH 



,                                (4-6)  

where V is the volume of each element ie and Nair is the total element number of 
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the air region. The other components can be obtained in the same way and h* 

becomes anisotropic. 

 

4.3.4 Results and Discussion 

The anisotropic relative permeability hr* determined by using the method 

mentioned in section IV. B is hrx* = 0.11-0.13i, hry*=hrz*= 0.11-0.12i. These 

values are almost the same with the isotropic hpr* in Fig. 4.2.  

 

Hair, x

（a） （b）

B0x
= 1T, 500Hz

z

x

xy
z

air gap: 1mm; conductive cylinder: thickness 4mm 

1
0
0

m
m

natural boundary

conditionsdirichlet boundary

conditions

Hair, x

（a） （b）

B0x
= 1T, 500Hz

z

x

xy
z

air gap: 1mm; conductive cylinder: thickness 4mm 

1
0
0

m
m

natural boundary

conditionsdirichlet boundary

conditions

 

Fig. 4.4. Cell model for homogenization technique with magnetic body with effective 

permeability. (a) bird's eye view, (b) cross section at x-z plane. 

 

The flux distribution |B|p-q obtained from the homogeneous magnetic body of h* 

are almost the same with that of hp* shown in Fig. 4.2. The contour maps of the 

maximum flux densities at x = 60 and 150 mm obtained from the real model and the 

magnetic body with h* and its error distributions are shown in Fig. 4.5and Fig.4. 6, 

respectively.   

The magnetic body cannot represent the detailed flux distribution at x = 60 near 
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the shielding wall, whereas the flux distributions at x = 150 obtained using the real 

model and magnetic body are in good agreement with each other.  

As we can see from Fig.4. 6, the error distributions of the flux density x = 150 are 

within 2%, whereas the error distributions at x = 60 are very large because the reason 

mentioned before. 
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Fig. 4.5. Contour maps of the maximum absolute flux densities obtained from (a) 

real model with gaps, (b) homogenization magnetic body at (i) x = 60 and (ii) x = 150 

(G = 2, L = 50, f = 500Hz). 
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Fig. 4.6. Contour maps of error distribution of the maximum absolute flux densities 

at (a) x = 60 (b) x = 150  (G = 2, L = 50, f = 500Hz). 

 

Table 4.1 shows the discretization data and CPU time of the real model with gaps 

and its homogenization model. As we can see from the table. If the same mesh was 

used in the homogenization model. The CPU time of the homogenization technique 

is less compared with the real model analysis. Meanwhile, if the coarse mesh was 

used in the homogenization technique, the CPU time is much smaller. What is more, 

the memory requirements is also smaller. 

 

 

 

 



  53 

Table 4.1 Discretization Data and CPU time of the real model with gaps and its  

homogenization model 

 

 

Number of nodes

Number of unknowns

Number of non-zeros

Number of elements 

Memory requirements

(MB)

90,593

98,568

294,240

Total CPU time (s) 

Computer used : Intel Core i7 2.7GHz
Convergence criterion for ICCG method : 10-7

Number of edges 287,564

5,537,693

Number of iterations

of ICCG method* 

277,345

4,514,042

1,569

166

313

164

8,228

9,522

27,209

24,129

379,421

269

1588

380

18

37

Model real homogenization

fine coarseMesh

Number of nodes

Number of unknowns

Number of non-zeros

Number of elements 

Memory requirements

(MB)

90,593

98,568

294,240

Total CPU time (s) 

Computer used : Intel Core i7 2.7GHz
Convergence criterion for ICCG method : 10-7

Number of edges 287,564

5,537,693

Number of iterations

of ICCG method* 

277,345

4,514,042

1,569
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164

8,228

9,522

27,209

24,129

379,421

269

1588

380

18

37

Model real homogenization

fine coarseMesh

 

 

4.4 Verification for Homogenization of Real Model Without 

Gaps 

4.4.1 Model description 

In the real model without gaps, length L, width W, and thickness t of the cylinders 

are 10, 100, and 4 mm, respectively, and the frequency f of the magnetic field is 

chosen as 50 Hz. The conductivity and relative permeability s of the cylinders are 

2×107 S/m and 1, respectively. 

4.4.2 Selection of suitable technique 

First, the suitable homogenization technique for the real model without gaps is 
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examined by using the same procedure as in section 4.4.2. The flux distributions 

|B|p-q’s obtained using the real model without gaps and its homogeneous magnetic 

and conductive bodies are shown in Fig. 4.7. This figure shows that the conductive 

body should be used contrary to the model with gaps because the homogeneous 

conductive body can represent the eddy current paths of the real model without gaps 

shown in Fig. 4.8. 

 

4.4.3 Determination of effective conductivity of conductive body 

Two methods for determining the modified conductivity h of the conductive body 

suitable for the real model without gaps are investigated in this paper.  

First, the modified conductivity hv is determined by the ratio of the volume Vr of 

the conductor in the real model to the volume Vh of the homogeneous conductive 

body as follows: 

hrhv VV  ，                                                      (4-7) 

Second, the modified conductivity hr is determined by equating the resistance Rh 

of the homogenization cell model with the resistance Rr of the real cell model in each 

direction. For example, the resistance Rrz of the real cell model in z direction can be 

obtained by the current analysis with the finite element method when the voltage is 

applied in z direction as shown in Fig. 4.9(a). Rhz with hr can be easily obtained 

because the current is uniform in the homogeneous conductive body as shown in Fig. 

4.9(b). The other components can be obtained in the same way, and hr becomes 

anisotropic. 



  55 

 

z [mm]

F
lu

x
 d

en
si

ty
  
|B

|
[T

]

homogenous conductive

body (hp =1.7×106 S/m)

0.6

0.8

1.0

1.2

0 100 200 300 400 500

homogenous magnetic body (hp
*

=0.006 0.030i)

real model

q
p

z [mm]

F
lu

x
 d

en
si

ty
  
|B

|
[T

]

homogenous conductive

body (hp =1.7×106 S/m)

0.6

0.8

1.0

1.2

0 100 200 300 400 500

homogenous magnetic body (hp
*

=0.006 0.030i)

real model

q
p

 

Fig. 4.7. Flux distribution on line p-q obtained using the real model without gaps   

and its homogeneous bodies (G=0, L=10, f=50Hz). 
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Fig. 4.8. Eddy current distribution of the real model without gaps at x=10 at instant  

when applied field is (a) maximum and (b) zero (G=0, L=10, f=50Hz). 
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Fig. 4.9. Current distribution in (a) real model, (b) homogeneous conductive body 

when the voltage is applied in the z-direction. 

 

4.4.4 Results and Discussion 

The modified conductivity hv determined by the volume ratio is 3.07×10
6
 S/m. 

The anisotropic modified conductivity hr determined by the resistance in each 

direction is hrx =3.07×10
6
 S/m, hry=hrz= 1.64×10

6
 S/m. The values of hry and hrz, 

which greatly affect the eddy currents, are almost the same with the isotropic hp in 

Fig. 4.7. 

The flux distributions |B|p-q’s obtained using the real model without gaps and its 

homogeneous conductive bodies with hv and hr are compared in Fig.4.10. It shows 

that the conductive body with hr determined by the resistance in each direction 

should be used because the eddy currents in the real model without gaps almost flow 

in equidistant conductive frames only as shown in Fig.4.7. The contour maps of the 

maximum flux densities at x = 20 and 100 mm obtained from the real model and the 
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conductive body with the anisotropic hr and its error distributions are shown in 

Fig.4.11 and Fig.4.12, respectively. As the same with the model with gaps, the 

homogeneous conductive body cannot represent the detailed flux distribution near 

the shielding wall, whereas the flux distribution at x = 100 mm obtained using the 

real model and the conductive body are in good agreement with each other. As it was 

shown in Fig.4. 12, the errors are within 3% when the surface is at x = 100 mm, 

whereas the error distributions at x = 60 are very large. 

The eddy current distribution obtained from the conductive body with hr is shown 

in Fig. 4.13. The values of eddy currents obtained from the conductive body are 

much different from those obtained from the real model without gaps shown in Fig.4. 

8 due to homogenization, whereas the tendencies are in good agreement with each 

other. 
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Fig.4. 10. Flux distribution on line p-q obtained from the real model without gaps 

and conductive bodies (G=0, L=10, f=50Hz). 
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Fig. 4.11. Contour maps of the maximum absolute flux densities obtained from (a)        

real model without gaps, (b) homogeneous conductive body at (i) x =20 and (ii) x = 

100  (G=0, L=10, f=50Hz).  
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Fig. 4.12. Contour maps of error distribution of the maximum absolute flux densities 

at (a) x = 20 (b) x = 100 (G = 2, L = 50, f = 500Hz). 
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Fig.4.13. Eddy current distribution of the conductive body at x=10 at instant when 

applied field is (a) maximum and (b) zero (G=0, L=10, f=50Hz). 
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Table 4.2 shows the discretization data and CPU time of the real model without 

gaps and its homogenization model. As we can see from the table. If the same 

meshes was used in the homogenization model. The CPU time of the 

homogenization technique is more compared with the real model analysis. But if the 

coarse mesh was used in the homogenization technique, the CPU time is much 

smaller. Meanwhile, the memory requirements is also smaller. 

 

Table 4.2 Discretization Data and CPU time of the real model without gaps and its  

homogenization model 

 

 

Number of nodes

Number of unknowns

Number of non-zeros

Number of elements 

Memory requirements

(MB)

47,040

51,984

150,015

Total CPU time (s) 

Computer used : Intel Core i7 2.7GHz
Convergence criterion for ICCG method : 10-7

Number of edges 150,879

2,677,982

Number of iterations

of ICCG method* 

153,151

2,874,110

1,135
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1,280

7,260

8,464

24,127

22,183

380,618
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Model real homogenization

fine coarseMesh
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4.5 Summary  

In this section, it is shown that accurate homogenization analyses of the models 
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composed of periodic conductive and non-magnetic components are possible using 

the suitable techniques. The magnetic body with the effective anisotropic complex 

permeability h* is suitable for the real model in which each component is insulated. 

On the other hand, the conductive body with the modified anisotropic conductivity 

hr determined by the resistance is suitable for the real model, in which each 

component is connected. 

In the homogenization technique of model composed of distributed component, 

that accurate homogenization analyses of the models composed of periodic 

conductive and non-magnetic components are possible using the suitable techniques. 

What is more, the conductive body with the modified anisotropic conductivity hr 

determined by the resistance is suitable for the real model, in which each component 

is connected. 

 



  62 

Chapter 5 Conclusion and Recommendation 

In this thesis, to apply the homogenization technique of laminated cores taking 

account of eddy currents in the steel plates to motor cores, the 3D sub-analysis model 

of steel plate is proposed. The accuracy is much improved by the 3D sub-analysis 

compared with the ordinary 1D sub-analysis. However, the error due to the edge 

effect of the cores occurs because the steel plate is assumed to be infinite in the 

proposed 3D sub-analysis.  

Then, in the homogenization technique of the model composed of distributed 

components, it is shown that accurate homogenization analyses of the models 

composed of periodic conductive and non-magnetic components are possible using 

the suitable techniques. The magnetic body with the effective anisotropic complex 

permeability h* is suitable for the real model in which each component is insulated. 

On the other hand, the conductive body with the modified anisotropic conductivities 

hr determined by the resistance is suitable for the real model, in which each 

component is connected. 

In Chapter 1, the research background of this thesis is presented with an important 

viewpoint that the homogeneous techniques is important for modeling of laminated 

core and models composed of distributed components.   

Chapter 2 expresses the method of 3D eddy current analysis. First, the 

fundamental equations are introduced. Then, the discretization is carried out by 

FEM.  

Chapter 3 expresses the homogenization technique of the laminated core under 
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rotational flux. And the verifications for these proposed modeling methods are 

presented. As it is shown in this chapter, the proposed method is much better to 

calculate the eddy current losses when the laminated core is under rotational flux 

compared with the one-dimensional method. 

Chapter 4 expresses the homogenization technique of the model composed of 

distributed components.The real model with and without gaps are included. Finally, 

the verification of the method is presented. It is shown that accurate homogenization 

analyses of the models composed of periodic conductive and non-magnetic 

components are possible using the suitable techniques. The magnetic body with the 

effective anisotropic complex permeability h* is suitable for the real model in which 

each component is insulated. On the other hand, the conductive body with the 

modified anisotropic conductivity hr determined by the resistance is suitable for the 

real model, in which each component is connected. 

In the future ,as to the modeling of laminated core, the 3D sub-analysis model 

taking account of the nonlinearity and the edge effect of steel plate will be developed 

and applied to an actual motor. 

In the homogenization technique of the model composed of distributed component, 

that accurate homogenization analyses of the models composed of periodic 

conductive and non-magnetic components are possible using the suitable techniques. 

What is more, the conductive body with the modified anisotropic conductivity hr 

determined by the resistance is suitable for the real model, in which each component 

is connected. 

 In the future, the homogenization techniques proposed will be applied for 
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different models and expanded for conductive and magnetic components such as soft 

magnetic composite materials, etc.  
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