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Introduction 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1 Background –Concept of tensegrity– 

 

The field of structural engineering originated as early as the day the pyramids were 

built, which was followed by the construction of several ancient masterpieces such as 

the Great Wall of China; this field has been progressing in recent times, through the 

use of modern technology to construct engineering masterpieces such as the Tokyo Sky 

tree. In the nineteenth and twentieth centuries, architectural design was mostly 

developed by artisans such as Leonardo da Vinci and, Antoni Gaudi without the use of 

any computational method, but the integrity of such architectural structures is intact 

even today. Consider examples of the well-known architectural structures created by 

Gaudi (1852 – 1926), such as the Sagrada Familia, Casa Calvert and Park Guell. These 

structures are based on geometrical forms such as a hyperbolic paraboloid, hyperboloid, 

helicoid, and cone, which reflect forms visible in nature. Such inspirations from nature 

have been converted into new architectural art forms that are simple, practical and 

aesthetic. 
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Figure 1.1: Snelson's Needle Tower [1] 

 

“Tensegrity” is a style of modern architectural design that was developed in the 

mid-21st century. It is based on a unique mechanical concept that “self-equilibrium” of 

a structure can be achieved even without a stable support condition under non-gravity. 

Furthermore, it does not require a sufficient number of members to satisfy Maxwell’s 

condition for the stability of truss structures. Although tensegrity is not a perfect 

reflection of Gaudi’s artwork, it is a much simpler modern design. It was first 

imagined in the 1920s by Karl Loganson, who displayed a proto-tensegrity system 

called “Gleichgewichtkonstruktion.” In the early 1940s, David Emmerich was inspired 

by Loganson’s work and began to study several kinds of tensile prisms and more 

complex tensegrity systems. Following this, in the late 1940s, R.B. Fuller initiated 

innovations in several concepts of tensegrity which led to research on and application 

of tensegrity structures. Then, inspired by Fuller, K. Snelson–a contemporary sculptor 

and photographer–created a structure composed of flexible and rigid members based 

on the tensegrity concept, which in turn led to the creation of Snelson’s “Needle Tower” 

(Fig. 1.1). An understanding of this structure, composed of aluminum cylinders and 

stainless steel cables, is considered to be crucial for studies on tensegrity structures. 

Recently, tensegrity structures have attracted attention as a research topic in 

several fields of study, such as architectural, medical [2], mechanical, robotic [3] and 

civil engineering. Numerous studies on tensegrity have been conducted extensively, 

pertaining to aspects such as morphology, form-finding, and foldable behavior. In 

particular, considerable progress is expected in the application of tensegrity to a solar 

panel with the aim of harvesting energy in space. Tensegrity offers advantages of 

making a structure light weight and flexible in space, which is free from gravitational 

influence. However, many factors regarding tensegrity remain unknown, because of its 
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strong geometrical nonlinearity. This thesis attempts to make a breakthrough for the 

mechanism of tensegrity, by using the tangent stiffness method [4] which is a valuable 

tool for geometrically nonlinear analysis. 

 

1.2 Scope and aims 

 

A tensegrity structure, also known as “tensional integrity” was developed 

mathematically by Emmerich and Fuller in the 1940s'. During that period, it was 

initially called “structures tendues et autotendants” in French (translating to “tensile 

and self-stressed structures”). The main characteristic of this structure is internal 

self-equilibrium under the condition that the no external forces act on it. The structure 

is formed by groups of isolated strut components to sustain the compression forces and 

continuous pre-stressed cable lines to resist the tensional forces [5]. Tensegrity is 

applicable on Earth and also has high potential in space. A small weight, flexibility 

and eco-friendliness of structures are the key characteristics in modern construction 

and the architecture industry; a tensegrity structure possesses all these characteristics 

in addition to being inexpensive and durable. Although analytical studies on tensegrity 

have been conducted for decades, several factors pertaining to tensegrity remain 

unknown and are yet to be studied, although new discoveries have been made and 

reported sporadically. 

In a general structural design process, morphologies are determined by 

form-finding analysis and a subsequent stress-deformation analysis using elements 

with real stiffness to examine its behavior. However, since a tensegrity structure is 

classified as one of the most extreme soft structures, large deformation should be 

prospected and consideration of a strong geometrical nonlinearity should be prioritized.  

Therefore, the author has previously applied the tangent stiffness method (TSM), 

which is effective in the analysis of such cases of extremely strong nonlinearity [6], 

including the form-finding of tensegrity [7]. In this method, a simple yet precise 

definition of elements can be achieved without any additional parameters for 

accelerating convergence or any complex derivations for expressing element’s shape. 

Several methods have been developed for the form-finding of tensegrity structures. 

A commonly employed method for calculating the equilibrium form of pre -stressed 

and self-stressed reticulated structures is the force density method, which was 

proposed by Linkwitz and Sheck in the 1970s [8][9][10]. This method is based on the 

concept of defining the force-length ratios for each element, called “force densities,” 
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as constant [11][12]. This method was initially idealized to perform form-finding analysis 

for tensile structures, and it is also applicable to tensegrity structures through 

determination of a feasible force densities. In other words, force density method 

requires a special numerical process, which is indisputably nonlinear, to calculate a 

feasible force density. Therefore, recent studies have focused on rational acquisition of 

a feasible set of force densities, because this may govern the accuracy of the 

equilibrium shape. For example, Zhang and Ohsaki [13] demonstrated an approach to 

determine the feasible force densities using eigenvalue analysis, and Tibert [8] and 

Zhang et al. [14] examined the application of dynamic relaxation. Moreover, a study 

done by Micheletti and Williams [15] presented an algorithm by a second-order stress 

test. However, in the case a model has complex connectivity or a low-symmetry 

configuration, the calculation process also becomes complex and the solution becomes 

rather unreliable. 

Ijima and Obiya [16] and Obiya et al. [17] proposed measure-potential elements with 

virtual stiffness and applied them to the form-finding problem for form-finding of 

cable nets and membrane-pneumatic structures. The proposed elements have “measure 

potential,” defined in function of an element's area or length. In other words, the 

elements have virtual stiffness that is defined freely by users. For example, if the 

potential of a triangular element is proportionate to its area, the elemen t will behave as 

a soap film element. Furthermore, common geometric stiffness can be used in both of 

the following cases—form-finding analysis using virtual elements and the 

large-deformation analysis using actual elements. Therefore, the application of 

measure-potential elements to the TSM improves its performance considerably, and 

accuracy depends simply on the performance of the geometrical nonlinear analysis. 

Obiya et al. [18] showed that the measure-potential elements are also effective in the 

form-finding of tensegrity structures, on the basis of the definition that the axial force 

is proportional to the power (more than the square power) of the element length. 

In general, a tensegrity structure has many equilibrium solutions corresponding to 

each connectivity that satisfies the tensegrity rule. Therefore, in the form-finding 

process, it is difficult to determine a smart, desirable and useful shape by just one set 

of iterations. For example, a tensegrity tower that has a stable support condition may 

have many solutions when subjected to an arbitrary load. Examination of equilibrium 

paths (which indicated by continuously plotting the fluctuation of nodal force and the 

displacement of the control node on the load–displacement curve) during the 

form-finding of a tensegrity tower provides information that can be grouped according 
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to and classified within each independent path. The graphical plot of these 

paths—obtained by form-finding on the load–displacement curve—shows analogy with 

elastic buckling. When load control or displacement control is applied to the 

computation and the path is plotted, multiple equilibrium shapes with different 

morphologies can be obtained where the nodal force of the control node is zero. 

In the present study, each equilibrium path is considered to be classified as a main 

path or a bifurcation path. The equilibrium path is classified as a bifurcation path when 

the symmetricity of the structural configuration degenerates, i.e., when the tensegrity 

tower undergoes lateral buckling. The existence of multiple bifurcation paths may 

depend on the difference of the total number of negative eigenvalues in the tangent 

stiffness matrix [19]. The TSM facilitates switching from a main path to a bifurcation 

path through the use of eigenvectors and many paths obtained by the method will 

contribute to the development of a more effective form-finding method. 

In addition, this study, by characterizing each self-equilibrium morphology of the 

tensegrity structure, may share the concept of the group theory, proposed by 

Kawaguchi and Kawata [20]. They characterized (grouped) structural morphologies 

according to the symmetry characteristic of a shape, and sub grouped other shapes that 

lose the degree of symmetries. However, in the present study, the forms are 

characterized on an equilibrium path, which is a more rational approach for evaluating 

structural morphologies. 

An important problem to be considered in the design of tensegrity structures is 

“contact.” Because a deployed tensegrity structure exhibits an extremely large 

deformation, the contact problem between elements (struts and cables) should be taken 

into account in its design. Further, owing to the high possibilities of strut–strut contact, 

cable–cable contact and strut–cable contact, contact analysis should be considered for 

simulating the compacting sequence numerically. Furthermore, the deformation of a 

tensegrity structure may even be highly complex; therefore a more than usually 

complicated shape function maybe required in a typical finite element method (FEM) 

to solve the contact problem. Previous studies on contact phenomena involving large 

displacements can be classified into the following four categories; contact between 

surfaces [21][22][23], contact between a node and a surface [24], contact between a node 

and an element [25][26], and contact between elements [9]. The present study, however, 

proposes the use of a simple yet effective approach that uses the TSM for studying the 

basic phenomenon of node–element contact. Some numerical examples based on 

element–element contact and node–element contact are demonstrated as a preliminary 
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assumption for the contact problem of tensegrity structures. 

In case of node–element contact, it is difficult to achieve equilibrium with 

convergence when the contact node approaches the element edge. The sliding of the 

contact point toward the element edges relatively leads to the divergence of the 

unbalanced force. To solve this problem, in this study, a Timoshenko beam was 

employed as a countermeasure, including for slender beams. Although employment of 

the Timoshenko beam theory, the “critical area,” i.e., the area where the unbalanced 

force hardly converges, can be made significantly smaller than those in the case of the 

Euler–Bernoulli beam theory. 

This thesis also presents a simple algorithm for “passing through” using the inner 

and outer vector products, in the case that a contact point passes an edge of an element. 

This algorithm is shown to give stable convergence results, including in an area 

extremely close to the tip of the element. The findings of this study are expected to 

facilitate further studies on node–element contact because its definitions and analytical 

results are precise, reliable, simple, and highly robust. 

 

1.3 Outline of thesis 

 

Chapter 2 presents the fundamental concept of the TSM. The TSM includes a 

unique iterational process, which consists of a compatibility equation, element 

stiffness equation, and equilibrium equation. A particularly significant concept of TSM 

is the strictness of compatibility between “nodal displacement” and “element edge 

deformation.” Therefore, the iterational process steadily leads to convergence, and it is 

mathematically as effective as the Newton–Raphson method. In chapter 2, the 

derivation of the tangent geometric stiffness based on the expansion of the “principle 

of stationary total potential energy” is presented. 

Chapter 3 provides a precise explanation of derivation of a plane frame beam by 

the TSM for a geometrically nonlinear analysis. The relation between load and 

displacement is demonstrated schematically through derivation of equations for the 

tangent geometric stiffness and an element stiffness matrix. This is followed by the 

derivation of FEM that is based on the relation between nonlinear strain and 

displacement. Further, a numerical example is presented for comparing the accuracies 

of the TSM and FEM methods under the same initial conditions and the same element 

configuration. The comparison results inductively show the superiority of the  TSM. 
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Figure 1.2: Outline of chapter structure of the dissertation 
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 CHAPTER ONE: INTRODUCTION 

Describes the background, scope and aims, 

and outline of the dissertation. 

 CHAPTER TWO: FUNDAMENTAL CONCEPT OF 

TSM 
The explanation of general formulation, derivation of tangent 

geometric stiffness and the iteration scheme of TSM 

 CHAPTER THREE: THE ADVANTAGE OF TSM 

The derivation of TSM for a plane frame beam, followed 
by the general formulation of FEM. A numerical example 

is presented in order to make a comparison of the accuracy 

for both of the methods. 

 CHAPTER FOUR: STATIC FORM-FINDING PROCEDURE FOR 

TENSEGRITY STRUCTURES AND EVALUATION OF 

EQUILIBRIUM SOLUTIONS 

The fundamental concept of force density method is elaborated specifically, 

followed by the form-finding concept by TSM, with the application of the 

measure-potential element with virtual stiffness. Also, the path finding 

method and the bifurcation path pursuing procedure for this study are 

introduced. Some numerical examples are presented for several configuration 

for the tensegrity model. 

 CHAPTER SIX: CONCLUSION 

 CHAPTER FIVE: FRICTIONLESS CONTACT ANALYSIS 

COMPRISING AXIAL FORCE ELEMENT AND FRAME ELEMENT 

WITH LARGE DISPLACEMENT 

The derivation of tangent stiffness equation for contact case of 3D axial force 

element is presented, followed by numerical examples with various cases. The 

node-element contact is also considered, where shear deformation of 

Timoshenko beam is applied to encounter the “critical area” while allowing 

smooth “passing through” of the contact node to the next non-contact element. 
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Chapter 4 presents derivation of the fundamental concept of form-finding by the 

force density method using a simplex tensegrity model to obtain the force density for 

each element. This is followed by a description of the concept of form-finding using a 

measure-potential element with a virtual stiffness, proposed previously by the author.  

In this chapter, a form-finding method for a tensegrity structure is introduced, and an 

equilibrium path-finding analysis is demonstrated through several examples.  The 

analysis determines the bifurcation points by using eigenvalue analyses to obtain all 

paths that may exist in a single configuration of a tensegrity tower.  Furthermore, a 

suitable number of eigenvectors are applied to switch the path direction from the main 

path to the bifurcation path. The solutions on the path can be classified according to 

the number of negative eigenvalues in the tangent stiffness matrix. Therefore, 

determination of all equilibrium paths provides a large amount of valuable information 

about the nature of self-reliant solutions of tensegrity. 

Chapter 5 presents two cases for the contact problem that may occur during the 

process of deploying or folding a tensegrity structure. One case assumes contact 

between two cable elements, and the other case assumes contact between a node and a 

beam element. In the case of contact between cable elements, one element has the 

opportunity to come into contact with several other elements, when a tensegrity 

structure is folded. In this study, compatibility and geometric stiffness are shown under 

a non-friction condition. The algorithm introduced in section 1.2 can derive element 

edge forces explicitly non-concern with the displacement of contact node, because of 

strict compatibility. Numerical examples are presented, which show that the element 

can have many intermediate sliding nodes and that net structures with many sliding 

nodes can be simulated easily. 

As mentioned above, this chapter also addresses contact between a node and an 

element of a plane frame beam. A frictionless contact element with three nodes—both 

of its ends and a contact node—is developed in order to apply the TSM. Here, it is 

shown that the contact element created by the Timoshenko beam theory has much 

smaller “critical area” than does an element created by Euler–Bernoulli beam theory. 

Two numerical examples are provided to validate the performance of the developed 

elements, and then, a comparison with a contact case by FEM is also presented and 

discussed. 

Finally, chapter 6 summarizes all the findings obtained in this study. This chapter 

also discusses the superiority of the TSM in handling geometrically nonlinear cases.  
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Chapter 2 

Fundamental Concept of Tangent Stiffness Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1 Introduction 

 

In accordance with the progress and advancement of the scientific and industrial 

revolution, design codes today, such as British Standard (BS), Eurocode, Japanese 

Industrial Standard (JIS) or American National Standard Institute (ANSI) are 

developed to ensure the integrity and sustainability of the modern structures. 

Accordingly, there are also plenty of commercial software products with specific 

analytical approaches that provide structural analyses and designs to meet the 

requirements of those design codes, such as the Abacus, NASTRAN, ANSYS etc., 

which allow the realization of large scale structures. The software contributes to rapid 

construction process, allowing limitless capabilities and speed in the designing process. 

Most of the above mentioned software apply the finite element method (FEM) as an 

analytical tool and is widely used all over the world. However, as discussed in chapter 

1, the application of tangent stiffness method (TSM) to a geometrically nonlinear 

analysis can also satisfy all the requirements of the computational precision and 

efficiency, because of its concept of “equilibrium of forces”. In addition, TSM is also 

applicable for many types of elements such as shell, plate, cable etc. 
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In this chapter, the formulation of the tangent stiffness equation including tangent 

geometric stiffness is derived specifically; and the chapter also describes the 

mechanism of the iterational process which makes the unbalanced force converge. The 

tangent stiffness equation could be easily derived by the differentiation of equilibrium 

equation that connects nodal force vector in global coordinate system and element 

force vector in local coordinate system. Here, the element stiffness is independent from 

the tangent geometric stiffness, and any approximation of element behavior (described 

in the element force equation) is not included in the tangent geometric stiffness to even 

deal with complex cases. 

By applying the principle of stationary potential energy, it is possible to express a 

symmetrical form of tangent geometric matrix. Thus, the derivation of any complicated 

nonlinear element stiffness equation is not necessary in TSM. Furthermore, the 

obtained solution does strictly adjust to the element behavior that is prescribed in the 

element force equation. Strict compatibility equation and equilibrium equation are 

used for iterational process to converge the unbalanced forces. The converged solution 

obtained from the iterational process in this method is mathematically adequate to the 

Newton-Raphson method. By comparing TSM to the general application of FEM to 

geometrically nonlinear analysis, it shows a very high efficiency in the performance of 

convergence behavior. 

 

2.2 The general formulation of TSM 

 

In an element within a finite element structure, the element force vector S and 

element deformation vector s form the element force equation, which is defined as in 

Eq. 2-1. 

ksS   2-1 

(k= Stiffness Matrix) 

Due to the mechanical fluctuation, the differentiation of Eq. 2-1 could be expressed as, 

δ𝐒 = 𝛋δ𝐬 2-2 

The tangent element force equation is applied in the case of nonlinearity caused by 

the element deformation as shown in Eq. 2-2. In addition, when the element behavior is 

defined as linear, then element stiffness is defined as κk  . Here, if the local 

coordinate system of a single element represents the nodal force vector in a primary 

equilibrium condition as D, the equilibrium matrix as J, the equilibrium equation could 

be expressed as; 
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DJS   2-3 

After differentiation, 

𝐉δ𝐒 + δ𝐉𝐒 = δ𝐃 2-4 

the δS and δJ are possible to be expressed strictly, and the linear function of nodal 

displacement vector, δu in the local coordinate system Eq. 2-4, could be expressed as 

the following equation. 

(𝐊O + 𝐊G)δ𝐝 = 𝐊Tδ𝐝 = δ𝐃 2-5 

Eq. 2-5 shows the tangent stiffness equation for TSM. Here KO represents the 

element stiffness matrix, obtained by converting κ from Eq. 2-2 into a local coordinate 

system in the compatibility equation which is calculated in every iteration step. KG is 

the tangent geometric stiffness with nonlinear characteristics from compatibility 

equation which links nodal displacement vector and element deformation vector. It is 

also essential to develop an equation that strictly connects the geometrical ly nonlinear 

characteristics and rigid body displacements. In TSM, strict tangent stiffness equation 

can be obtained by a concise induction process without calculating nonlinear stiffness 

equation. For this, the complexity of the induction process in Lagrangian style FEM is 

relatively more complicated compared to the method mentioned above. 

 

2.3 The derivation of tangent geometric stiffness 

 

Referring to Eq. 2-3 and Eq. 2-4, the tangent geometric stiffness KG, could be 

expressed as Eq. 2-6. 

 
d

JS
KG








  2-6 

Here, it is possible to express the tangent geometric stiffness matrix based on the 

expansion of the principle of stationary potential energy by inducing the element force 

vector obtained from the prior equilibrium condition. Fig. 2.1 shows a relationship 

between digitalized mechanical quantities vs. energy consisting of nodal displacement, 

element deformation, element force and nodal force in TSM. In the first quadrant, the 

stiffness equation is formed from the relation of nodal displacement and nodal force, 

and as for the second quadrant to the rest circulated orderly is the equilibrium equation, 

element force equation and compatibility equation, with each mechanical quantity 

respectively. In addition, in Fig. 2.1, the inner rectangles consist of the known 

quantities of the preceding equilibrium condition. The outer rectangle consists of 

fluctuations for each quantities in equilibrium condition at post-deformation when the 
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Figure 2.1: The increment of each digital quantities and energy 
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external load varies throughout the incremental process. Here, if the strain energy is 

defined as V and the loss potential due to the external force is U, then the total 

potential energy Π in prior equilibrium condition could be expressed as Eq. 2 -7. 

Π = 𝑈 − 𝑉 2-7 

The total potential energy in post deformation Π ' could be expressed in Eq. 2-8. 

Π′ = 𝑈′ − 𝑉′ = Π + ∆𝑈 + 𝑈# − (∆𝑉 + 𝑉# + 𝑉𝑐
#) 2-8 

According to the equilibrium condition in pre and post deformation, the total potential 

energy for both conditions is shown in Eq. 2-9 and Eq. 2-10. 

∂Π

𝜕∆𝐝
= 𝟎 2-9 

∂Π′

𝜕∆𝐝
= 𝟎 2-10 

Note that in Fig. 2.1, the conjugation of node displacement Δd , does not affect Vc
#, and 

could be expressed in of Eq. 2-11. 

0
#






Δd

cV  2-11 

For the remaining variables of strain energy V#, ΔV, and external force U#, ΔU, the 

possible impression of each mechanical components to the node displacement 

fluctuation are shown in Eq. 2-12 to Eq. 2-15. 

D
Δd




 #V
 2-12 D

Δd




 V
 2-13 S

Δd

Δs

Δd 






 T#U
 2-14 

ΔS
Δd

Δs
ΔSdΔs

ΔsΔd

Δs
ΔsΔS

ΔdΔd

ΔsΔs

























T

0T

T

0
d

U
 

2-15 

Eventually, Eq. 2-10 could be rewritten as Eq. 2-16. 

  ΔDDΔSS
Δd

Δs




 T

 2-16 

Therefore, from the comparison of Eq. 2-16 and Eq. 2-3, it could be concluded that the 

conjunction of the equilibrium matrix; 

Δd

Δs
ΔJJ






T

 2-17 

could be shown as Eq. 2-17. Referring to Eq. 2-4, the tangent geometric stiffness could 

be expressed as Eq. 2-18. 

   

0

T

0

TT































ΔdΔd

G
Δd

SΔs

ΔdΔd

JS

d

JS
K




 2-18 

Now, let the increment of the element deformation vector ∆s, is expanded as a 

quadratic function form of ∆d, the quantity of work that has been done by element 
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force S and the fluctuation ∆s, so the tangent geometric stiffness KG could possibly be 

expressed by the second order differential of ∆d, based on the geometrical and 

dynamic quantity achieved from the primary equilibrium condition. In conclusion, the 

tangent geometric matrix for an element with i row and j column (matrix expression) is 

shown in Eq. 2-19. 

 

0,,,

2

21 







n
ji ΔdΔdΔd

kk

G
ΔdΔd

SΔs
K

ij



 2-19 

 

2.4 The iterational process of TSM 

 

The analytical procedure of TSM can be described as the followings. The 

iterational process proceeds until convergence of the unbalanced force to a strict 

equilibrium position. The common procedure steps are: 

Primary displacement     : ∆d0 

Primary load      : D0 

Load increment      : ∆D 

Displacement for step of iteration (r)   : ∆dr 

Element deformation vector     : ∆sr 

Element force vector     : Sr 

Element edge force–nodal force transformation matrix : 
rJ  

Tangent stiffness matrix     : 
rTK  

Fig. 2.2 shows a convergence diagram for TSM. The calculation flow is executed 

clockwise. The first quadrant represents the relation of load and displacement. In TSM, 

the nonlinear stiffness equation is not involved in the calculation process and it is 

marked as a dotted line on the graph. The fourth quadrant represents the compatibility 

equation that expresses relation between nodal displacements ∆d in global coordinate 

system and element deformation vector ∆s in the local coordinate system. The third 

quadrant represents element force equation; where element behavior is prescribed in 

order to obtain element force vector S from element deformation vector. The second 

quadrant represents equilibrium equation, which is obtained from element force vector 

and the coordinate transformation for the current displacement. This is necessary to 

calculate in order to obtain the nodal force vector. 
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Figure 2.2: Iterational process of TSM 

 

In Fig. 2.2, the iterational process in TSM begins from the given equilibrium state, 

which starts from the point of origin O, and the following steps describe the iteration 

process until converged solution is obtained. 

i) δd1 is obtained by solving tangent stiffness equation at point of origin O, for 

given value of load increment ∆D. (O→A→B) 

ii) Calculation of ∆d1 by adding δd1 to the displacement ∆d0 in the primary state. 

iii) From the displacement ∆d1, strict compatibility equation is used to obtain the 

element deformation vector ∆s. (B→C) 
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iv) From the element force equation S1, equilibrium equation is reapplied to obtain 

∆D1, the equilibrium state F could be achieved. (C→D→E→F) 

v) Unbalanced force δD1 is calculated by the iterational process, achieved from the 

difference between load condition ∆D along with displacement condition ∆d1, 

and the load vector ∆D1. 

vi) In this stage, F is reset as a primary state, the solution, δd2 that is correspondent 

to the unbalanced force δD1 is obtained by the tangent stiffness equation. 

(F→G→H) 

vii) New displacement condition ∆d2 is calculated by the achieved solution δd2. 

viii) The calculation for the next equilibrium state L is performed similar to the 

previous steps H→I→J→K. 

ix) From here, the steps are repeated gradually until the equilibrium state in the 

first quadrant enable s to reach Z, and obtain the converged solution. 

The iterational process in TSM can be expressed as 

 rrrrr SJΔDDKΔdΔd  

 0

1

T1  2-20 

Thus, based on Eq. 2-20, it is not necessary to formulate or apply any approximation 

concept in order to achieve converged solution in the calculation performed by TSM. 

The results from the iterational process which was explained previously, is presented 

by the dotted line in the first quadrant shown of Fig. 2.2 which exhibits nonlinear 

stiffness equation which was solved strictly while passing through the rest of the 

quadrants clock wisely. 

In addition, Fig. 2.3 is the flow chart for a geometrically nonlinear analysis program 

based on the TSM. Here, the expression for each coefficient applied in the tangent 

stiffness matrix shows that the composition of a logical algorithm is possible without 

involving any complicated procedure such as shape function, dynamic relaxation, 

numerical integration etc. to calculate the unbalanced force. Furthermore, TSM can be 

easily adapted for a three-dimensional frame structure analysis which requires the 

consideration of rotational displacements. And in TSM, the rotation of nodes and 

element elongation are independent to each other which makes it possible to apply 

rotational composition technique by using coordinate transformation matrix.  
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Figure 2.3: Flow chart of an algorithm using TSM 

 

2.5 Discussion 

 

The fundamental concept of the TSM is based on the equilibrium of forces and 

strictness of compatibility. As shown in Eq. 2-3 and Eq. 2-4, the derivation of the 

tangent stiffness equation is to calculate micro increments of nodal force by 

differentiation of the equilibrium condition. It is clearly shown in Eq. 2-5 that the 
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Element properties, nodal primary coordinate, element 
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tangent geometric stiffness and the element stiffness are treated separate ly and are 

independent to each other. Therefore, the geometrical nonlinearity, which is caused by 

element’s rigid body displacement, can be evaluated strictly.  This makes it possible for 

us to select and define element behavior freely by composing element force equations. 

Even virtual stiffness elements can be used as well as truss, beam, membrane and plate 

elements, and the tangent geometric stiffness has common configuration in all cases of 

element definition.  

Furthermore, the linear tangent stiffness matrix can be calculated explicitly and 

strictly in every iteration step. Therefore, the iterational process in TSM realizes rapid 

convergence of the unbalanced forces calculated from a strict compatibility equations. 

It is concluded that TSM has a very efficient geometrically nonlinear algorithm for 

general purposes. 
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List of symbols 

 

Symbol  Description 

S : Element edge force vector 

k : Stiffness matrix for an element 

s : Element deformation vector 

κ : Tangent stiffness matrix for an element 

J : Element edge force–nodal force transformation matrix 

D : Nodal force vector 

KO : Element stiffness matrix 

KG : Tangent geometric stiffness matrix 

d : Nodal displacement vector 

 : Total potential energy 

U : Strain energy 

V : Loss potential due to external force 
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Chapter 3 

The Advantage of Tangent Stiffness Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Introduction 

 

Tangent stiffness method (TSM) is a method that is able to treat many kinds of 

nonlinear cases. TSM is different from the finite element method (FEM), in that it does 

not have to apply any complicated nonlinear equations. The equilibrium of forces is the 

main concept in TSM, where every converged solution satisfies the perfect equilibrium 

condition. Furthermore, the high quality and accuracy of the solutions generated by 

TSM with strict convergence makes the calculation more reliable and realistic than other 

kinds of geometrically nonlinear analyzing methods. In addition, TSM could be easily 

applied to a wide range of elements such as truss, frame, membrane, cable elements, etc. 

and also could be easily configured as the method uses the displacement approach, 

which is a basic knowledge in the structural analysis field. 
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On the other hand, FEM formulates the geometric stiffness from the compatible 

relation between strain and nodal displacements. The fundamental concept of FEM is to 

discretize continuum problems which will simulate the behavior of a deformed body by 

the connecting nodes while obeying the equations whether it is linear, curve or parabolic, 

depending on the chosen shapes (which is also known as shape function). The shape 

function is a mathematical equation applied to interpolate all the information carried by 

the nodes, and depending on the shape functions, it has a bigger difference in the degree 

of interpolation which presumably affects the precision of the solution.  

 

3.2 Application of TSM in plane frame structure 

 

3.2.1 Tangent geometric stiffness 

 

  It is possible to obtain tangent geometric stiffness for plane frame structure by 

substituting the expansion of compatibility equation into Eq. 2-19. In this chapter, the 

derivation by a simple induction process which requires the differential of equilibrium 

equation will be shown. 

 

Figure 3.1: Element edge force and coordinate system of a plane frame beam 

 

Figure 3.2: Nodal forces on element edges 

Fig. 3.1 represents a single element of a plane frame beam, which the support 
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conditions are statically determinate. The element edge force vector for this 

combination of element edge forces, corresponding to the support conditions is shown 

in the next equation. 

𝐒 = [𝑁 𝑀𝑖 𝑀𝑗]T 3-1 

Further, node i is a pin fixed node, and node j is a roller node which is movable in 

the element axial direction. The direction from node i to node j is set as primary axial 

direction, and a beam coordinate system is applied for the element coordinate system. 

In addition, Fig. 3.2 shows the nodal forces on the element edges. When replacing global 

coordinate system to the element coordinate system, the expression of nodal force on 

the element edges could be shown as the following equation. 

𝐃 = [𝑈𝑖 𝑉𝑖 𝑍𝑖 𝑈𝑗 𝑉𝑗 𝑍𝑗]T 3-2 

Therefore, if the cosine vectors is {𝛼 𝛽} and the element length is l, the 

equilibrium equation between element force vector and nodal force vector can be 

expressed as, 

[
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[

𝑁
𝑀𝑖

𝑀𝑗

] 3-3 

Here, if the node coordinates for both edges are expressed as uij=uj-ui, vij=vj-vi, the 

differentiation for each matrix element of the equilibrium matrix in Eq. 3-3 are shown 

as follows. 

𝛿𝑙 = 𝛼𝛿𝑢𝑖𝑗 + 𝛽𝛿𝑣𝑖𝑗 3-4 

𝛿𝛼 =
1

𝑙
(𝛽2𝛿𝑢𝑖𝑗 + 𝛼𝛽𝛿𝑣𝑖𝑗) 

3-5 

𝛿𝛽 =
1

𝑙
(−𝛼𝛽𝛿𝑢𝑖𝑗 + 𝛼2𝛿𝑣𝑖𝑗) 

3-6 

𝛿 (
𝛼

𝑙
) =

1

𝑙2
((𝛽2 − 𝛼2)𝛿𝑢𝑖𝑗 − 2𝛼𝛽𝛿𝑣𝑖𝑗) 

3-7 

𝛿 (
𝛽

𝑙
) =

1

𝑙2
(−2𝛼𝛽𝛿𝑢𝑖𝑗 − (𝛽2 − 𝛼2)𝛿𝑣𝑖𝑗) 

3-8 

If the element edge forces in Eq. 3-3 are constant, the tangent geometric stiffness matrix 

KG could be obtained in the similar procedure as shown in Eq. 3-1 by differentiating the 
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equilibrium equation (see Eq. 3-3). 

𝐤𝐆 =
𝑁

𝑙
[

𝛽2 −𝛼𝛽 0

−𝛼𝛽 𝛼2 0
0 0 0

] +
𝑄

𝑙
[

2𝛼𝛽 𝛽2 − 𝛼2 0

𝛽2 − 𝛼2 −2𝛼𝛽 0
0 0 0

] 3-9 

𝑄 =
𝑀𝑖 + 𝑀𝑗

𝑙
 3-10 

𝐊𝐆 = [
𝑘𝐺 −𝑘𝐺

−𝑘𝐺 𝑘𝐺
] 3-11 

In addition, if the rotation component in Eq. 3-9 is neglected, then the equation is similar 

to the geometric stiffness of a plane truss element. 

 

3.2.2 Definition for element behavior 

 

  Fig. 3.3 shows a non-stressed state for a linear plane frame beam element with a stable 

support condition and the deformation diagram of the beam when axial force N and edge 

moments Mi, Mj are applied on both edges. Here, the extensional stiffness is EA, bending 

stiffness EI, and non-stressed length is lo. In Fig. 3.4, when considering infinitesimal 

element of the beam in an equilibrium state, the equilibrium condition of bending 

moment on the right edge is; 

𝑑𝑀

𝑑𝑢𝑠
+ 𝑁

𝑑𝑣

𝑑𝑢𝑠
− 𝑄 = 0 3-12 

If there is no existence of intermediate force, the differentiation of Eq. 3-12 makes the 

shear force Q becomes zero and shown in Eq. 3-13. 

𝑑2𝑀

𝑑𝑢𝑠
2
+ 𝑁

𝑑2𝑣

𝑑𝑢𝑠
2

= 0 3-13 

Here, by substituting 𝑀 = −𝐸𝐼(𝑑2𝑣𝑠 𝑑𝑢𝑠
2⁄ ) to Eq. 3-13, then the equation represents 

the beam deflection as shown in Eq. 3-14. 

𝑑4𝑣

𝑑𝑢𝑠
4
+ 𝑁

𝑑2𝑣

𝑑𝑢𝑠
2

= 0 3-14 

Using Eq. 3-15 to Eq. 3-18 as the boundary condition, 

𝑣(0) = 0 3-15 𝑣(𝑙) = 0 3-16 

𝑑𝑣

𝑑𝑢𝑠
|
𝑥=0

= 𝜃𝑖 3-17 
𝑑𝑣

𝑑𝑢𝑠
|
𝑥=𝑙

= 𝜃𝑗  3-18 

 

 



27 
 

 

Figure 3.3: Element force and element deformation quantity 

 

Figure 3.4: Equilibrium state of an infinitesimal linear element in a beam element 

𝑑𝑣

𝑑𝑢𝑠
|
𝑥=0

= 𝜃𝑖 3-19 
𝑑𝑣

𝑑𝑢𝑠
|
𝑥=𝑙

= 𝜃𝑗  3-20 

[
𝑀𝑖

𝑀𝑗
] = 𝜉 [

𝑎 𝑏
𝑏 𝑎

] [
𝜃𝑖

𝜃𝑗
] 3-21 

𝜉 =
𝐸𝐼

𝑙0
 3-22 

The result could be simplified in a matrix form as shown in Eq. 3-21, which exhibits the 

relation of edge moments and deflection angles for both edges. In addition, the 

coefficient for deflection angle a or b, are defined by the tensile or compressional force 

of the axial direction N. 

 

N
iM

jM

0l l

l

i

j

0l

sdu

s

s

du
du

dM
M 

s

s

du
du

vd
v 

su

v

M

Q

N

sv
s

s

du
du

dN
N 

s

s

du
du

dQ
Q 
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𝑁 > 0 

𝑎 =
𝜔2 cosh𝜔 − 𝜔 sinh𝜔

𝜔 sinh𝜔 + 2(1 − cosh𝜔)
 3-23 𝑏 =

𝜔 sinh𝜔 − 𝜔2

𝜔 sinh𝜔 + 2(1 − cosh𝜔)
 3-24 

𝑁 < 0 

𝑎 =
𝜔2 cos𝜔 − 𝜔 sin𝜔

𝜔 sin𝜔 − 2(1 − cos𝜔)
 3-25 𝑏 =

𝜔 sin𝜔 − 𝜔2

𝜔 sin𝜔 − 2(1 − cos𝜔)
 3-26 

𝜔 = 𝑙0√
𝑁

𝐸𝐼
 3-27 

 

3.2.3 Estimation of difference between curve and string length 

 

Figure 3.5: Difference of length between curve and string length 

 

Fig. 3.5, (a) represents the non-stressed length of the beam, (b) the deformation 

when both axial force N and edge moments Mi and Mj are subjected simultaneously and 

(c) represents the deformation when axial force N is subjected on the beam. Here, when 

considering case (b), the elongation ∆l is no longer proportionate and could be shown 

as the following equation. 

𝑁 = 𝐹0(∆𝑙 + ∆𝑙𝑏) 3-28 

However, referring to the effect of edge moments Mi and Mj as shown in Eq.3-21, 

the coefficient of deflection angle a and b as written in Eq. 3-23 and Eq. 3-24, the 

expression as a matrix form for Eq. 3-21 can be written as; 

𝐌 = 𝐆𝛉 3-29 

N
iM

jM

0l l

l

i

j

 ∆lb 

 l+∆lb 

 (a) 

 (b) 

 (c) 
N
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Figure 3.6: The deformation of infinitesimal segment dx 

where G is the deflection angle stiffness vector. Here, the ∆lb (the difference between 

curve and string length), as stated in Eq. 3-28 will be derived precisely. As shown in 

Fig. 3.6, if the infinitesimal length dx of the non-stressed length and the length at post-

deformation is dx+du, the relation between dl and du could be simply expressed as a 

Pythagoras relation shown in Eq. 3.30. 

(𝑑𝑥 + 𝑑𝑙)2 + 𝑑𝑦2 = (𝑑𝑥 + 𝑑𝑢)2 

𝑑𝑙

𝑑𝑥
+

1

2

𝑑𝑙2

𝑑𝑥2
+

1

2

𝑑𝑦2

𝑑𝑥2
=

𝑑𝑢

𝑑𝑥
+

1

2

𝑑𝑢2

𝑑𝑥2
 

3-30 

The axial strain could be shown as; 

𝜀 =
𝑑𝑢

𝑑𝑥
=

𝑑𝑙

𝑑𝑥
+

1

2
(
𝑑𝑦

𝑑𝑥
)
2

+
1

2
(
𝑑𝑙2 − 𝑑𝑢2

𝑑𝑥2
) 3-31 

By excluding the square component (extremely small) in Eq. 3-31, the equation could 

be rewritten as; 

𝜀 =
𝑑𝑢

𝑑𝑥
=

𝑑𝑙

𝑑𝑥
+

1

2
(
𝑑𝑦

𝑑𝑥
)
2

 3-32 

Eq. 3-32 represents the infinitesimal strain within a finite strain. Since the axial force 

could be expressed by the integration of the axial strain; 

𝑁 =
𝑑𝑢

𝑑𝑥
=

EA

𝑙0
∫ 𝜀𝑑𝑥

𝑙0

0

= 𝐹0 {∆𝑙 +
1

2
∫ (

𝑑𝑦

𝑑𝑥
)
2

𝑑𝑥
𝑙0

0

} 3-33 

In addition, the difference ∆lb when edge moments are subjected on the beam (Fig. 

3.8(b)); 

∆𝑙𝑏 =
1

2
∫ (

𝑑𝑦

𝑑𝑥
)
2

𝑑𝑥
𝑙0

0

 3-34 

 x 

 dy 

 dx  dx+dl 

 dx+du 

 y 

 x 
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The ∆lb could be shown as Eq. 3-34. As shown in Fig. 3.5 (a), the case when the 

beam is subjected solely to axial force N, and the case when edge moments Mi and Mj 

are applied on both edges, ∆lb in Fig. 3.5 (c) shows the decrement of length. The strain 

energy produced from the difference could be shown as,  

𝑈 =
1

2
𝛉T𝐌 =

1

2
𝛉T𝐆𝛉 3-35 

However, in this case, the axial force remains constant. With the application of the 

Castigliano’s theory, ∆lb could be expressed as Eq. 3-36. 

∆𝑙𝑏 =
𝜕𝑈̅

𝜕𝑁
=

1

2
𝛉T

𝑑𝐆

𝑑𝑁
𝛉 3-36 

Using Eq. 3-36, Eq.3-33 could be rewritten as; 

𝑁 = 𝐹0 (∆𝑙 +
1

2
𝛉T

𝑑𝐆

𝑑𝑁
𝛉) 3-37 

The deflection angle coefficient a and b are differentiated to the axial force, N and are 

shown in Eq. 3-38 and Eq. 3-39. The differentiation result could be simplified into a 

matrix form as shown in Eq. 3-40. 

𝑑𝑎

𝑑𝑁
=

𝑙0
2𝑘

𝑎 − 𝑏2

𝜔2
 3-38 

𝑑𝑏

𝑑𝑁
=

𝑙0
2𝑘

𝑎 + 2𝑏 − 𝑎𝑏

𝜔2
 3-39 

𝑑𝐆

𝑑𝑁
= [𝑎́𝑘 𝑏́𝑘

𝑏́𝑘 𝑎́𝑘
] =

𝑙0
2

[
𝑝 𝑝̅
𝑝̅ 𝑝

] 3-40 

Here, Eq. 3-37 could be expressed as; 

𝑁 = 𝐹0 [∆𝑙 +
𝑙0
4

{𝑝(𝜃𝑖
2 + 𝜃𝑗

2) − 2𝑝̅𝜃𝑖𝜃𝑗}] 3-41 

When the axial force |N|<1, the deflection angle coefficient a and b could be obtained 

by the Taylor expansion (Table 3.1) to obtain the p and 𝑝̅ as shown in Eq. 3-42 and Eq. 

3-43. 

𝑝 =
1

15
∑(−1)𝑖−1

∞

𝑖=1

𝑖 ∙ 𝑎𝑖 (
𝑁𝑙0

2

30EI
)

𝑖−1

 3-42 

𝑝̅ =
1

15
∑(−1)𝑖−1

∞

𝑖=1

𝑖 ∙ 𝑏𝑖 (
𝑁𝑙0
30EI

)
𝑖−1

 3-43 

According to Table 3.1, for the initial expansion when i=1, the deflection angle 

coefficient a=4 and b=2 which shows no influence of axial force and Eq. 3-40 is the 

element force equation based on infinitesimal displacement theory. 
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Table 3.1: Taylor expansion of deflection angle coefficient  

i 1 2 3 4 5 6 7 8 

ai 4 
11

7
 1 

1527

14
 

14617

28028
 

153221

392392
 

280767

952952
 

17419904067

78073451456
 

bi 1 
13

14
 

11

14
 

2721

4312
 

27641

56056
 

298183

784784
 

554091

1905904
 

34613373741

156146902912
 

 

3.2.4 The tangent element force equation for curve element 

 

For the curve element case, the difference of element length ∆l and ∆lb caused by 

the effect of axial force is considered and by this, the element deformation originated 

from the geometrical nonlinearity will be derived. Both of the axial force N in Eq. 3-41 

and the deflection angle coefficient a and b in Eq. 3-21 are nonlinear equations. Here, 

the fluctuation of both Eq. 3-41 and Eq. 3-21 will represent the tangent element force 

equation. Initially, since the component of ∆lb is contained in Eq. 3-41, which shows a 

function of axial force N and deflection angle θ, the fluctuation could be expressed as; 

𝛿𝑁 = 𝐹0 {𝛿𝑙 +
𝜕∆𝑙𝑏
𝜕𝜃𝑖

𝛿𝜃𝑖 +
𝜕∆𝑙𝑏
𝜕𝜃𝑗

𝛿𝜃𝑗 +
𝜕∆𝑙𝑏
𝜕𝑁

𝛿𝑁} 

= 𝐹 {𝛿𝑙 +
1

2
𝛉T

𝑑𝐆

𝑑𝑁
𝛿𝛉 +

1

2
𝛉T

𝑑𝐆

𝑑𝑁
𝛉 +

1

2
𝛉T

𝑑2𝐆

𝑑𝑁2
𝛿𝑁} 

3-44 

For the deflection angle component, it could be expressed as Eq. 3-45. 

𝜕∆𝑙𝑏
𝜕𝜃𝑖

𝛿𝜃𝑖 +
𝜕∆𝑙𝑏
𝜕𝜃𝑗

𝛿𝜃𝑗 =
𝑙0
2

(𝑝𝜃𝑖 − 𝑝̅𝜃𝑗)𝛿𝜃𝑖 +
𝑙0
2

(𝑝𝜃𝑗 − 𝑝̅𝜃𝑖)𝛿𝜃𝑗 = 𝐮T𝛿𝛉 3-45 

Here, 

𝐮 = [
𝑢1

𝑢2
] =

𝑙0
2

[
𝑝𝜃𝑖 −𝑝̅𝜃𝑗

−𝑝̅𝜃𝑗 𝑝𝜃𝑖
] 3-46 

In order to obtain 𝜕∆𝑙𝑏 𝜕𝑁⁄ , the deflection angle coefficient a and b should be 

differentiate by the second derivative order. 

𝑑2𝑎

𝑑𝑁2
=

𝑙0
2

4𝜔0
2𝑘2

{−𝑎 − 3𝑏2 + 2𝑎𝑏(𝑏 − 1)} 3-47 

𝑑2𝑏

𝑑𝑁2
=

𝑙0
2

4𝜔0
2𝑘2

[{(𝑎 + 𝑏)2 − 𝑎}(𝑏 − 1) − 2𝑎𝑏2] 3-48 

The 𝑑2𝐆 𝑑𝑁2⁄  component in Eq. 3-44 could be expressed as; 
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Here, the q and 𝑞̅ are the deflection angle coefficients and are shown as Eq. 3-50 and 

Eq. 3-51. 

𝑞 =
𝑎 + 3𝑏2 + 2𝑎𝑏(𝑏 − 1)

2𝜔0
2

 3-50 𝑞̅ =
{(𝑎 + 𝑏)2 − 𝑎}(𝑏 − 1) − 2𝑎𝑏2

2𝜔0
2

 3-51 

The Taylor expansions for the deflection angle coefficients  q and 𝑞̅ are; 

𝑞 =
1

255
∑(−1)𝑖−1

𝑖(𝑖 + 1)

2
∙ 𝑎𝑖+1 (

𝑁𝑙0
2

30EI
)

𝑖−1∞

𝑖=1

 3-52 

𝑞̅ =
1

255
∑(−1)𝑖−1

𝑖(𝑖 + 1)

2
∙ 𝑏𝑖+1 (

𝑁𝑙0
2

30EI
)

𝑖−1∞

𝑖=1

 3-53 

By using the equations derived, Eq. 3-44 could be rewritten as Eq. 3-54. 

𝛿𝑁 = 𝐹0{𝛿𝑙 + 𝐮T𝛿𝛉 + 𝑊̅𝛿𝑁} 3-54 

Here, the 𝑊̅ is 

𝑊̅ = −
1

2
𝛉T

𝑑2𝐆

𝑑𝑁2
𝛿𝑁 =

𝑙0
2

4𝑘2
{𝑞(𝜃𝑖

2 + 𝜃𝑗
2) − 2𝑞̅𝜃𝑖𝜃𝑗} 3-55 

In Eq. 3-54, both sides of the equation represent the fluctuation of axial force δN, while 

showing a linear expression of the tangent stiffness equation. It could also be rewritten 

as; 

𝛿𝑁 =
𝐹0

1 + 𝐹0𝑊̅
(𝛿𝑙 + 𝐮T𝛿𝛉) = [𝐹 𝐹𝑢1 𝐹𝑢2] [

𝛿𝑙
𝛿𝜃𝑖

𝛿𝜃𝑗

] 3-56 

By differentiating Eq. 3-29, the general equation for tangent element force equation can 

be expressed as; 

δ𝐌 = 𝐆δ𝛉 + δ𝐆𝛉 

= 𝐆δ𝛉 +
d𝐆

𝑑𝑁
𝛉𝛿𝑁 

3-57 

Further, by substituting Eq. 3-38, Eq. 3-39, Eq. 3-46 and Eq. 3-56 into the d𝐆 𝑑𝑁⁄ ∙ 𝛉𝛿𝑁 

component of Eq. 3-57, it could be expressed as Eq. 3-58. 

d𝐆

𝑑𝑁
𝜃𝛿𝑁 =

𝑙0
2

[
𝑝 −𝑝̅

−𝑝̅ 𝑝
] [

𝜃𝑖

𝜃𝑗
] [𝐹 𝐹𝑢1 𝐹𝑢2] [

𝛿𝑙
𝛿𝜃𝑖

𝛿𝜃𝑗

] 3-58 

𝑑2𝐆

𝑑𝑁2
= [𝑎̈𝑘 𝑏̈𝑘

𝑏̈𝑘 𝑎̈𝑘
] = −

𝑙0
2

2𝑘
[

𝑞 −𝑞̅
−𝑞̅ 𝑞

] 3-49 
𝑑2𝐆

𝑑𝑁2
= [𝑎̈𝑘 𝑏̈𝑘

𝑏̈𝑘 𝑎̈𝑘
] = −

𝑙0
2

2𝑘
[

𝑞 −𝑞̅
−𝑞̅ 𝑞

] 3-49 
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= [
𝑢1

𝑢2
] [𝐹 𝐹𝑢1 𝐹𝑢2] [

𝛿𝑙
𝛿𝜃𝑖

𝛿𝜃𝑗

] = [
𝐹 𝐹𝑢1

2 𝐹𝑢1𝑢2

𝐹𝑢2 𝐹𝑢1𝑢2 𝐹𝑢2
2 ] [

𝛿𝑙
𝛿𝜃𝑖

𝛿𝜃𝑗

] 

Furthermore, by compiling Eq. 3-54 into Eq. 3-57, the tangent element force equation 

could be expressed as Eq. 3-59. 

[

𝛿𝑁
𝛿𝑀𝑖

𝛿𝑀𝑗

] = [

𝐹 𝐹𝑢1 𝐹𝑢2

𝐹𝑢1 𝐹𝑢1
2 + 𝑎𝑘 𝐹𝑢1𝑢2 + 𝑏𝑘

𝐹𝑢2 𝐹𝑢1𝑢2 + 𝑏𝑘 𝐹𝑢2
2 + 𝑎𝑘

] [

𝛿𝑙
𝛿𝜃𝑖

𝛿𝜃𝑗

] 3-59 

In the algorithm, Eq. 3-59 is linked with equilibrium condition matrix and 

compatibility matrix to form the element stiffness matrix and by adding geometric 

stiffness matrix, the tangent stiffness matrix is formed. Here, by super positioning all of 

these equation, it is solved numerically by the simultaneous linear equation. 

 

3.2.5 The Newton–Raphson numerical method for determining the 

axial force 

 

In order to converge the unbalanced force using the iterational process by TSM, the 

process starts with determining the element deformation 𝐬 = [∆𝑙 𝜃𝑖 𝜃𝑗]T  from a 

strict compatibility equation using the current nodal position, and the element force 

equation in Eq. 3-1 is applied to produce the solution. However, the axial force N, 

expressed in Eq. 3-41 is a nonlinear function which involves ∆lb and it is required to 

expand the equation in order to determine to precise value of N. Here, if a value of N is 

given, 

𝜓(𝑁) = 𝑁 − 𝐹0(∆𝑙 + 𝑙𝑏) 3-60 

According to the difference equation, the ψ(N)→0 is calculated and renewed using 

the Newton–Raphson iterative method. According to Eq. 3-59, the initial value of N 

when ∆lb=0, the deflection angle coefficient p and 𝑝̅ would simulate N as a linear 

function could be applied. However, Eq. 3-41 will be a linear equation and if the value 

in the second term of Taylor expansion is applied to the deflection angle coefficients;  

𝑝2 =
4

15
−

11𝑙0
2

1575EI
𝑁 3-61 𝑝̅2 =

1

15
−

13𝑙0
2

3150EI
𝑁 3-62 

By substituting Eq. 3-61 and Eq. 3-62 into Eq. 3-59, the calculation by iterational 

process could be executed with low convergence step, and the initial value for N could 

be expressed as Eq. 3-63. 
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𝑁0 = 𝐹0 [∆𝑙 +
𝑙0
4

{𝑝(𝜃𝑖
2 + 𝜃𝑗

2) − 2𝑝̅𝜃𝑖𝜃𝑗}] 

= 𝐹0 [∆𝑙 +
𝑙0
30

(2𝜃𝑖
2 + 2𝜃𝑗

2 − 𝜃𝑖𝜃𝑗) −
𝑙0

3

6300EI
{11(𝜃𝑖

2 + 𝜃𝑗
2) − 13𝜃𝑖𝜃𝑗}𝑁] 

𝑁0 = 𝐹0(∆𝑙 + 𝐺1 − 𝐺2𝑁) 

3-63 

By the simplification of Eq. 3-63, 

𝑁0 = 𝐹0

∆𝑙 + 𝐺1

1 − 𝐹0𝐺2
 3-64 

Eq. 3-64 is applied to obtain the initial value. By the differentiation of Eq. 3 -60, 

referring to Eq. 3-44 and Eq. 3-54, the iteration scheme in the Newton–Raphson method 

could be expressed as 

𝑑𝜓

𝑑𝑁
=

𝑑

𝑑𝑁
(𝑁 − 𝐹0∆𝑙𝑏) = 1 − 𝐹0

𝑑∆𝑙𝑏
𝑑𝑁

= 1 + 𝐹0𝑊̅ 3-65 

𝑊̅ =
𝑙0

2

4𝑘
{𝑞(𝜃𝑖

2 + 𝜃𝑗
2) − 2𝑞̅𝜃𝑖𝜃𝑗} 3-66 

Here, the 𝑊̅ is applied as a replacement for the differential function. Using Eq. 3 -67, 

the axial force N is converged with the application of the iteration scheme.  

𝑑𝜓

𝑑𝑁
(𝑁𝑖 + 𝑁𝑖+1) = 𝜓𝑖 

𝑁𝑖+1 = 𝑁𝑖 −
𝜓𝑖

1 + 𝐹0𝑊̅
 

3-67 

 

3.3 General formulation for geometrically nonlinear analysis in 

FEM[2] 

 

3.3.1 Nonlinear stiffness equation 

 

In a plane frame structure, the cross sectional area of each member is assumed to be 

constant, which makes the relation between stress and strain within the cross section 

becomes a linear function. It also could be expressed as a common Hooke law shown in 

Eq. 3-68. 

σ = Eε 3-68 

Similar to the case of plane rigid frame, the total strain is assumed from the sum of the 

axial strain ɛx, and flexural strain ɛm. The approximation of axial strain ɛx and the 

curvature φ is shown in Eq. 3-69 and Eq. 3-70. While the flexural strain ɛm is given in 
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Eq. 3-71. 

 

Figure 3.7: Element deformation diagram according to FEM 

 

𝜀𝑥 =
𝑑𝑢

𝑑𝑥
+

1

2
(
𝑑𝑣

𝑑𝑦
)
2

 3-69 

φ = −
𝑑2𝑣

𝑑𝑥2
 3-70 

𝜀𝑚 = −𝑦
𝑑2𝑣

𝑑𝑥2
 3-71 

The strain energy U for the element could be defined as; 

𝑈 = ∫
1

2𝑣

E𝜀2V 

=
EA

2
∫ {(

𝑑𝑢

𝑑𝑥
)
2

+ (
𝑑𝑢

𝑑𝑥
) (

𝑑𝑣

𝑑𝑥
)
2

+
1

4
(
𝑑𝑣

𝑑𝑥
)
4

+
I

A
(
𝑑2𝑣

𝑑𝑥2
)}

𝑙

0

𝑑𝑥 

3-72 

Here, if the horizontal displacement is u and the lateral displacement is v, then the 

element displacement could be represented as Eq. 3-73 and Eq. 3-74. These are the 

shape functions for plane frame elements, which are applied in FEM. 

𝑢 = (1 −
𝑥

𝑙
) 𝑢𝑖 + (

𝑥

𝑙
) 𝑢𝑗  3-73 

u

v  l

 i

 j  x(u)

 l+∆l

 x*(u*)

 y*(u*)

 y (u)

 ui

 vi

 vj

 uj
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 j’
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 θj
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𝑣 = (2 − 3
𝑥2

𝑙2
+ 2

𝑥3

𝑙3
)𝑣𝑖 + (3

𝑥2

𝑙2
− 2

𝑥3

𝑙3
)𝑣𝑗 + (𝑥 − 2

𝑥2

𝑙
+

𝑥3

𝑙2
)𝜃𝑖 + (−

𝑥2

𝑙
+

𝑥3

𝑙2
)𝜃𝑗 3-74 

The strain energy U in a non-stressed state could be described (Fig 3.7) as a function 

of element edge displacement 𝐝 = (𝑢𝑖 𝑣𝑖 𝜃𝑖 𝑢𝑗 𝑣𝑗 𝜃𝑗) in the element coordinate 

system. Based on the induction of total potential energy, the relation of element edge 

force f, element edge displacement d and the stiffness matrix k could be shown as; 

𝐟 = 𝐤(𝐝) ∙ 𝐝 = {𝐤𝟎 + 𝐤𝟏(𝐝) + 𝐤𝟐(𝐝)}𝐝 3-75 

Here, ko represents the stiffness matrix according to infinitesimal displacement theory, 

k1 and k2 are the nonlinear terms for both of the first and second order of the 

displacement term d. In addition, according to Eq. 3-75, the relation between the 

increment of both element edge force ∆f and element edge displacement ∆d could be 

defined as Eq. 3-76. 

∆𝐟 = ∆𝐤(𝐝) ∙ ∆𝐝 = {𝐤𝟎 + 2𝐤𝟏(𝐝) + 3𝐤𝟐(𝐝)}∆𝐝 3-76 

 

3.3.2 The iterational process for FEM 

 

There are several hypothetic approximations when inducting Eq. 3-75, which 

exhibits the importance of avoiding the violation of those assumptions when performing 

a numerical analysis and the consideration of a proper calculation technique is 

considered to be crucial. Eq. 3-73 and Eq. 3-74 is an approximation of the displacement 

function which is based on infinitesimal displacement theory and the equation for the 

curvature contains the assumption which is (𝑑𝑣 𝑑𝑥⁄ )2 ≤ 1. Furthermore, the element 

edge displacement which is displayed in element coordinate system in post deformation 

state eliminates the rigid body displacement.  

This shows that the rotation angle of each node does not represent the nodal rotation 

θ, but represents the tangential rotation angle τ. Hereby, although the element rotation 

is in large quantity, the tangential rotation angle remains infinitesimal, which matches 

the approximation in Eq. 3-70. When obtaining element edge force using the iterational 

process, and by applying Eq. 3-75, the post deformation equation is shown in Eq. 3-77. 

Further, the local coordinate system or the nodal force vector D could be converted and 

shown in Eq. 3-78. 

𝐟∗ = 𝐤(𝐝∗) ∙ 𝐝∗ 3-77 

𝐃 = 𝐂(𝐗) ∙ 𝐤(𝐝∗) ∙ 𝐝∗ 

= 𝐂(𝐗) ∙ 𝐤(𝐝∗) ∙ 𝐂(𝐗)T ∙ 𝐝 
3-78 

Here, C(X) is the coordinate’s transformation matrix, obtained from the local 
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coordinate system which is converted to the element coordinate system in post 

deformation, and X is the nodal coordinate in post deformation achieved from the local 

coordinate system. Furthermore, if the element edge displacement in post deformation 

could be assumed as 𝐝∗ = (𝑢𝑖
∗ 𝑣𝑖

∗ 𝜃𝑖
∗ 𝑢𝑗

∗ 𝑣𝑗
∗ 𝜃𝑗

∗
), then the matrix elements are 

defined as Eq. 3-79 to Eq. 3-84. 

𝑢𝑗
∗ − 𝑢𝑖

∗ = ∆𝑙 3-79 

𝑣𝑗
∗ = 𝑣𝑖

∗ = 0 3-80 

𝜃𝑖
∗ =

𝑑𝑣∗

𝑑𝑥∗
|
𝒊
= tan 𝜏𝑖 

=
(𝑙 + 𝑢𝑗 − 𝑢𝑖) ∙ 𝑇𝑖 − (𝑣𝑗 − 𝑣𝑖)

(𝑙 + 𝑢𝑗 − 𝑢𝑖) + (𝑣𝑗 − 𝑣𝑖) ∙ 𝑇𝑖

 

3-81 

𝜃𝑗
∗ =

𝑑𝑣∗

𝑑𝑥∗
|
𝒋
= tan 𝜏𝑗 

=
(𝑙 + 𝑢𝑗 − 𝑢𝑖) ∙ 𝑇𝑗 − (𝑣𝑗 − 𝑣𝑖)

(𝑙 + 𝑢𝑗 − 𝑢𝑖) + (𝑣𝑗 − 𝑣𝑖) ∙ 𝑇𝑗
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𝑇𝑖 = tan𝜃𝑖 =
𝑑𝑣

𝑑𝑥
|
𝑖
 3-83 𝑇𝑗 = tan𝜃𝑗 =

𝑑𝑣

𝑑𝑥
|
𝑗
 3-84 

In addition, equations that are related to the stiffness matrix k(d*), which are from Eq. 

3-77 to Eq. 3-82 are shown in the following equation. 
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𝐴0 =
EA

𝑙
 𝐵0 =

12EI

𝑙3
 𝐶0 =

6EI

𝑙2
 

𝐷0 =
4EI

𝑙
 𝐸0 =

2EI

𝑙
  

For the nonlinear first order of displacement term k1,  
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𝐴1 = −
EA

20𝑙
(𝜃𝑖

∗ + 𝜃𝑗
∗) 𝐵1 = −

EA
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(4𝜃𝑖

∗ − 𝜃𝑗
∗) 𝐶1 = −

EA
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(−𝜃𝑖

∗ + 4𝜃𝑗
∗) 

𝐷1 =
3

5𝑙
𝑁∗ 𝐸1 =

1

20
𝑁∗ 𝐹1 =

𝑙

15
𝑁∗ 

𝐺1 =
𝑙

60
𝑁∗ 𝑁∗ =

EA

𝑙
(𝑢𝑗

∗ − 𝑢𝑖
∗) = EA

∆𝑙

𝑙
  

And for the second order of the displacement term k2, it could be shown as the 

followings.  
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𝐴2 =
3EA

70𝑙
{(𝜃𝑖

∗)2 + (𝜃𝑗
∗)

2
} 𝐵2 = −

EA

280𝑙
{(𝜃𝑖

∗)2 − 2𝜃𝑖
∗𝜃𝑗

∗ − (𝜃𝑗
∗)

2
} 

𝐶2 = −
EA

280𝑙
{(𝜃𝑖

∗)2 + 2𝜃𝑖
∗𝜃𝑗

∗ + (𝜃𝑗
∗)

2
} 𝐷2 = −

EA𝑙

840
{3(𝜃𝑖

∗)2 + 3(𝜃𝑗
∗)

2
− 4𝜃𝑖

∗𝜃𝑗
∗} 

𝐸2 = −
EA𝑙

420
{12(𝜃𝑖

∗)2 + (𝜃𝑗
∗)

2
− 3𝜃𝑖

∗𝜃𝑗
∗} 𝐴2 = −

EA

20𝑙
{(𝜃𝑖

∗)2 + 12(𝜃𝑗
∗)

2
− 3𝜃𝑖

∗𝜃𝑗
∗} 

 

3.4 Robustness aspect in large deformational plane frame analyses 

 

With the aforementioned elaborations, it is appropriate to conclude that the 

idealization of the tangent stiffness method is much simpler and could solve any 

geometrically nonlinear problem, either for infinitesimal or extremely large deformation 

cases. In this section, the author made a comparison between TSM and FEM using a 

commonly used Euler–Bernoulli beam theory. Depending on the adoption of the 

kinematic parameters in the stiffness equation for both methods, the results of 

convergence steps differ, although with the same geometrical properties as of the plane 

frame model is being applied. 

When a tremendous amount of load is subjected on a simply supported beam in a 

single incremental step, the amount of displacement will be in extremely large quantity, 

corresponding to the subjected load. In a geometrically nonlinear analysis, if the element 

definition is precise, the unbalanced force will tend to be easily converged. Therefore, 
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by the idealization of an element using displacement method in TSM, it is expected to 

obtain a better solution. In this subsection, the author will provide a numerical example 

using a plane frame beam model. 

 

3.5 Numerical Example 

 

In this analysis, a simply supported plane beam model is being used, and an 

extremely large amount of moment force is applied at the roller support until the beam 

deforms and buckled into a double layer circular shape. The theory can simulate a 

nonlinear behavior of plane frame beam with huge load in a single load incremental step. 

In general sense of FEM, the load is divided into small incremental steps and subjected 

gradually. However, the author applied an extremely large loading amount until the 

beam coordinate deforms in an extremely large scale. Here, a comparison of unbalanced 

force convergence behavior by both TSM and FEM have been done, the comparison 

scheme is shown in Fig. 3.9. 

 

 

 

(a) (b) 

Figure 3.8: Analysis model 

 

The magnitude of the moment load is lM
e

EI4 on the roller node, and is applied 

in a single incremental step. Referring to Fig. 3.8, a simply supported plane frame beam 

is used for the analysis. For the analysis condition, the beam model is divided into 12 

divisions, the span is 2π[m], the beam cross section is b=0.2[m] and h=0.5[m] and the 

Young Modulus is E=2.1x108[kN/m2]. Here, the comparison of accuracy has been done 

by using the tangent element force equation in Eq. 3-59 for TSM, while for FEM, Eq. 

3-73 and Eq. 3-74 are applied. 
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Method Beam deformation Convergence step 

TSM 
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FEM 

 

535 

Figure 3.9: Analysis result 

 

Figure 3.10: The comparison of convergence behavior between TSM and FEM 

 

From the result of the analysis, as shown in Fig 3.9, the beam deformation by TSM 

shows that all nodes are perfectly aligned and redundant to each other. In addition, a 

curve element has been applied for TSM, which allows it to exhibit a perfectly redundant 

circular shape. This is because TSM considers a strict compatible condition for the 

element. While for FEM, the deformational shape shows a dispersed and unaligned 

shape. This is due to the approximation of nodal displacement by the shape function 

which was substituted in the nonlinear axial strain equation in Eq. 3-69. The problem is 

due to the derivation of stiffness equation from the compatibility equation which treats 
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the axial strain within the element in the global coordinate system.  

The convergence behavior for both methods could be seen in Fig. 3.10. Here, the 

unbalanced force was converged in 42 convergence steps in TSM. TSM shows a rapid 

convergence behavior, while for FEM, the convergence behavior is very slow until the 

unbalanced force is totally converged. The total convergence step is 535 steps, which 

also exhibits a low accuracy of the method. This is due to the basic characteristic of 

FEM which does not consider strict tangent stiffness equation as shown in Eq. 3 -76, and 

simultaneously does not evaluate the compatibility equation properly, as stated in Eq. 

3-78. 

In addition, the application of the tangent element force equation simulates a very 

strict and accurate solution, compared to the FEM. Depending on the degree of accuracy 

which is required, the normal tangent geometrical stiffness equation in Eq. 3 -9 to Eq. 

3-11 is also sufficient enough to produce a highly accurate result and significant 

comparison could always be made smoothly.  

 

3.6 Discussion 

 

In this chapter, by executing the analysis of a plane beam model using TSM, an 

accurate solution has been achieved, even for the case of an extremely large loading 

which makes the structure in the numerical example (section 3.5) deforms with an 

enormous amount of nodal displacement. Here, by the derivation of tangent geometric 

stiffness in subsection 3.2.1, the definition of element behavior whether a linear or a 

curve element in subsection 3.2.4, and the definition of the highly accurate tangent 

element force equation, it is clear that TSM complies with the theoretical assumption of 

snap-through phenomena. 

In TSM, the tangent geometric stiffness and the tangent element stiffness are defined 

and handled separately. In addition, delicate or complex derivations as shown in section 

3.3 is not necessary, but simultaneously producing a better result. Consequently, it 

becomes evident that this method could be applied to any geometrically nonlinear cases 

[1]. Furthermore, as shown in the numerical example, it is also clear that a common FEM 

analysis could not comply, or even impossible to deal with extremely large deformation 

or extremely large loading condition, and therefore it should be revised in order to  

generate accurate solutions that are equivalent with the results obtained by TSM. 
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List of symbols 

 

Symbol  Description 

S : Element edge force vector 

D : Nodal force vector 

kG : Tangent geometric stiffness matrix 

M : Edge moment vector 

G : Deflection angle stiffness vector 

θ : Deflection angle vector 

u : Axial force function vector 

d : Element edge displacement vector 

f : Element edge force vector (in FEM) 

k0 : Element stiffness matrix (in FEM) 

k1 : 1st order of nonlinear term in displacement vector (in FEM) 

k2 : 2nd order of nonlinear term in displacement vector (in FEM) 

C : Coordinate’s transformation matrix (in FEM) 

X : Nodal coordinate in post deformation (in FEM) 

N : Axial force 

Mi : Edge moment on i edge 

Mj : Edge moment on j edge 

Ui : Horizontal component on i edge 

Vi : Vertical component on i edge 

Zi : Rotation component on i edge 

Uj : Horizontal component on j edge 

Vj : Vertical component on j edge 

Zj : Rotation component on j edge 

l : Element length 

α : Cosine vector component in horizontal direction 

β : Cosine vector component in vertical direction 

uij : Horizontal component between i and j edge 

vij : Vertical component between i and j edge 

Q : Shear force 

kG : The matrix element of tangent geometric stiffness matrix  

us : Horizontal displacement in global coordinate system (in FEM) 

vs : Vertical displacement in global coordinate system (in FEM) 
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List of symbols 

 

Symbol  Description 

θi : Deflection angle on i edge 

θj : Deflection angle on j edge 

l0 : Non-stressed length of an element 

 : Bending stiffness coefficient 

ω : Characteristic equation 

∆lb : String length 

F0 : Axial force coefficient 

ε : Element strain 

u : Horizontal coordinate 

v : Vertical coordinate 

U : Strain energy 

𝑊̅ : Component of the fluctuation of axial force 

F : Fluctuation of element force 

ψ : The substitution of initial value of the axial force 

σ : Element stress 

εx : Axial strain 

εm : Flexural strain 

x : Horizontal component in global coordinate system 

y : Vertical component in global coordinate system 

τ : Tangential rotation angle 
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Chapter 4 

Static Form-Finding Procedure for Tensegrity Structures and 

the Evaluation of Equilibrium Solutions 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1 Introduction 

 

Tensegrity has not only unique geometry on the rule of no connection between 

compression members, but also unique mechanism that the structure can be stable under 

the condition of less restriction than the Maxwell's law.  Therefore, tensegrity has 

attracted the interests of many researchers and there are already various studies 

involving the application of this structure. The study done by Bosseus et al . [1] shows 

the development of dynamical models for tensegrity structure under vibration or cyclic 

load, and they have also examined the deformation mode (modal shape) of the tensegrity 

tower and compared the results using the finite element method (FEM) software. 

Mizuho et al. [2] have demonstrated a study about a crawling deformable robot which 

consists of the tensegrity structure. The crawling behavior has been done by the 

deformation of the structure itself. This also shows that tensegrity could have various 

equilibrium shapes under a single setting; even the slightest modification could change 

the structure morphology. 
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Tensegrity therefore, could produce so many equilibrium shapes and this makes it 

difficult to determine the feasible geometry. This is the basis for the analytical approach 

of tensegrity to mainly focusing on the form-finding analysis (Fig. 4.1). For example, 

the group theory was introduced [3] as a method to classify the morphologies based on 

the mechanical configuration of the tensegrity structure.  In addition, there are studies 

that have been done based on form-finding analysis, and the force density method 

(FDM) has usually been applied to the form-finding process. Application of FDM to 

form-finding of tensegrity is to determine a “feasible set of force densities”. In this 

respect, Vassart and Motro [4] have shown dynamic relaxation algorithm, while Ohsaki 

et al. [5] have examined eigenvalue analysis to obtain the feasible set of force densit ies. 

 

Figure 4.1: The flow of tensegrity structure analysis 

 

In this study however, a form-finding analysis for tensegrity, and with the aid of 

tangent stiffness method (TSM) has been applied, which consists of measure potential 

element for tension members, and truss element for compression members.  For the axial 

line elements, the potential is a proportion of (n+1)-th to the power of the element length 

while the axial force proportion is n-th to the power of its length; and for this, it is 

defined as 'n-th axial line element'. In case of n=1, the stiffness equation becomes linear 

and the computational process may be equal to FDM. Furthermore, when the magnitude 

 Form-finding 

 Tensegrity structure 

 Analytical approaches  Experimental approaches 

 Mechanical 

consideration of 

tensegrity 

 Group theory 

 Simulation of deformation behavior by 

large deformational analysis 

 Eigenvalue analysis 

 Dynamic relaxation 
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 Measure-potential 

element 
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of n is equal or greater than 2, an iterational process is required for the form-finding 

process. This study also provides the investigation of paths existence;  whether a main 

paths or secondary paths, which is also called as a bifurcation path.  Using this analysis 

method, for each deformation mode of the structure, the negative eigenvalue of the 

tangent stiffness matrix would fluctuate, due to the singularity that occurs in the matrix. 

The negative eigenvalue usually changes at the extremum point, where the tangent of 

the load–displacement curve becomes zero.  

When the negative eigenvalue changes except at the extremum point, singularity of 

the stiffness matrix occurs and this shows the existence of the bifurcation path on the 

curve [6]. In order to pursue the bifurcation path, an appropriate amount of eigenvector 

is applied and several simple technics for pursuing the path.  Here, the side toppling 

behavior of the tensegrity tower and the decrement of symmetricity level could be 

observed. Every symmetrical or unsymmetrical morphologies of the tensegrity are 

examined and classified, by the fluctuations of negative eigenvalue and the similarity 

for each morphology is observed, which is simple but equivalent to the study of group 

of theory [4][7]. 

 

4.2 Fundamental concept of Force Density Method 

 

The calculation procedure for FDM starts by forming branch–node matrix, where 

approximate value of force density vector is given for each member. Then, from the 

given vector, an equilibrium matrix is formed by the relation of the connectivity matrix, 

C, force density matrix, Q, and nodal force fix as shown in Eq. 4-1. 

[𝐂]i
T[𝐐][𝐂]{𝐱} = {𝑓ix} 4-1 

Here, the rank deficiency of the force density matrix is checked, to obtain the rank 

of the matrix. In FDM, the rank deficiency of the force density matrix must be equivalent 

to 4, which in this case, the tensegrity configuration will expand in a three dimensional 

space. Furthermore, by using least square method, the force density vector is determined 

after the nonlinear calculation process, and the feasible force density vector obtained 

from the calculation is applied for the form-finding analysis. The fundamental 

assumption of FDM for a simplex tensegrity as shown in Fig. 4.2 will be elaborated 

further. If the force densities of each elements for the simplex tensegrity are assumed 

as; 

qh : tension members that form the upper and lower triangles.  

qv : tension members that connect upper and lower nodes.  
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qc : compressional members that connect upper and lower nodes.  

According to FDM, the ratio of qh, qv and qc could be shown the following; 

𝑞ℎ: 𝑞𝑣: 𝑞𝑐 = 1:√3:−√3 4-2 

 

Figure 4.2: Simplex tensegrity 

 

Based on the concept of FDM, the following equations will be derived. If the 

equilibrium equation is shown as; 

𝐃 = 𝐉 ∙ 𝐒 4-3 

In order to achieve the state of self-equilibrium where both of external and reaction 

forces are zero, the equation should be; 

𝐉 ∙ 𝐒 = 𝟎 4-4 

Here, if the equilibrium matrix J and nodal coordinate u is a linear function, according 

to Eq. 4-4, the self-equilibrium equation should be expressed as follow; 

𝐉 ∙ 𝐒 = 𝐐 ∙ 𝐮 = 𝟎 4-5 

The nodal coordinate should obey u ≠ 0, as there is an existence of morphology of the 

structure, which means the force density matrix Q = 0, into a singular matrix. As shown 

in Fig. 4.2, if an element (marked as 1) of the simplex tensegrity, the equilibrium 

equation could be expressed as;   

 

4-6 

with,𝑞1 = 𝑁1 𝑙1⁄  (the force density). 
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4.2.1 Connectivity matrix 

 

For u, v and w directions, the equation for these directions will be the same, as shown 

by the following equations. 

[
𝑞1 −𝑞1

−𝑞1 𝑞1
] [

𝑢1

𝑢2
] = [

0
0
] 4-7 

[
𝑞1 −𝑞1

−𝑞1 𝑞1
] [

𝑣1

𝑣2
] = [

0
0
] 4-8 

[
𝑞1 −𝑞1

−𝑞1 𝑞1
] [

𝑤1

𝑤2
] = [

0
0
] 4-9 

If all of these equations are formed together, the connectivity matrix could be expressed 

as; 
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𝑄1 = 𝑞1 + 𝑞3 + 𝑞9 + 𝑞10 𝑄2 = 𝑞1 + 𝑞2 + 𝑞7 + 𝑞11 

 𝑄3 = 𝑞2 + 𝑞3 + 𝑞8 + 𝑞12 𝑄4 = 𝑞4 + 𝑞6 + 𝑞7 + 𝑞10 

𝑄5 = 𝑞4 + 𝑞5 + 𝑞8 + 𝑞11 𝑄6 = 𝑞5 + 𝑞6 + 𝑞9 + 𝑞12 

 

Here, the solution and rank of the force density matrix, Q will be elaborated. 

Considering u as a column vector as shown in the following equation.  

𝐐 ∙ 𝐮𝑢,𝑣,𝑤 = 𝟎 4-11 

As mentioned previously, with the condition of u ≠ 0, the matrix Q has to become a 

singular matrix. Hence, if the matrix Q is a n x n square matrix (rightness matrix), 

considering r as the rank for the matrix Q and r should be lower than the size, n of the 

matrix (r<n). The rank deficiency could be expressed as the following equation.  

ℎ = 𝑛 − r ≥ 1 4-12 

Here, considering matrix Q as row vector, 

𝐐 = [𝐪1 𝐪2 𝐪3 ⋯ 𝐪n] 4-13 

When 𝐪1 + 𝐪2 + 𝐪3 + ⋯𝐪n = 𝟎, the theory stands up all right for not only tensegrity, 

but also for a frame structure which consists of axial members. 

For this case, the feature of the connectivity matrix could be known as; 

i) Rectangular and symmetric singular matrix. 

Symmetry
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ii) The sum of vector for the row and the column of the matrix will become a zero 

vector. 

 

4.2.2 Singular matrix and rank deficiency 

 

Consider Fig. 4.3 to exemplify the following equations within a three dimensional 

space, by explaining the derivation using a three dimensional vector and 3x3 matrix. In 

addition, this is a basic expansion concept for an n-th dimension for vector calculation.  

 

Figure 4.3: Vector of a single node 

 

Here, in a three dimensional space, a set of three vectors are shown in the following 

equations; 

𝐱a = [xa ya za]T 4-14 

𝐱b = [xb yb zb]T 4-15 

𝐱c = [xc yc zc]T 4-16 

The common expression for a three dimensional vectors for x could be expressed as; 

𝐗 = 𝑙a𝐱a + 𝑙b𝐱b + 𝑙c𝐱c 4-17 

Here, if vector X and the length L are expressed as; 

𝐗 = [𝐱a 𝐱b 𝐱c] 4-18 

𝐋 = [𝑙a 𝑙b 𝑙c]
T 4-19 

Then, x could be rewritten as Eq. 4-20. 

𝐱 = 𝐗 ∙ 𝐋 4-20 

Since la, lb and lc are independent to each other and expand randomly in a three 

dimensional space, there are some cases where x is not able to express as an axial line 

element, and this occurs when; 

 v 

 w 
 w 

 xa 

 xb 

 xc 

 X 
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1) xa, xb and xc are together on the same plane. 

2) xa, xb or xc either two of these vectors are parallel. 

3) xa, xb or xc either one of these vectors is a zero vector.  

4) xa, xb and xc are parallel to each other. 

5) xa, xb or xc either two of these three vectors are zero vector 

6) xa, xb and xc are zero vectors. 

For all cases denoted above, X will be a singular matrix where no solution is achievable. 

Furthermore, for cases 1), 2) and 3), it shows a node on a plane, for 4) and 5), it shows 

a linear line, and for 6), it shows an origin of a point. If Eq. 4-20 could be written as 

[
x
y
z
] = [

xa ya za

xb yb zb

xc yc zc

] [

𝑙a
𝑙b
𝑙c

] 4-21 

then, for cases 1), 2) and 3), if either one of the vector xa, xb or xc does not exist or a 

zero vector, the other two vectors will form a node on a plane in the three dimensional 

space. The rank deficiency for matrix X will become 2. At the same time, for cases 4) 

and 5) when two of the three vectors do not exist (zero vector), the rank of the matrix 

will become 1. In addition, for the condition of l ≠ 0and x = 0, namely when la=lb=lc=0 

and X・L=0, it will be the same as for the cases 1), 4) or 6) as shown in Fig. 4.4. 

 

 

 

Case 1 Case 4 Case 6 

Figure 4.4: Illustration of vectors by cases 

 

In other word, if X is an n x n square matrix and when l is column vector of n row, 

𝐗 ∙ 𝐋 = 𝟎, 𝐋 ≠ 𝟎 4-22 

X will be a singular matrix, where r < n (r = rank deficiency of the matrix). For case 1), 

when the ratio of 𝑙a: 𝑙b: 𝑙c, is equivalent to each other, in this case, if the length of either 

one of the lengths is determinate, then the others will be able to be obtained. 

Furthermore, referring to Eq. 4-21, when defining the equilibrium matrix for tensegrity 

case, the force density matrix Q is applicable to the singular matrix X, which explains 

the feature of the connectivity matrix stated in ii). Also, when 𝐱a + 𝐱b + 𝐱c = 𝟎 , 

referring to Case 1), it could form the triangular shape as shown in Fig. 4.5.  

In order to validate Eq. 4-17, if the condition requires the lengths is 𝑙a = 𝑙b = 𝑙c, in 

 l a∙x
a 

 lb ∙x
b 

 lc∙xc 

 la∙xa  lb∙xb 

 lc∙xc 



52 

 

order to substitute into force density matrix Q, the u, v and w coordinate will be 𝑢1 =

𝑢2 = ⋯ = 𝑢𝑛, 𝑣1 = 𝑣2 = ⋯ = 𝑣𝑛 and 𝑤1 = 𝑤2 = ⋯ = 𝑤𝑛. This leads to the third future 

of connectivity matrix which is; 

iii) When h = 1, all nodes will converge at one point.  

 

Figure 4.5: Circulating vector 

 

When dealing with case 2), (when n=2), either two of la, lb or lc are determinate, in order 

to obtain the other one, the relation could be shown in Fig. 4.6 and is expressed in Eq. 

4-23. 

  

Figure 4.6: Vector converging at one point 

 

𝑙c =
𝑙axa + 𝑙bxb

xa + xb

= η𝑙a + (1 − η)𝑙b 4-23 

For this case, the relation to the force density matrix Q, could be expressed as Eq. 4-21. 

All of the nodal vectors from u1 to un will be linear to vector u12 direction. This also 

explains the rest of the features of connectivity matrix which are;  

iv) When h = 2, all nodes will be in a linear state. 

v) When h = 3, all nodes is one a plane. 

vi) When h = 4, all nodes will expand in a three dimensional space.  

However, when considering Eq. 4-13, which is the singular matrix Q for simplex 

tensegrity case, the decisive configuration may have multiple axis of symmetry. If the 

symmetrical behavior is already known, it could be concluded that; 

𝑞1 = 𝑞2 = 𝑞3 = 𝑞4 = 𝑞5 = 𝑞6 = 𝑞ℎ 4-25 

[
 
 
 
 
 
𝑢1

𝑢2

𝑢3

𝑢4

⋮
𝑢𝑛]

 
 
 
 
 

=

[
 
 
 
 
 

𝑙a
𝑙b

η1𝑙a + (1 − η1)𝑙b
η2𝑙a + (1 − η2)𝑙b

⋮
η𝑛𝑙a + (1 − η𝑛)𝑙b]

 
 
 
 
 

 4-24 

 xb  X 

 xc 

 xb  X 

 xc 

 la∙xa  lb∙xb 

 lc∙xc 



53 

 

𝑞7 = 𝑞8 = 𝑞9 = 𝑞𝑣 4-26 

𝑞10 = 𝑞11 = 𝑞12 = 𝑞𝑐 4-27 

Referring to Eq. 4-25 to Eq. 4-27, the force density matrix Q could be shown as the 

following.  

 

Q = 2𝑞ℎ + 𝑞𝑣 + 𝑞𝑐 

4-28 

In FDM, in order to obtain a cubical shape in a three dimensional space, the rank 

deficiency, h = 4 and the rank of the matrix will become 2. In addition, if the rotation 

based on node 1, the symmetrical behavior of nodal coordinate of node 2 to node 6 could 

be expressed in Eq. 4-29 to Eq. 4-31. 

[
 
 
 
 
 
𝒖1

𝒖2

𝒖3

𝒖4

𝒖5

𝒖6]
 
 
 
 
 

=

[
 
 
 
 1 0 −

1

2

√3

2
−

1

2
−

√3

2
1 0 −

1

2

√3

2
−

1

2
−

√3

2

0 1 −
√3

2
−

1

2

√3

2
−

1

2
0 −1

√3

2

1

2
−

√3

2

1

2 ]
 
 
 
 
T

[
𝑢1

𝑣1
] 4-29 

[
 
 
 
 
 
𝑢1

𝑢2

𝑢3

𝑢4

𝑢5

𝑢6]
 
 
 
 
 

=

[
 
 
 1 −

1

2
−

1

2
1 −

1

2
−

1

2

0 −
√3

2

√3

2
0

√3

2
−

√3

2 ]
 
 
 
T

[
𝑢1

𝑣1
] 4-30 

[
 
 
 
 
 
𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6]
 
 
 
 
 

=

[
 
 
 
 
 

1
1
1

−1
−1
−1]

 
 
 
 
 

𝑤1 4-31 

If the equilibrium condition is rewritten by the derivation of the force density for u and v 

direction as shown in Eq. 4-32; 

𝐔𝑢 = 𝐂𝑢𝐮1 4-32 

While for w direction, the equation could be expressed as; 

𝐔𝑤 = 𝐂𝑤𝐮1 4-33 

The relation between force density matrix Q and connectivity matrix C in self-equilibrium 

condition (when external force is zero) is shown from Eq. 4-34 to Eq. 4-36. 

𝐐 ∙ 𝐮 = 𝐔̅ 4-34 

Symmetry
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[
0
0
] = 𝐂𝑢T𝐐𝐂𝑢𝐮1 4-35 

0 = 𝐂𝑤T𝐐𝐂𝑤𝑤1 4-36 

The equilibrium equation could be expressed as Eq. 4-37.  

 

4-37 

Also, the total force density of an elements on each node are shown in Eq. 4-38. 

𝑄 = 2𝑞ℎ + 𝑞𝑣 + 𝑞𝑐 4-38 

For u and v direction, the equilibrium equation is shown in Eq. 4-39. 

𝐂𝑢T𝐐𝐂𝑢 = 9

[
 
 
 𝑞ℎ +

𝑞𝑣

2

1

2√3
𝑞𝑣

1

2√3
𝑞𝑣 𝑞ℎ +

𝑞𝑣

6
+

𝑞𝑐

3 ]
 
 
 

 4-39 

As for w direction, the equation is as follow. 

𝐂𝑤T𝐐𝐂𝑤 = 12(𝑞𝑣 + 𝑞𝑐) = 0 4-40 

Since qc represents the compressional member, the relation with the tensile qv member could 

be shown as Eq. 4-41. 

𝑞𝑐 = −𝑞𝑣 4-41 

Substituting Eq. 4-41 to Eq. 4-39; 

(1 +
Q𝑣

2
)(1 −

Q𝑣

2
) −

Q𝑣
2

6
= 1 − (

1

4
+

1

6
)Q𝑣

2 = 1 −
1

3
Q𝑣

2 = 0 4-42 

Eventually, the result could be shown in Eq. 4-43. 

Q𝑣 =
𝑞ℎ

𝑞𝑣

= −√3 4-43 

To conclude, the ratio of force density for simplex tensegrity is shown in Eq. 4-44. 

𝑞𝑘: 𝑞𝑣: 𝑞𝑐 = 1:√3: −√3 4-44 

Here, in order to obtain a cubical expansion in three dimensional space, the rank deficiency 

for the force density matrix Q should be h = 4. This is called “form condition” or 

“nondegenerate condition” in FDM, and the ratio of force density will be able to be obtained 

by completely satisfying these conditions. 

 

 

Symmetry
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4.3 Form-finding by TSM 

 

4.3.1 The development of measure-potential element with virtual 

stiffness 

 

The measure-potential element with virtual stiffness for tensegrity structure has 

been developed and it is also applicable for cable nets and membrane pneumatic 

structures. The proposed elements have the measure-potential; defined as a function of 

element area or element length. If the potential of a triangular element is proportionate 

to its area, then the element will behave as a soap film element. Therefore, the accuracy 

of the solution is simply depending on the performance of the geometrical ly nonlinear 

analysis.  

As for the axial line elements, the potential is a proportion of (n+1)-th to the power 

of the element length while the axial force proportion is n-th to the power of its length; 

and for this, it is defined as “n-th axial line element”. In the case of n=1, the stiffness 

equation becomes linear and the computational process may be equal to FDM. 

Furthermore, when the magnitude of n is equal to or greater than 2, the form-finding 

performance needs iterational process but as the structure deforms and expands in a 

three dimensional space, there are numerous possibilities for achieving an equilibrium 

shape. 

 

4.3.2 Element potential function 

 

In order to regulate the element behaviour in the local coordinate, the definition of 

measure-potential is expressed as a function of measurement such as element length or 

element area. The definition of element measure-potential is assumed to be equal to the 

element “virtual” stiffness. In addition, the definition does not relate to the material 

stiffness. Assume the element measure-potential as P, and the element measurement 

vector which is independent to each other as s, the element edge force could be 

expressed as the following equation. 

𝐒 =
𝜕𝑃

𝜕𝐬
 4-45 
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4.3.3 Axial line element 

 

Consider an element is connected by two nodes, node 1 and node 2. Suppose that the 

element measure-potential is proportionate to the power of length of the line element, 

and then it can be expressed as; 

𝑃 = 𝐶𝑙𝑛+1 4-46 

The axial line element can be obtained by differentiating the equation displayed  above. 

𝑁 = 𝑛𝐶𝑙𝑛 4-47 

C is a coefficient that is able to be set freely. If 𝛂 is the cosine vector for the axial line 

element which connects node 1 and node 2, then Eq. 2-3 could be re-expressed as: 

[
𝐃𝟏

𝐃𝟐
] = [

−𝛂
𝛂

]𝑁 4-48 

Substituting Eq. 4-43 to Eq. 2-5, then the matrix could be expressed as; 

𝛿 [
𝐃𝟏

𝐃𝟐
] = 𝐊T

L𝛿 [
𝐮𝟏

𝐮𝟐
] 4-49 

𝐊T
L = 𝑛𝐶𝑙𝑛−2 [

𝐞 + (𝑛 − 2)𝛂𝛂T −𝐞 − (𝑛 − 2)𝛂𝛂T

−𝐞 − (𝑛 − 2)𝛂𝛂T 𝐞 + (𝑛 − 2)𝛂𝛂T ] 4-50 

Referring to Eq. 4-47, in case of n = 2, the element forces become constant, and for Eq. 

4-50, the tangent geometric stiffness for axial line element becomes equivalent to a truss 

element, thus the axial forces can be designated as a constant value. However, in case 

of n > 2, nonlinearity occurs and from here, the iterational process are required to 

converge the unbalanced forces. When the magnitude of n becomes larger, the length of 

all axial line elements achieved tends to be more uniform. 

 

4.3.4 Truss element with real stiffness for struts 

 

In order to perform a three dimensional truss analysis by TSM, the differentiation 

of the equilibrium condition equations should be done in order to obtain the tangent 

stiffness matrix. The nodal force vector and the equilibrium condition vector could be 

represented as the following equations. 

𝐃𝑖𝑗 = [𝑋𝑖 𝑌𝑖 𝑍𝑖 𝑋𝑗 𝑌𝑗 𝑍𝑗]T 4-51 

𝛂𝑖𝑗 = [−𝛼𝑖𝑗 −𝛽𝑖𝑗 −𝛾𝑖𝑗 𝛼𝑖𝑗 𝛽𝑖𝑗 𝛾𝑖𝑗]T 4-52 

Here, if the axial force Nij that is subjected on the ij element, the equilibrium condition 
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equation could be shown as, 

𝐃𝑖𝑗 = 𝛂𝑖𝑗𝑁𝑖𝑗 4-53 

By differentiating Eq. 4-53, the result could be shown as; 

𝛅𝐃𝑖𝑗 = 𝛅𝛂𝑖𝑗𝑁𝑖𝑗 + 𝛂𝑖𝑗𝛅𝑁𝑖𝑗 4-54 

Eq. 4-54 exhibits a linear function of an infinitesimal displacement δxij for the nodal 

displacement vector, and both δNij and δαij will be derived precisely. The element edge 

force equation is a linear function which consists of Young modulus E, cross sectional 

area A and element non-stressed length loij, described as the following equation. 

𝛿𝑁𝑖𝑗 =
EA

𝑙0𝑖𝑗
𝛿𝑙𝑖𝑗 4-55 

The length of the element could be expressed as the following equation.  

𝑙𝑖𝑗
2 = 𝑥𝑖𝑗

2 + 𝑦𝑖𝑗
2 + 𝑧𝑖𝑗

2 4-56 

For the increment δlij of the element length, could be obtained by the differentiation of 

Eq. 4-56. 

𝛿𝑙𝑖𝑗 = 𝛼𝑖𝑗𝛿𝑥𝑖𝑗 + 𝛽𝑖𝑗𝛿𝑦𝑖𝑗 + 𝛾𝑖𝑗𝛿𝑧𝑖𝑗 4-57 

Here, both sides of the equation is divided to lij, and considering the cosine vector 

between node i and j, 𝛿𝑥𝑖𝑗 = 𝛿𝑥𝑗 − 𝛿𝑥𝑖 , 𝛿𝑦𝑖𝑗 = 𝛿𝑦𝑗 − 𝛿𝑦𝑖  and 𝛿𝑧𝑖𝑗 = 𝛿𝑧𝑗 − 𝛿𝑧𝑖 , the 

compatibility equation could be shown as; 

𝛿𝑙𝑖𝑗 = [−𝛼 −𝛽 −𝛾 𝛼 𝛽 𝛾]𝑖𝑗

[
 
 
 
 
 
 
𝛿𝑥𝑖

𝛿𝑦𝑖

𝛿𝑧𝑖

𝛿𝑥𝑗

𝛿𝑦𝑗

𝛿𝑧𝑗 ]
 
 
 
 
 
 

 4-58 

By substituting Eq. 4-52 to Eq. 4-54, 

𝛂𝑖𝑗𝛅𝑁𝑖𝑗 =
EA

𝑙0𝑖𝑗
𝛂𝑖𝑗𝛂𝑖𝑗

T𝛅𝐱𝑖𝑗 =
EA

𝑙0𝑖𝑗
[

𝒂 −𝒂
−𝒂 𝒂

] 

𝒂 = [

𝛼2 𝛼𝛽 𝛼𝛾

𝛼𝛽 𝛽2 𝛽𝛾

𝛼𝛾 𝛽𝛾 𝛾2

] 

4-59 

The equation shown above represents the stiffness equation of infinitesimal 

displacement theory using the displacement method. However, by applying the cosine 

vector components, 

𝛼𝑖𝑗 =
𝑥𝑗 − 𝑥𝑖

𝑙𝑖𝑗
 4-60 𝛽𝑖𝑗 =

𝑦𝑗 − 𝑦𝑖

𝑙𝑖𝑗
 4-61 𝛾𝑖𝑗 =

𝑧𝑗 − 𝑧𝑖

𝑙𝑖𝑗
 4-62 

Eq. 4-60 to 4-62 represents the cosine vector α, β and γ for the element. By 
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differentiating the above equation, 

𝛿𝛼𝑖𝑗 =
1

𝑙𝑖𝑗
[−(1 − 𝛼2) 𝛼𝛽 𝛼𝛾 (1 − 𝛼2) −𝛼𝛽 −𝛼𝛾]𝑖𝑗

[
 
 
 
 
 
 
𝛿𝑥𝑖

𝛿𝑦𝑖

𝛿𝑧𝑖

𝛿𝑥𝑗

𝛿𝑦𝑗

𝛿𝑧𝑗 ]
 
 
 
 
 
 

 4-63 

Similarly, 

𝛿𝛽𝑖𝑗 =
1

𝑙𝑖𝑗
[𝛼𝛽 −(1 − 𝛽2) 𝛽𝛾 −𝛼𝛽 (1 − 𝛽2) −𝛽𝛾]𝑖𝑗

[
 
 
 
 
 
 
𝛿𝑥𝑖

𝛿𝑦𝑖

𝛿𝑧𝑖

𝛿𝑥𝑗

𝛿𝑦𝑗

𝛿𝑧𝑗 ]
 
 
 
 
 
 

 4-64 

𝛿𝛾𝑖𝑗 =
1

𝑙𝑖𝑗
[𝛼𝛾 𝛽𝛾 −(1 − 𝛾2) −𝛼𝛾 −𝛽𝛾 (1 − 𝛾2)]𝑖𝑗

[
 
 
 
 
 
 
𝛿𝑥𝑖

𝛿𝑦𝑖

𝛿𝑧𝑖

𝛿𝑥𝑗

𝛿𝑦𝑗

𝛿𝑧𝑗 ]
 
 
 
 
 
 

 4-65 

Here, if Eq. 4-63 to 4-65 are substituted into Eq. 4-54; 

𝛅𝛂𝑖𝑗𝑁𝑖𝑗 =
𝑁𝑖𝑗

𝑙𝑖𝑗
[

𝒂̅ −𝒂̅
−𝒂̅ 𝒂̅

]
𝑖𝑗

[
 
 
 
 
 
 
𝛿𝑥𝑖

𝛿𝑦𝑖

𝛿𝑧𝑖

𝛿𝑥𝑗

𝛿𝑦𝑗

𝛿𝑧𝑗 ]
 
 
 
 
 
 

 

𝒂̅ = [

(1 − 𝛼2) −𝛼𝛽 −𝛼𝛾

−𝛼𝛽 (1 − 𝛽2) −𝛽𝛾

−𝛼𝛾 −𝛽𝛾 (1 − 𝛾2)

] 

4-66 

The equation is the tangent stiffness matrix for the truss element by the superposition 

function of Eq. 4-59 and Eq. 4-66. Here, kO and kG could be expressed as Eq. 4-67 and 

Eq. 4-68. 

𝐤𝐎 =
EA

𝑙0𝑖𝑗
[

𝛼2 𝛼𝛽 𝛼𝛾

𝛼𝛽 𝛽2 𝛽𝛾

𝛼𝛾 𝛽𝛾 𝛾2

] 4-67 

𝐤𝐆 =
𝑁𝑖𝑗

𝑙𝑖𝑗
[

(1 − 𝛼2) −𝛼𝛽 −𝛼𝛾

−𝛼𝛽 (1 − 𝛽2) −𝛽𝛾

−𝛼𝛾 −𝛽𝛾 (1 − 𝛾2)

] 4-68 
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The element stiffness matrix KO and the tangent geometric stiffness KG are; 

𝐊𝐎 = [
𝐤𝐎 −𝐤𝐎

−𝐤𝐎 𝐤𝐎
] 4-69 

𝐊𝐆 = [
𝐤𝐆 −𝐤𝐆

−𝐤𝐆 𝐤𝐆
] 4-70 

The tangent stiffness equation for the truss element could be shown as the following 

equation. 

𝛿 [
𝐃𝑖

𝐃𝑗
] = {[

𝐤𝐆 −𝐤𝐆

−𝐤𝐆 𝐤𝐆
] + [

𝐤𝐎 −𝐤𝐎

−𝐤𝐎 𝐤𝐎
]} [

𝛿𝐮𝑖

𝛿𝐮𝑗
] 4-71 

Eq. 4-71 could also be expressed as; 

𝛿𝐃 = (𝐊𝐎 + 𝐊𝐆)𝛿𝐮 4-72 

 

4.4 Comparison of FDM and measure-potential element with virtual 

stiffness 

 

Table 4.1: Comparison of axial line element by both methods 

Subject FDM 
Measure-potential 

element 

Designation for power of 

element length 
1stdegree Any degree 

Structural analysis Linear Nonlinear 

The process of obtaining 

the ratio between force 

density 

Nonlinear calculation Unnecessary 

 

Table 4.1 shows the comparison of the two different approaches for form-finding of 

tensegrity structure; one is by using FDM, and the other is by using the measure-

potential element in TSM. In FDM, the force density that divided axial forces by the 

element length is defined as constant. Therefore, when the measure potential element is 

defined as that the axial forces are proportionate to element length, both approach 

becomes the same linear procedure. In FDM, however, the calculation of feasible force 

density ratio among all the elements using nonlinear equations is required to find a 

feasible shape. The condition of feasible force density ratio requires that rank deficiency 

of the connectivity matrix becomes more than 4.  Therefore, the accuracy of FDM may 

depend on the nonlinear process provided by the eigenvalue analysis or the dynamic 
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relaxation.  

In contrast, the measure-potential element, which used in the TSM algorithm, can 

designate freely its coefficients relating the axial force and the power value of element 

length. This is based on the versatility of TSM that can obtain strict equilibrium 

solutions adjusting to defined element behavior. Therefore, iterational process becomes 

common between the measure-potential elements and the actual elements with real 

material. 

 

4.5 Path finding method 

 

The equilibrium equation for nonlinear Newton potential could be expressed as the 

following, 

𝐹(𝐮, 𝑓) = 𝟎    4-73 

Here, the function F(u,f) comprises of a nonlinear function of vectors which includes u, 

the n-th column of displacement vector and f as the load parameter. The equilibrium 

equation indicated in Eq. 4-73 shows that with n amount of displacement and one load 

parameter, the total of unknown parameter becomes n+1, which exceeds the total of n 

column value. Therefore, in order to solve Eq. 4-73, some requirement had to be applied 

to overcome this excessive value. In order to execute a path finding process, there are 

three methods that can be classified which is load control method, displacement control 

method and arc length method. 

By the addition of an extra requirement, solution that satisfies the equilibrium equation 

could be achieved by repeating the mentioned process by interpolating the load–

displacement curve for a specific equilibrium state. This process could obtain an 

equilibrium path numerically which fulfils the objective of the path finding process. The 

procedure to obtain an equilibrium path could be made by the following procedures;  

1) The derivation of tangent stiffness matrix and equilibrium equation.  

2) Obtaining equilibrium path from an equilibrium phase.  

3) Investigate the stability or irregularity of the equilibrium phase position. 

In this study, the conversion of load and displacement control is the main method used 

and is executed depending on the tangent value achieved form the load–displacement 

curve. If the current equilibrium phase reaches nearby the load extremum, displacement 

control is executed and if it surpasses the extremum, then load control is switched back 

and this procedure is repeated continuously all along the path finding analysis.  
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4.6 Bifurcation path pursuing procedure 

 

In a common path finding analysis, while pursuing the primary path, there are many 

bifurcation points connecting to secondary path which are neglected during the analysis 

[8]. A point of bifurcation also should be considered in order to examine and classif y 

morphologies that may emerge. As the secondary path is pursued, irregularity or 

unexpected structural morphology could be discovered. The possibility of a bifurcation 

point existence could be determined when the number of negative eigenvalue of the 

tangent stiffness matrix changes; either increases or decreases, and some modification 

had to be done in order to pursue the secondary path. In this study, when an equilibrium 

state reaches a point where the number of negative eigenvalue changes, the procedure 

to pursue a bifurcation point will be stated as follows; 

1) Setting connectivity; coefficients for element behaviour C, n in Eq. 4-46 and 

extensional stiffness EA in Eq. 4-54; stable support conditions; and primary 

positions of nodes. 

2) Execution of first iteration phase with external forces on control points: Depending 

on conditions of primary positions in 1) and magnitude of external forces, different 

solution on different path may be obtained. Therefore, multiple numbers of paths 

which are independent to each other can be found without processing bifurcation 

analysis. The obtained solution can be adopted as the primary shape for the path  

finding. 

3) Searching the path by incremental analysis from the starting point of the solution 

that is obtained in 1): The loading control is adopted when the tangent value is small. 

The control method is switched appropriately on the path finding process. 

4) Specifying the bifurcation point and switching into bifurcation path: The number of 

negative eigenvalue of the tangent stiffness matrix is monitored in every 

incremental step during the path finding process. When the number changes along 

the path, it is considered as the bifurcation point (except where it is the extremum). 

Furthermore, the bifurcation paths are found by switching method to add the small 

disturbance displacements calculated by the eigenvector.  This is a general type of 

bifurcation analysis, for example, as mentioned in [8]. 
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4.7 Numerical example 

 

4.7.1 The shape determination of tensegrity tower under gravitational 

influence 

A full scale experiment is not comparable when validating the analys is accuracy of 

form-finding with the application of element with virtual stiffness. Therefore, the 

author's measure-potential element is evaluating its availability by comparison with the 

general procedure of FDM. 

 

 

(a) Plan view 

 

(b) Side view (c) Bird’s eye view 

Figure 4.7: Five storey tensegrity tower 

As mentioned earlier in this chapter, tensegrity structure could produce numerous 

amount of equilibrium shapes, even with the same initial condition or configuration (the 

coefficient C and n in Eq. 4-46, loading condition and connectivity). The total number 

of equilibrium shapes will increase exponentially with the increment of the total nodes 

and elements, especially for a vast tensegrity model which has a large amount of nodes 

with high degree of freedom, the equilibrium solution would be endless (infinity).  

In this subsection, the connectivity of the tower consists of four compressional 

members and twelve tensional members for each storey. The non-stressed length of the 

compressional member is 1[m] each. In addition, the tower is formed by a square shaped 

simplex tensegrity for each storey. Fig. 4.7(b) shows the side view of the tower where 

the elements are piled up accordingly, and it also shows the connectivity of each nodes. 

This is the initial stage for the analysis where the boundary condition for all nodes are 

free nodes and nodal force is zero. Fig. 4.7(c) shows the equilibrium shape for the 

tensegrity tower. Here, the tower is given a stable support condition for the four nodes 
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at the bottom part of the lowest layer of the tensegrity tower.  Here, the tower is given a 

stable support condition for the four nodes at the bottom part of the lowest layer of the 

tensegrity tower. A value of 0.3[N] of load in vertical direction is applied on every node 

and is constant along the analysis (is considered to be equivalent to the self -weight of 

the structure), to simulate a form-finding of tensegrity tower under gravitational 

influence. The objective of this analysis is to obtain the equilibrium solution which is 

equivalent to Snelson’s tower [11]. In addition, the extensional stiffness for the strut is 

EA=2109[N], for the tensional members, the C is set as 10 and it also applies a 2nd 

degree of axial line element. 

Firstly, the influence of initial configurations on equilibrium solutions of the 

tensegrity tower is investigated, which the geometrically nonlinear analysis has been 

done exhaustively. The angle of struts is set from θ=0 to θ=90 increased to 3 of each 

increment step, and the distance between layers is set between 0[m] to 9[m] increased 

to 0.3[m] gradually. The total number of combination of these different configurations 

is 900. These 900 different primary positions of nodes produce 285 different equilibrium 

solutions corresponding to one mechanical condition. Fig. 4.8 shows the total potential 

energy  of an equilibrium solution which also could be shown in the following 

equation. 

𝛱 = 𝑈 + 𝑃 − 𝑉 4-74 

Where U is the strain energy for the strut, P is the axial line element potential and 

V is the loss potential of the external force. The relation between total potential energy 

and the incidence rate of equilibrium solution is checked, and the rate which is more 

than 1% is shown in this analysis. Furthermore, Fig. 4.9 shows the side view of the 

morphology of equilibrium solutions with the incidence rates which are more than 2%.  

 

Figure 4.8: The relation of incidence rate and total potential energy for equilibrium 

solutions 
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In Fig. 4.9, the boundary condition of each nodes are marked as; the blue nodes are 

restrained in vertical direction, the pink nodes are perfectly fixed and the green nodes 

are the control nodes which are grouped together and displaced with the same amount 

for each steps. These green nodes will be on the crown position when the target solution 

is obtained. Based on the analyzed result, when the total potential energy of the 

tensegrity tower was comparatively high, the highest incidence rate (H) occurred, which 

was 9.3%. However, when the total potential energy was the lowest, as exhibited by 

solution (A), the incidence rate was 4.0%, which was the third highest rate between all 

solutions.  

From the result, although the potential energy is low, the solution is not necessarily 

prominent, thus, the correlative relation between energy and incidence rate could not be 

  

Solution A Solution B 

Total potential energy : 135.45[J] Total potential energy : 137.22[J] 

Height : 4.33[m] Height : 2.85[m] 

Incidence Rate : 4.0% Incidence Rate : 2.3% 

  

Solution C Solution D 

Total potential energy : 180.59[J] Total potential energy : 192.09[J] 

Height : -3.19[m] Height : 0.59[m] 

Incidence Rate : 4.4% Incidence Rate : 2.3% 
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Solution E Solution F 

Total potential energy : 193.56[J] Total potential energy : 200.72[J] 

Height : -3.59[m] Height : -0.84[m] 

Incidence Rate : 2.2% Incidence Rate : 3.9% 

 
 

Solution G Solution H 

Total potential energy :  204.04[J] Total potential energy : 205.32[J] 

Height : 0.66[m] Height : -0.28[m] 

Incidence Rate : 2.5% Incidence Rate : 9.3% 

Figure 4.9: Deformation diagram of tensegrity tower under gravitational influence  

defined precisely. Here, the proportion of morphology, symmetricity or shape-

continuity are more likely to have much higher correlative relation, rather than the 

relation of incidence rate and potential energy. However, the incidence rate for the target 

solution, (C) (when total potential energy is 180.59[J]) is 4.4%, which shows that with 

the adjustment of initial configuration randomly, the heuristic search procedure is 

proven to be inefficient. 

In order to pursue the target solution more efficiently, several techniques could be 

considered which are; 

1) Applying compulsory displacement to the nodes that are restricted by boundary 

condition and the control nodes on the crown section. 

2) The control node is displaced downwards until sign of inversion occurs for the value 

of the reaction force. 

3) Release the boundary condition of the control nodes.  

All of the above mentioned techniques could be considered in order to pursue the target 

solution as shown in Fig. 4.9 (C). 
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4.7.2 Equilibrium path finding of tensegrity tower 

 

As shown in subsection 4.7.1, when compulsory displacement is applied on the control 

nodes gradually, the equilibrium solutions with “zero reaction forces” can be recognized 

to be in self-reliant condition. While pursuing the solution, if small amount of increment 

is applied, the snap-through phenomena does not occur and the tensegrity tower will 

deform continuously. In this analysis, the system of “truss and axial line elements” 

produces the equilibrium paths which may be an analogy to of the elastic buckling of 

actual structures. According to the above consideration, in this subsection, two cases of 

path finding procedure are examined as follows; one is the case that the constant nodal 

forces are applied on all nodes in the vertical downwards direction to simulate the 

behavior under gravitational influence. And the other is the case of the behavior without 

gravity in order to observe equilibrium solution of pure tensegrity. 

 
 

(a) Plan view (b) Side view 

Figure 4.10: The initial configuration for a double storey tensegrity tower  

For this analysis, a double storey tensegrity tower (Fig. 4.10) is applied for the form-

finding analysis. The extensional stiffness for the strut is EA=2109[N], for the 

tensional members, the C is set as 10 and it also applies a 2nd degree of axial line element. 

In Fig. 4.10, the support condition at the bottom part of the tower are set as fixed in all 

direction for the pink node and vertically restrained for the blue nodes, while the nodes 

on the crown part are the control nodes. The other nodes of the rest of the tensegrity 

tower are set as free nodes. Path finding is pursued as mentioned in section 4.5. The 

procedure for path finding is classified into two control methods [12], which are load 

control when the tangent of the load–displacement curve is high, and displacement 

control when the tangent of the load–displacement curve is low; and both methods are 

freely to be switched while monitoring the tangent of the curve. In addition, the 

compulsory displacements subjected on the control nodes are equal throughout the 

calculation and only symmetrical solution is searched for this analysis. Bifurcation path 

and side toppling of the tower will be discussed in subsection 4.7.5. 
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4.7.3 Equilibrium solution under gravitational influence 

 

All nodes are subjected equally with 1[N] of nodal force in vertical downward direction. 

The initial configuration for this tower, the angle of struts is set from θ=0 to θ=90 

increased to 3 of each increment step, and the distance between layers is set between 

0[m] to 9[m] increased to 0.3[m] gradually. The total number of different conditions for 

primary positions are also 900, and 20 equilibrium shapes are obtained. The solutions 

with symmetry shapes are extracted from the obtained solutions (the total of 20) as 

shown in Fig. 4.14, in which the total potential energy is exhibited from low order which 

are marked as (A) to (N), and each of the graphics show the side view and plan view. 

When examined the incidence rate of the solutions in Fig. 4.14 similarly to the previous 

procedure, the solution (I) has the highest incidence rate which is 50.6%, and also 

exhibits a well-proportioned morphology. Therefore, the solution (I) is the predominant 

morphology, even if this tensegrity tower has a comparatively low degree of freedom. 

 

 

 
 

Plan view Side view Plan view Side view 

Solution (A) Solution (B) 

Potential energy : 50.24[J] Potential energy : 56.18[J] 

Height : 1.70[m] Height : 0.21[m] 

Incidence rate : 2.7% Incidence rate : 4.8% 

 

 

 

 

Plan view Side view Plan view Side view 

Solution (C) Solution (D) 

Potential energy : 57.73[J] Potential energy : 58.09[J] 

Height : 1.90[m] Height : 1.93[m] 

Incidence rate : 0.2% Incidence rate : 0.6% 
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Plan view Side view Plan view Side view 

Solution (E) Solution (F) 

Potential energy : 61.90[J] Potential energy : 64.63[J] 

Height : 0.81[m] Height : 0.28[m] 

Incidence rate : 1.9% Incidence rate : 0.1% 

    

Plan view Side view Plan view Side view 

Solution (G) Solution (H) 

Potential energy : 67.82[J] Potential energy : 69.20[J] 

Height : 0.24[m] Height : 0.61[m] 

Incidence rate : 0.3% Incidence rate : 1.7% 

 
 

  

Plan view Side view Plan view Side view 

Solution (I) Solution (J) 

Potential energy : 73.67[J] Potential energy : 74.95[J] 

Height : -1.21[m] Height : -0.82[m] 

Incidence rate : 50.6% Incidence rate : 4.9% 

    

Plan view Side view Plan view Side view 

Solution (K) Solution (L) 

Potential energy : 78.89[J] Potential energy : 79.76[J] 

Height : -0.57[m] Height : -0.23[m] 

Incidence rate : 3.2% Incidence rate : 17.3% 
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Plan view Side view Plan view Side view 

Solution (M) Solution (N) 

Potential energy : 85.85[J] Potential energy : 86.58[J] 

Height : -1.62[m] Height : -1.63[m] 

Incidence rate : 8.1% Incidence rate : 0.1% 

Figure 4.11: Equilibrium shapes for the double storey tensegrity tower 

 

If horizontal instability such as side-toppled morphology is excluded, it is suggested 

that the morphology (solution (I)) has a high stability rate where elements in between 

the storey support against the gravitational force by tensional forces. However, the 

solution does not have the lowest total potential energy compared to the other solutions, 

and the correlative relation between incidence rate and potential energy also could not 

be proven. 

 

Fig 4.12: The equilibrium path that contains solution (A), (B), (E), (I) and (J) 

 

As shown in Fig 4.12, starting from solution (I) (where the total potential energy is 

=73.67[J]), the path finding is started by using load control in both plus and minus 

directions. The y-axis represents the nodal force, where a load of W[N] is subjected on 

the control node in the vertical direction, and simultaneously all nodes are subjected 
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with 1[N] of nodal force in the same direction. The x-axis represents the distance 

between the control node and the fixed nodes in the vertical direction and here, the y-

direction downwards is plus direction. In the path, other than solution (I), there exist 

other equilibrium solutions when W=0[N] which are (J), (B), (E) and (A). Since all of 

the solutions are in the same path, the group seems to have a relatively high incidence 

rate. 

 

Figure 4.13: The equilibrium path that contains solution (G), (H), (K) and (L) 

 

Figure 4.14: The equilibrium path that contains solution (C) and (D) 

 

The solution (L) has the second highest incidence rate of 17.3%, with total potential 

energy =79.76[J]. As shown in Fig. 4.13, when the path is pursued from solution (L), 
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the path exhibits a “∞” shape circulated path, and another three equilibrium shapes were 

obtained which are marked as (G), (H) and (K). When pursuing solution (C), solution 

(D) was obtained and the path forms a loop shape as shown in Fig. 4.14.  

 

Figure 4.15: The equilibrium path that contains solution (M) and (N) 

 

Figure 4.16: The equilibrium path that contains solution (F) , (F’) and (F”) 

 

Moreover, the path that contains solution (M) and (N) also forms a loop shape path, as 

shown in Fig. 4.15. Here, solution (C) and (M), (D) and (N) show a vertically 

symmetrical shape mutually to each other. Fig. 4.16 shows the path which contains 

solution (F), and while pursuing the path, solution (F’) and (F”) were obtained which 

did not appear when the path was pursued exhaustively. Fig. 4.17 shows the total path 

obtained in this analysis. 
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Figure 4.17: The total equilibrium paths for double storey tensegrity tower under 

gravitational influence 

 

A total of five independent paths were achieved with multiple equilibrium shapes 

(when W=0[N]) and each shape was characterized in each path. The classification of 

symmetrical shapes consistency should be verified mathematically.  

 

4.7.4 Self-equilibrium shapes for pure tensegrity 

 

In this analysis, the element initial configuration, connectivity, boundary condition, 

analysis condition and algorithm, are the same as stated in subsection 4.7.5. However, 

nodal forces are not applied on every node except the control node. Based on these 

analysis conditions, the self-equilibrium shapes (when W=0[N]) of pure tensegrity are 

investigated. In this case, within the 900 cases of primary positions which are searched 

exhaustively, there are only 6 of self-equilibrium shapes which were obtained in the two 

paths as shown in Fig. 4.18. 

Here, when the load and displacement are zero, there are two different shapes 

existing with different morphologies where all nodes are in the same plane level with 

the fixed nodes. The gravitational influence is neglected in this analysis, and both paths 

are perfectly symmetrical sideways (if the point of origin is the center axis). Compared 

to the paths in Fig. 4.17 where gravitational influence is considered, both paths in this 

analysis perfectly went through the point of origin while obtaining a symmetrical shape, 

and the total number of extremum point is comparatively less than the previous analysis, 
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which also exhibits a simple path behavior. The gravitational influence may affect the 

complexity of the equilibrium paths obtained from the numerical analysis. This also 

shows the difficulty in the application of the structure. 

 

 

 
   

  

Solution (A) Solution (B) Solution (C) Solution (D) Solution (E) Solution (F) 

Figure 4.18: Equilibrium paths and self-equilibrium solutions for double storey pure 

tensegrity tower 

 

4.7.5 Double storey tensegrity tower with a single control node 

 

For the next numerical analysis, a double storey tensegrity tower is also applied. 

The connectivity between struts and axial line elements are shown in Fig. 4.19 (a) and 

(b), where struts and axial line elements are linked together to form a circular shape and 

connected to a middle node for upper and lower part for each level . Also, the middle 

nodes are connected vertically between the upper and lower part for each storey. 

Meanwhile, Fig. 4.19 (c) is the deformational shape of the tower after subjected to a 

particular amount of load. 

The tensegrity tower is made up of 24 nodes, 10 struts and 62 axial line elements. 

An initial load with the capacity of 2[kN] in vertical direction is subjected on the middle 

node of the upper level of the tower (control point)  and the load–displacement control 

is manoeuvred properly for this path finding analysis. The support condition at the 
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bottom part of the tower are set as fixed at all direction for node (A) and vertically 

restrained for the rest of the nodes (B), (C), (D) and (E). All other nodes on the rest of 

the tower are set as free node. When the control point is subjected to 2[kN] of initial 

load, the tower deforms to an initial shape and unbalanced force is converged in 13 steps. 

From here, load or displacement control is executed with incremental value of 0.02[kN] 

of load and 0.02[m] of displacement for each step. 

 

 

 

(a) Bird’s eye view 

 

(b) Plan view (c) 3D view 

Figure 4.19: Initial configuration, connectivity and equilibrium shape of double 

storey tensegrity tower 

 

 

Figure 4.20: Main paths of the tensegrity tower 
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Plan view Plan view Plan view 

   

3D view 3D view 3D view 

Solution (A) Solution (B) Solution (C) 

   

Plan view Plan view Plan view 

 

 

 

3D view 3D view 3D view 

Solution (D) Solution (E) Solution (F) 

   

Plan view Plan view Plan view 

   

3D view 3D view 3D view 

Solution (G) Solution (H) Solution (I) 

Figure 4.21: Equilibrium solutions obtained in the main path 
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In this analysis, variations of equilibrium shapes were successfully achieved from 

the simulation, and the location of each shapes are marked from (A) to (I), as shown in 

Fig. 4.20. The equilibrium shapes are schematically and orderly displayed in Fig. 4.21, 

showing the plan and 3D views for each morphology. Generally, a relatively sideways 

symmetrical path has also been achieved in this analysis. As shown in Fig. 4.20 and Fig. 

4.21, equilibrium solutions (A), (B), (C) and (D) are the inverted projection of the (F), 

(G), (H) and (I) solutions and are diametrically symmetrical. Solution (E) is a totally 

flat equilibrium solution where the control node is levelled to the restrained nodes.  

 

 
Figure 4.22: Bifurcation points obtained from the main path 

 

In this analysis, a total of four bifurcation points were achieved from the main path and 

marked as point ① to ④  as shown in Fig. 4.22. Also, the main path exhibits a 

symmetrical behavior, and the incremental step has been done in a very small amount 

gradually, and the splitting point of two individual bifurcation paths which were 

adjacent to the bifurcation point were observed. The bifurcation path was pursued 

starting from point ①. As shown in Fig. 4.23, when a certain amount of eigenvector 

was applied at all nodes when reaching the bifurcation point, the tensegrity tower starts 

to topple sideways and the deformation behavior has been observed. The bypass was 

marked as ①-a which connects point ①’-a, and along this bypass, the total of three 

equilibrium shapes were obtained and marked as solution (J), (K) and (L) in Fig. 4.23, 

and the irregular equilibrium shapes are shown in Fig. 4.24.  
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Figure 4.23: Bypass that connects ①-a and ①’-a 

   

Plan view Plan view Plan view 

 

 

 

3D view 3D view 3D view 

Solution (J) Solution (K) Solution (L) 

Figure 4.24: Equilibrium solutions obtained from bypass ①–a to ①’-a 

 

Also, from the same point ①, the strut of the tensegrity tower elongate until it becomes 

a single redundant line if the load is applied continuously for bifurcation path ①-b and 

① '-b, as shown in Fig. 4.25. When pursuing the bifurcation point ② , only one 

equilibrium shape was obtained from the bypass which connects point ② and point 

②’. As shown in Fig. 4.26, the bypass passes the point of origin and the equilibrium 
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shape, marked as solution (M) shows an irregular flat shape, and also exhibit the 

decrement of symmetricity. 

 

Figure 4.25: The bifurcation paths from bifurcation point ①-b and ①’-b 

 

 
 

Plan view 3D view 

Solution (M) 

Figure 4.26: The bypass that connects point ② to ②’ 

Further, when pursuing the bifurcation point ③-a and point ④-a, two relatively 
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identical bifurcation path emerged, as shown in Fig. 4.27. From point ③-a, a bypass 

that connects point ④’-a, and an equilibrium shape was obtained (solution (N)). While 

for point ④-a, the bypass connects point ③’-a, and an equilibrium shape was also 

obtained and marked as solution (O). Both equilibrium solutions achieved from this 

bifurcation paths also shows the loss of symmetricity. However, both solutions are 

symmetrical vertically, as shown in the 3D deformation diagram in the Fig. 4.27.  

 

 

  

Plan view Plan view 

  

3D view 3D view 

Solution (N) Solution (O) 

Figure 4.27: The bypass that connects point ③-a to ④’-a and ④’-a to ③’-a 

 

Furthermore, when pursuing the same points, a bypass that connects point ③-b and 

point ④’-b emerges and obtained solution (P), while for point ④, the bifurcation path 
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produced two equilibrium shapes (solution (Q) and (R)), and the path becomes linear 

when it passes point ①, as shown in Fig. 4.28.  

 

 

  
 

Plan view Plan view Plan view 

 
  

3D view 3D view 3D view 

Solution (P) Solution (Q) Solution (R) 

Figure 4.28: The bypass that connects point ③-b to ④’-b, from point ④-b and 

equilibrium solutions obtained from the paths 

 

Fig. 4.29 shows the summary of the total paths that were obtained in this analysis, 

where the total of 18 self-equilibrium shapes were achieved. The bifurcation paths that 

splits from the main paths are independent and show individual characteristics. Also, 

for this analysis, a rather stiffer tensegrity tower has been applied, which has the total 
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of 72 axial line elements and 10 struts were applied to the tensegrity tower. However, 

the main and bifurcation paths were successfully obtained for this analysis, while 

achieving symmetrical and irregular equilibrium shapes throughout the analysis.  

 

 

Figure 4.29: The total paths for the double storey tensegrity tower with a single 

control node 

 

4.8 Discussion 

 

Based on the findings from the numerical analyses, the characteristics of equilibrium 

solutions of tensegrity tower have become more evident. A rational procedure for form-

finding have been developed by the application of “the measure-potential elements” for 

the tensional members and of “the truss elements” for compressional members. The 

TSM makes all solutions perfectly satisfy the “perfect equilibrium”, even if in case of 

many elements and/or complex element connectivity.  

In 4.7.1, the relation between incidence rate and the total potential energy for the 

tensegrity tower has been studied in order to examine the mechanical background of the 

appearance of each equilibrium solution. This suggests that the form-finding procedure 

by the geometrically nonlinear analysis may have a characteristic of chaos, so it is 

difficult to predict the shape of the solution only from initial conditions. On the other 

hand, it could be concluded that the proportion of morphology, symmetricity or shape-

continuity are more likely to have much higher correlative relation, compared to the 
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relation between incidence rate and the potential energy.  In addition, the target solution 

could be obtained easily and definitely, if an initial geometry can be set relatively close 

to the target, by applying compulsory displacement gradually.  

Based on the knowledge mentioned above, path finding analysis is executed to ensure 

the positions of all the equilibrium solutions on the “load–displacement curves” 

including bifurcation paths, as shown in 4.7.2, there were two analyses which were 

executed for tensegrity tower. Firstly, a double storey tensegrity tower was applied to 

execute the form-finding analysis in 4.7.3. Here, the aim is to extract symmetrical 

equilibrium solution from the curve, a total of 16 equilibrium shapes were successfully 

obtained from the total of 5 independent main paths. Within the equilibrium solutions, 

solution (I) shows the highest incidence rate (50.6%) with the potential energy of 

73.67[J], which is not the lowest compared to other obtained solutions, but has the most 

well-proportioned shape. This also shows that the correlative relation between incidence 

rate and the total potential energy could not be defined clearly. Using the same tensegrity 

tower model, another analysis was executed to examine the deformation behavior 

without gravitational influence as shown in subsection 4.7.4. By neglecting the 

gravitational influence, a pair of perfectly symmetrically sideways paths have been 

achieved, although the total number of self-equilibrium shapes is significantly fewer 

than the case of gravitational influence (total of 6 self-equilibrium shapes). 

In the subsequent form-finding analysis in subsection 4.7.5, a double storey tensegrity 

tower with a single control node has been applied for determining all possible paths that 

may exist. In the analysis, a total of 9 symmetrical shapes were obtained from the main 

paths, and the existence of 4 bifurcation points were confirmed on the curve  by 

examination of eigenvector of the tangent stiffness matrix. In this analysis, a total of 18 

irregular equilibrium shapes have been confirmed, while all possible paths have been 

extracted. Each obtained bifurcation paths have its own identity, whether act as a bypass 

or elongates until it becomes a linear line. Here, the equilibrium shapes, symmetrical or 

irregular could be classified by the total number of negative eigenvalue. By examining 

the behavior of each shape, a better form-finding procedure could be proposed for future 

studies. 

The application of measure-potential elements and truss elements in form-finding of 

tensegrity structure by TSM has been shown to be effective. If the determined shapes 

are substituted by element with real stiffness, a simulation of deformational behavior 

for tensegrity tower with extremely large displacement could be realized. When 

executing the simulation, the consideration of contact between elements should also be 
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a main focus. As shown in all the analyses of this chapter, the deformation of tensegrity 

tower is very random and unpredictable, and the probability of contact between elements 

in tensegrity are very high. Therefore, a much complex consideration should be made 

for the case, which may lead to the simulation for a real behavior of tensegrity structure.  
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List of symbols 
 

Symbol  Description 

Q : Force density matrix 

C : Connectivity matrix 

x : Nodal coordinate vector 

D : Nodal force vector 

J : Element edge force–nodal force transformation matrix 

S : Element edge force vector 

u : Nodal coordinate vector 

X : Force vector 

L : Element length vector 

𝐔̅ : Nodal force vector in self-equilibrium state 

s : Element measurement vector 

α : Cosine vector 

𝐊T
L  : Element stiffness matrix for axial line element 

e : Unit matrix 

KG : Tangent geometric stiffness matrix 

KO : Element stiffness matrix 

fix : Nodal force 

qh : Tension members that form the upper and lower triangles  

qv : Tension members that connect upper and lower nodes 

qc : Compressional members that connect upper and lower nodes 

q : Force density ratio 

u : Nodal coordinate in u-direction 

v : Nodal coordinate in v-direction 

w : Nodal coordinate in w-direction 

N : Axial force 

l : Element length 

α : Cosine vector in u-direction 

β : Cosine vector in v-direction 

γ : Cosine vector in w-direction 

h : Rank of matrix 

r : Rank deficiency 
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List of symbols 
 

Symbol  Description 

P : Element measure potential 

C : Element force coefficient 

n : Element force multiplier 

i : The i edge of an element 

j : The j edge of an element 

X : Force component in x-direction 

Y : Force component in y-direction 

Z : Force component in z-direction 

x : Nodal coordinate in x-direction 

y : Nodal coordinate in y-direction 

z : Nodal coordinate in z-direction 

l0ij : Non-stressed element length 

f : Variable function of load and displacement control 
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Chapter 5 

Frictionless Contact Analysis Comprising Axial Force Element 

and Frame Element with Large Displacement 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1 Introduction 

 

When performing a deformational analysis for tensegrity, the nonlinearity that may 

occur is not only caused by the geometrical characteristics of the element, but also by 

the contact problem amongst elements or nodes. Contact problem is a complex nonlinear 

case and it is important to consider how to express the phenomena with the application 

of digitalized data. There are four types of contact phenomena that are adoptable, which 

are node–surface contact, node–element contact, contact between nodes and contact 

between surfaces. 
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In this chapter, the author will perform two cases of contact analysis. One is contact 

between elements and the other is node–element contact. For the case of contact between 

elements, a three dimensional contact analysis axial force element is applied, and the 

geometrically nonlinear algorithm for contact between elements is developed  [1]. The 

aim is to produce the algorithm by using non-compressible element to simulate cables 

which constitute tensegrity. In this analysis, a cable element can involve multiple sliding 

nodes which simulate contact points between elements. Here, the contact judgment is 

determined when element passes through each other and the judgment is defined by a 

simple inner product and scalar triple product for the contacted elements. In addition, 

the reaction force produced by the contact node is defined as the contact force  and in 

case of sign inversion of the contact force, the contact judgment is released and the 

elements are treated as a non-contact element or normal element. 

For the other case, a node–element contact analysis is also presented in this chapter. 

A plane frame element is applied for the analysis, where the element is formed by two 

edges and a contact node. Same as the contact case between tensional elements, the 

contact judgment is performed by the inner product for node–element contact. When 

sign inversion of the contact force happens, the node is released and the element is 

treated as a common plane frame element. 

A common problem occurs when a contact node slides and is close to an element edge. 

As explained in chapter 1, the unbalanced force is unable to be converged due to the 

limitation in boundary condition. It makes the element force stiffness matrix singular 

that the distance between a contact node and an element edge approach to zero. 

Therefore, it leads to the divergence of the unbalanced force.  

To solve this problem, the shear deformation in Timoshenko beam is considered, as a 

countermeasure, in the element force equation. By introducing the shear deformation to 

the element force equation, the “critical area” [2] where the unbalanced force hardly 

converges can be made significantly less than those of the Euler–Bernoulli beam, as 

shown in several examples in this chapter. 

The “passing through” of a contact node is also studied, by a simple algorithm for the 

inner and outer vector product, which produced stable convergence results, including at 

the tip of the element. In addition, the algorithm for the “passing through” of the contact 

node to the next element was easier to implement and much more accurate at all the 

edges of the elements. In a study on frictionless node–element contact [3], the author 

proposed an algorithm that combines a contact element with the next non-contact 

element that the contact node is about to “passing through”. The equilibrium state was 
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successfully achieved by this technique, although its reliability is low due to the change 

of mesh configuration, which affects the entire scheme. In another study by Tsutsui et 

al. [2], an element force equation based on a cantilever beam coordinate was used to 

improve the “passing through”. The introduced equation enabled the convergence of the 

unbalanced force when the contact node was relatively close to the edge of the 

element—a configuration that had not been previously achieved. Furthermore, the 

findings of this study would facilitate further studies on node–element contact because 

its definitions and analytical results are precise, reliable, and very robust.  

 

5.2 The derivation of tangent stiffness equation for three dimensional 

contact case comprising axial force elements 

 

 

Figure 5.1: Equilibrium condition of a contact element 

 

Here, the tangent stiffness equation for a three dimensional axial force element 

(truss element) will be derived. The tangent stiffness equation could be obtained by 

differentiating the equilibrium equation as shown in Eq. 2-3 and Eq. 2-4. The derivation 

is similar to what was stated in chapter 2. Here, Fig. 5.1 shows a contact element 

consisting of three nodes, and the relation between element edges i and j and the contact 

node c could be shown in Eq. 5-1 to 5-4. 

𝐃𝑖𝑐 = [𝑈𝑖 𝑉𝑖 𝑊𝑖 𝑈𝑐 𝑉𝑐 𝑊𝑐]
T 5-1 

𝛂𝑖𝑐 = [−𝛼𝑖𝑐 −𝛽𝑖𝑐 −𝛾𝑖𝑐 𝛼𝑖𝑐 𝛽𝑖𝑐 𝛾𝑖𝑐]
T 5-2 

𝐃𝑐𝑗 = [𝑈𝑐 𝑉𝑐 𝑊𝑐 𝑈𝑗 𝑉𝑗 𝑊𝑗]T 5-3 

𝛂𝑐𝑗 = [−𝛼𝑐𝑗 −𝛽𝑐𝑗 −𝛾𝑐𝑗 𝛼𝑐𝑗 𝛽𝑐𝑗 𝛾𝑐𝑗]T 5-4 

In this case, the contact node is considered as a sliding node, which exhibits the 

equivalent amount of axial force, of both sides of ic and cj section. In this case, the axial 
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force N according to the equilibrium condition is shown as Eq. 5-5 to Eq. 5-7. 

𝐃𝑖𝑐𝑗 = [𝑈𝑖 𝑉𝑖 𝑊𝑖 𝑈𝑐 𝑉𝑐 𝑊𝑐 𝑈𝑗 𝑉𝑗 𝑊𝑗]T 5-5 

𝛂𝑖𝑐𝑗 = [−𝛼𝑖𝑐 −𝛽𝑖𝑐 −𝛾𝑖𝑐 𝛼𝑖𝑐 − 𝛼𝑐𝑗 𝛽𝑖𝑐 − 𝛽𝑐𝑗 𝛾𝑖𝑐 − 𝛾𝑐𝑗 𝛼𝑐𝑗 𝛽𝑐𝑗 𝛾𝑐𝑗]T 5-6 

𝐃𝑖𝑐𝑗 = 𝛂𝑖𝑐𝑗 ∙ 𝑁 5-7 

By the differentiation of the equilibrium equation for the contact element, shown in Eq. 

5-7, the deformed quantity could be expressed as Eq. 5-8. 

𝛿𝐃𝑖𝑐𝑗 = 𝛿𝛂𝑖𝑐𝑗 ∙ 𝑁 + 𝛂𝑖𝑐𝑗 ∙ 𝛿𝑁 5-8 

The right side of the equation represents the fluctuation of nodal displacement vector 

δuicj. It is expressed as a linear equation and δN and δlij will be derived formally. The 

element force equation is also a linear equation, and the equation is formed by the 

Young’s modulus E, cross sectional area A and non-stressed length l0ij and could be 

expressed as; 

𝑁 =
EA

𝑙0𝑖𝑗
𝛿𝑙𝑖𝑗 5-9 

Here, the increment of the length δlij could be shown as; 

𝛿𝑙𝑖𝑗 = 𝛿𝑙𝑖𝑐 + 𝛿𝑙𝑐𝑗 5-10 

For the ic and cj section, the length increment could be shown as the following equations.  

𝛿𝑙𝑖𝑐 = 𝑢𝑖𝑐
2 + 𝑣𝑖𝑐

2 + 𝑤𝑖𝑐
2 5-11 

𝛿𝑙𝑐𝑗 = 𝑢𝑐𝑗
2 + 𝑣𝑐𝑗

2 + 𝑤𝑐𝑗
2 5-12 

By the differentiation of Eq. 5-11 and Eq. 5-12, while considering δuic=δuc-δui, δvic=δvc-

δvi, δwic=δwc-δwi, δucj=δuj-δuc, δvcj=δvj-δvc and δwcj=δwj-δwc, the length increment 

could be shown in a matrix form as shown in Eq. 5-13.  

𝛿𝑙𝑖𝑗 =

[
 
 
 
 
 
 
 
 
 

−𝛼𝑖𝑐

−𝛽𝑖𝑐

−𝛾𝑖𝑐

𝛼𝑖𝑐 − 𝛼𝑐𝑗

𝛽𝑖𝑐 − 𝛽𝑐𝑗

𝛾𝑖𝑐 − 𝛾𝑐𝑗

𝛼𝑐𝑗

𝛽𝑐𝑗

𝛾𝑐𝑗 ]
 
 
 
 
 
 
 
 
 
T

[
 
 
 
 
 
 
 
 
 
𝛿𝑢𝑖

𝛿𝑣𝑖

𝛿𝑤𝑖

𝛿𝑢𝑐

𝛿𝑣𝑐

𝛿𝑤𝑐

𝛿𝑢𝑗

𝛿𝑣𝑗

𝛿𝑤𝑗 ]
 
 
 
 
 
 
 
 
 

 5-13 

Here, by substituting Eq. 5-2 and Eq. 5-4 into Eq. 5-14, the element stiffness for ic and 

cj section could be shown as; 

𝛂𝑖𝑐𝑗 ∙ 𝛿𝑁 =
EA

𝑙0𝑖𝑗
𝛂𝑖𝑐𝑗 ∙ 𝛂𝑖𝑐𝑗

T ∙ 𝛿𝐮𝑖𝑐𝑗 5-14 

By substituting the differentiation of Eq. 5-2 and Eq. 5-4, the super positioning of the 

equations represents the geometric stiffness. The geometric stiffness for contact element 
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is shown in Eq. 5-15 and Eq. 5-16. 

 

5-15 

 

5-16 

Here, the geometric stiffness of the ic and cj section could simplified as; 

𝛿𝛂𝑖𝑐𝑗 ∙ 𝑁 = 𝛿𝛂𝑖𝑐 ∙ 𝑁 + 𝛿𝛂𝑐𝑗 ∙ 𝑁 5-17 

The tangent stiffness equation for the contact element could be formed by the super 

position of Eq. 5-14 to Eq. 5-17. 

 

5.3 Numerical Example 

 

In this section, several numerical analyses for contact between elements are 

presented. The numerical examples are based on the derivation of tangent geometric 

stiffness of three dimensional axial force elements in section 5.2. Also, these analyses 

will exhibit the behavior of axial force element in pre-contact and post contact mode 

where, a slipping node is/are created when the contact judgment is determined. In 

addition, a simple contact between two elements is showed in subsection 5.3.1, followed 

by multiple contact analysis in subsection 5.3.2. The analyses results are shown in 

graphical sketches accordingly. 

 

5.3.1 Contact between two axial force elements 

 

In this analysis, a simple contact between two elements is executed and the analysis 

model is shown in Fig. 5.2. In this analysis, the upper element A (marked in red color) 

is subjected with compulsory displacement in w direction (downwards) until it contacts 

with the lower element B (marked as black color). The nodes on element A and B are 

fixed in all direction. 

Symmetry

Symmetry
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Fig 5.2: Analysis model 

 

Initial data:    

Total nodes : 4 nodes 

Total elements : 2 elements 

Non-stressed element length A, lA : 2.000 [m] 

Non-stressed element length B, lB : 3.605 [m] 

Analysis condition:    

Cross sectional area, A : 1.010-4 [cm2] 

Tensional Young Modulus, E : 1.0108 [N/cm2] 

Compressional Young Modulus, E : 1.010-4 [N/cm2] 

Allowable unbalanced force : 1.010-8 [N] 

Compulsory displacement : 0.3 [m]/step 

 

Using the initial condition, the contact between elements analysis is performed and 

the results are shown in Fig. 5.3. The deformations of both elements are shown 

continuously from step (2) to (9). From the initial configuration, a compulsory 

displacement is applied on both edges of element A, vertically downwards with the 

increment of 0.3[m] per each step.  
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8 

  

9 

  
Figure 5.3: The convergence of unbalanced force and the deformation diagrams 

 

Here, contact occurs in step (2), and both elements start to deform slightly. By 

increasing the compulsory displacements, referring to the deformation graph, when 

contact occurs, a brown node (sliding node) is created, in order to simulate the contact 

behavior. By the creation of sliding node, the axial force between contact node and both 

element edges for A and B are the same, as the contact node behaves as a roller node 

arbitrary to the direction of both elements. The analysis also shows a stable and rapid 

convergence of unbalanced force, which also exhibits the superiority of TSM.  

Based on the analysis result, it could be concluded that the implementation of sliding 

node could simulate the behavior of contact between elements. This analysis is the 

simplest case of a frictionless contact between elements, and in this case, non-

compressible elements were applied. The analysis exhibits a simple contact between 

elements with large deformation, while the unbalanced force was rapidly converged less 

than ten iteration steps. 

 

5.3.2 Multiple contact analysis 

 

For the next numerical analysis, a mesh shape model is applied to simulate multiple 

contact analysis. Fig. 5.4(a), (b) and (c) show the initial configuration of the mesh shape 

model. In Fig 5.4(a), the blue nodes marked from (A) to (O) clock wisely is the 
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restrained in all direction nodes, while the red nodes are sliding nodes. The analysis 

conditions for this analysis are shown as the followings;  

 

 

 

(b) Side view 

 

(a) Bird’s eye view (c) Plan view 

Figure 5.4: Initial configuration of wire mesh 

 

Initial data:    

Total nodes : 32 nodes 

Total elements : 8 elements 

Non-stressed of all elements length  : 15.000 [m] 

Analysis condition:    

Cross sectional area, A : 1.010-4 [cm2] 

Tensional Young Modulus, E : 1.0108 [N/cm2] 

Compressional Young Modulus, E : 1.010-4 [N/cm2] 

Allowable unbalanced force : 1.010-6 [N] 

Compulsory displacement : 0.2 [m]/step 

 

 

Figure 5.5: Compulsory displacement on each nodes 
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As shown in Fig. 5.4(a) and Fig. 5.5, compulsory displacements are applied on all 

restrained nodes, where nodes marked with (A),(C),(F),(H),(J),(L),(M) and (O) are 

applied in vertically downwards direction with 0.2[m] per step. While for nodes marked 

with (B),(D),(E),(G),(I),(K),(N) and (P), the compulsory displacement are applied in 

vertically upwards direction with -0.2[m] per step. The deformation of the mesh is 

shown gradually in Fig. 5.6. Here, a specific deformation scheme is shown by three 

different angles which are in side view, plan view and bird’s eye view. 

 
 

 Side view Plan view Bird’s eye view 

Step (1) 

 
 

 Side view Plan view Bird’s eye view 

Step (2) 

 
 

 Side view Plan view Bird’s eye view 

Step (3) 

 
 

 Side view Plan view Bird’s eye view 

Step (4) 
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 Side view Plan view Bird’s eye view 

Step (5) 

 
 

 Side view Plan view Bird’s eye view 

Step (6) 

 
 

 Side view Plan view Bird’s eye view 

Step (7) 

 
 

 Side view Plan view Bird’s eye view 

Step (8) 

 
 

 Side view Plan view Bird’s eye view 

Step (9) 
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 Side view Plan view Bird’s eye view 

Step (10) 

 
 

 Side view Plan view Bird’s eye view 

Step (11) 

 
 

 Side view Plan view Bird’s eye view 

Step (12) 

 
 

 Side view Plan view Bird’s eye view 

Step (13) 

 
 

 Side view Plan view Bird’s eye view 

Step (14) 
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Side view Plan view Bird’s eye view 

Step (15) 

 
 

 

Side view Plan view Bird’s eye view 

Step (16) 

Figure 5.6: Deformation diagrams of the wire mesh 

 

As shown in Fig. 5.6(1), the mesh starts to deform as compulsory displacements were 

applied on each restrained nodes. The compulsory displacements were applied gradually 

until step (16), where all elements were in tensional mode and could be observed in 

every deformation diagrams. Similar to the analysis stated in 5.3.1, the unbalanced 

forces were also converged in less than ten iteration steps throughout the entire analysis, 

although the element configurations were more complex than the previous one. 

 

5.4 Contact of a plane frame element 

 

Here, the differential of equilibrium equation will be performed to derive an 

interaction process in order to obtain tangent geometric stiffness for contact phenomena. 

Figure 5.7 represents element force for contact problem in global coordinate system. 

For this beam coordinate, contact node influences the deformation of the element as the 

group of forces that includes edge moments and axial force.  Fig. 5.8 represents nodal 

forces for contact node and both element edges for a plane frame structure. For this case, 

rotation component for the contact node is neglected and the degree of freedom for the 

node is two. The edge force vector for this combination of element edge forces and 
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Figure 5.7: Element edge forces and contact force 

 

Figure 5.8: Nodal forces for contact node and both element edges 

 

contact force is expressed as; 

𝐒 = [𝑁 𝑀𝑖 𝑀𝑗 𝑌]T 5-18 

Here, similar to the procedure in chapter 1, node i is a pin fixed node, node j is 

movable in element axial direction or a roller node and node c is all fixed node. Fig. 

5.8 also shows the local coordinate system for beam element, the expression for nodal 

force that works on these nodes can be expressed as; 

𝐃 = [𝑈𝑖 𝑉𝑖 𝑍𝑖 𝑈𝑗 𝑉𝑗 𝑍𝑗 𝑈𝑐 𝑉𝑐]T 5-19 

According to Fig. 5.9, element length is l, length between i edge and contact node c 

is li and the length between j edge and contact node c is lj, and the cosine vector between 
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both edges is {α,β}, between i edge and contact node c is {αci,βci}, between j edge and 

contact node c is {αjc,βjc}. The equilibrium equation between element force vector and 

nodal force vector can be expressed in the matrix form. 

 

 

Figure 5.9: Element length, and length between contact node and both edges  

[
 
 
 
 
 
 
 
 
𝑈𝑖

𝑉𝑖

𝑍𝑖

𝑈𝑗

𝑉𝑗

𝑍𝑗

𝑈𝑐

𝑉𝑐 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 −𝛼 −
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−
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𝑙𝑗

−𝛽
𝛼
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𝛼

𝑙
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𝛼

𝑙
𝑙𝑗

0 1 0 0

𝛼
𝛽

𝑙

𝛽
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𝑙𝑖
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𝛼

𝑙
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𝛼

𝑙
−

𝛼

𝑙
𝑙𝑖

0 0 1 0
0 0 0 −𝛽
0 0 0 𝛼 ]

 
 
 
 
 
 
 
 
 
 
 

[

𝑁
𝑀𝑖

𝑀𝑗

𝑌

] 5-20 

𝑢𝑖𝑗 = 𝑢𝑗 − 𝑢𝑖 5-21 𝑣𝑖𝑗 = 𝑣𝑗 − 𝑣𝑖 5-22 

𝑢𝑖𝑐 = 𝑢𝑖 − 𝑢𝑐 5-23 𝑣𝑖𝑐 = 𝑣𝑖 − 𝑣𝑐 5-24 

𝑢𝑗𝑐 = 𝑢𝑐 − 𝑢𝑗 5-25 𝑣𝑗𝑐 = 𝑣𝑐 − 𝑣𝑗 5-26 

If the node coordinates are expressed as in Eq. 5-21 to Eq. 5-26, differential for each 

matrix component in Eq. 5-20 are derived as follows. 

𝛿𝑙 = 𝛼𝛿𝑢𝑖𝑗 + 𝛽𝛿𝑣𝑖𝑗 5-27 

𝛿𝛼 =
1

𝑙
(𝛽2𝛿𝑢𝑖𝑗 + 𝛼𝛽𝛿𝑣𝑖𝑗) 5-28 

𝛿𝛽 =
1

𝑙
(−𝛼𝛽𝛿𝑢𝑖𝑗 + 𝛼2𝛿𝑣𝑖𝑗) 5-29 

𝛿 (
𝛼

𝑙
) =

1

𝑙2
((𝛽2 − 𝛼2)𝛿𝑢𝑖𝑗 − 2𝛼𝛽𝛿𝑣𝑖𝑗) 5-30 

𝛿 (
𝛽

𝑙
) =

1

𝑙2
(−2𝛼𝛽𝛿𝑢𝑖𝑗 − (𝛽2 − 𝛼2)𝛿𝑣𝑖𝑗) 5-31 

ji c

iM

jM

N
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𝛿 (
𝛼

𝑙
𝑙𝑖) =

1

𝑙2
[𝛿𝑢𝑖 𝛿𝑣𝑖 𝛿𝑢𝑗 𝛿𝑣𝑗 𝛿𝑢𝑐 𝛿𝑣𝑐]

[
 
 
 
 
 
 
𝛼𝛼𝑐𝑖𝑙𝑐𝑖 − 𝛼2𝑙𝑗 − (𝛽2 − 𝛼2)𝑙𝑖

𝛼𝛽𝑐𝑖𝑙𝑐𝑖 − 𝛼𝛽𝑙𝑗 + 2𝛼𝛽𝑙𝑖

𝛼𝛼𝑗𝑐𝑙𝑗𝑐 + 𝛼2𝑙𝑗 + (𝛽2 − 𝛼2)𝑙𝑖
𝛼𝛽𝑗𝑐𝑙𝑗𝑐 + 𝛼𝛽𝑙𝑗 − 2𝛼𝛽𝑙𝑖

−𝛼𝛼𝑗𝑐𝑙𝑗𝑐 − 𝛼𝛼𝑐𝑖𝑙𝑐𝑖
−𝛼𝛽𝑗𝑐𝑙𝑗𝑐 − 𝛼𝛽𝑐𝑖𝑙𝑐𝑖 ]

 
 
 
 
 
 

 5-32 

𝛿 (
𝛽

𝑙
𝑙𝑖) =

1

𝑙2
[𝛿𝑢𝑖 𝛿𝑣𝑖 𝛿𝑢𝑗 𝛿𝑣𝑗 𝛿𝑢𝑐 𝛿𝑣𝑐]

[
 
 
 
 
 
 

−𝛼𝛽𝑙𝑗 + 𝛼𝑐𝑖𝛽𝑙𝑐𝑖 + 2𝛼𝛽𝑙𝑖

−𝛽2𝑙𝑗 + 𝛽𝛽𝑐𝑖𝑙𝑐𝑖 + (𝛽2 − 𝛼2)𝑙𝑖
𝛼𝛽𝑙𝑗 + 𝛼𝑗𝑐𝛽𝑙𝑗𝑐 − 2𝛼𝛽𝑙𝑖

𝛽2𝑙𝑗 + 𝛽𝛽𝑗𝑐𝑙𝑗𝑐 − (𝛽2 − 𝛼2)𝑙𝑖
−𝛼𝑐𝑖𝛽𝑙𝑐𝑖 − 𝛼𝑗𝑐𝛽𝑙𝑗𝑐
−𝛽𝛽𝑐𝑖𝑙𝑐𝑖 − 𝛽𝛽𝑗𝑐𝑙𝑗𝑐 ]

 
 
 
 
 
 

 5-33 

𝛿 (
𝛼

𝑙
𝑙𝑗) =

1

𝑙2
[𝛿𝑢𝑖 𝛿𝑣𝑖 𝛿𝑢𝑗 𝛿𝑣𝑗 𝛿𝑢𝑐 𝛿𝑣𝑐]

[
 
 
 
 
 
 
−𝛼2𝑙𝑖 − 𝛼𝛼𝑐𝑖𝑙𝑐𝑖 − (𝛽2 − 𝛼2)𝑙𝑗

−𝛼𝛽𝑙𝑖 − 𝛼𝛽𝑐𝑖𝑙𝑐𝑖 + 2𝛼𝛽𝑙𝑗

𝛼2𝑙𝑖 − 𝛼𝛼𝑗𝑐𝑙𝑗𝑐 + (𝛽2 − 𝛼2)𝑙𝑗
𝛼𝛽𝑙𝑖 − 𝛼𝛽𝑗𝑐𝑙𝑗𝑐 − 2𝛼𝛽𝑙𝑖

𝛼𝛼𝑐𝑖𝑙𝑐𝑖 + 𝛼𝛼𝑗𝑐𝑙𝑗𝑐
𝛼𝛽𝑐𝑖𝑙𝑐𝑖 + 𝛼𝛽𝑗𝑐𝑙𝑗𝑐 ]

 
 
 
 
 
 

 5-34 

𝛿 (
𝛽

𝑙
𝑙𝑗) =

1

𝑙2
[𝛿𝑢𝑖 𝛿𝑣𝑖 𝛿𝑢𝑗 𝛿𝑣𝑗 𝛿𝑢𝑐 𝛿𝑣𝑐]

[
 
 
 
 
 
 

−𝛼𝛽𝑙𝑖 + 𝛼𝑐𝑖𝛽𝑙𝑐𝑖 + 2𝛼𝛽𝑙𝑗

−𝛽2𝑙𝑖 + 𝛽𝛽𝑐𝑖𝑙𝑐𝑖 + (𝛽2 − 𝛼2)𝑙𝑗
𝛼𝛽𝑙𝑖 + 𝛼𝑗𝑐𝛽𝑙𝑗𝑐 − 2𝛼𝛽𝑙𝑗

𝛽2𝑙𝑖 + 𝛽𝛽𝑗𝑐𝑙𝑗𝑐 − (𝛽2 − 𝛼2)𝑙𝑗
𝛼𝑐𝑖𝛽𝑙𝑐𝑖 + 𝛼𝑗𝑐𝛽𝑙𝑗𝑐
𝛽𝛽𝑐𝑖𝑙𝑐𝑖 + 𝛽𝛽𝑗𝑐𝑙𝑗𝑐 ]

 
 
 
 
 
 

 5-35 

The tangent geometric stiffness for contact element KGC is obtained in the similar way 

as for the plane frame structure, which is done by differentiating equilibrium equation. 

Also in this case, element force is considered to be constant; the expression of tangent 

geometric stiffness is as follows. 

 

5-36 

 

𝑄𝑖 = 𝑌
𝑙𝑗

𝑙
−

𝑀𝑖 + 𝑀𝑗

𝑙
 5-37 

 Symmetry 
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𝑄𝑗 = 𝑌
𝑙𝑖
𝑙

−
𝑀𝑖 + 𝑀𝑗

𝑙
 5-38 

𝐊𝐆𝐜
= [

𝐤𝐆𝑪
−𝐤𝐆𝑪

−𝐤𝐆𝑪
𝐤𝐆𝑪

] 5-39 

 

𝑘𝐺11 = 𝛽2
𝑁

𝑙
− 2𝛼𝛽

𝑀𝑖 + 𝑀𝑗

𝑙2
− (𝛼𝛽𝑙𝑖 + 𝛼𝑐𝑖𝛽𝑙𝑐𝑖 − 2𝛼𝛽𝑙𝑗)

𝑌

𝑙2
 5-40 

𝑘𝐺12 = 𝛼𝛽
𝑁

𝑙
+ (𝛼2 − 𝛽2

)
𝑀𝑖 + 𝑀𝑗

𝑙2
− {𝛽2𝑙𝑖 + 𝛽𝛽𝑐𝑖𝑙𝑐𝑖 − (𝛽2 − 𝛼2) 𝑙𝑗}

𝑌

𝑙2
 5-41 

𝑘𝐺14 = −𝛽2
𝑁

𝑙
+ 2𝛼𝛽

𝑀𝑖 + 𝑀𝑗

𝑙2
+ (𝛼𝛽𝑙𝑖 − 𝛼𝑗𝑐𝛽𝑙𝑗𝑐 − 2𝛼𝛽𝑙𝑗)

𝑌

𝑙2
 5-42 

𝑘𝐺15 = 𝛼𝛽
𝑁

𝑙
− (𝛼2 − 𝛽2

)
𝑀𝑖 + 𝑀𝑗

𝑙2
+ {𝛽2𝑙𝑖 + 𝛽𝛽𝑗𝑐𝑙𝑗𝑐 − (𝛽2 − 𝛼2) 𝑙𝑗}

𝑌

𝑙2
 5-43 

𝑘𝐺17 = (𝛼𝑐𝑖𝛽𝑙𝑐𝑖 − 𝛼𝑗𝑐𝛽𝑙𝑗𝑐)
𝑌

𝑙2
 5-44 

𝑘𝐺18 = (𝛽𝛽𝑐𝑖𝑙𝑐𝑖 − 𝛽𝛽𝑗𝑐𝑙𝑗𝑐)
𝑌

𝑙2
 5-45 

𝑘𝐺22 = 𝛼2
𝑁

𝑙
+ 2𝛼𝛽

𝑀𝑖 + 𝑀𝑗

𝑙2
+ {𝛼𝛽(𝑙𝑖 − 2𝑙𝑗) + 𝛼𝛽𝑐𝑖𝑙𝑐𝑖}

𝑌

𝑙2
 5-46 

𝑘𝐺24 = 𝛼𝛽
𝑁

𝑙
− (𝛼2 − 𝛽2

)
𝑀𝑖 + 𝑀𝑗

𝑙2
+ {𝛼2(𝑙𝑗 − 𝑙𝑖) − 𝛽2

𝑙𝑗 + 𝛼𝛼𝑗𝑐𝑙𝑗𝑐}
𝑌

𝑙2
 5-47 

𝑘𝐺25 = −𝛼2
𝑁

𝑙
− 2𝛼𝛽

𝑀𝑖 + 𝑀𝑗

𝑙2
+ {𝛼𝛽(2𝑙𝑗 − 𝑙𝑖) + 𝛼𝛽𝑗𝑐𝑙𝑗𝑐}

𝑌

𝑙2
 5-48 

𝑘𝐺27 = 𝛼2
𝑌

𝑙2
 5-49 

𝑘𝐺28 = 𝛼𝛽
𝑌

𝑙2
 5-50 

𝑘𝐺44 = 𝛽2
𝑁

𝑙
− 2𝛼𝛽

𝑀𝑖 + 𝑀𝑗

𝑙2
+ {𝛼𝛽(𝑙𝑗 − 2𝑙𝑖) + 𝛼𝑗𝑐𝛽𝑙𝑗𝑐}

𝑌

𝑙2
 5-51 

𝑘𝐺45 = 𝛼𝛽
𝑁

𝑙
− (𝛼2 − 𝛽2

)
𝑀𝑖 + 𝑀𝑗

𝑙2
+ {𝛼2𝑙𝑖 − 𝛽2

(𝑙𝑗 − 𝑙𝑖) + 𝛽𝛽𝑗𝑐𝑙𝑗𝑐}
𝑌

𝑙2
 5-52 

𝑘𝐺47 = 𝛼𝛽
𝑌

𝑙2
 5-53 

𝑘𝐺48 = 𝛽2
𝑌

𝑙2
 5-54 
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𝑘𝐺55 = 𝛼2
𝑁

𝑙
− 2𝛼𝛽

𝑀𝑖 + 𝑀𝑗

𝑙2
+ {𝛼𝛽(2𝑙𝑖 − 𝑙𝑗) − 𝛼𝛽𝑗𝑐𝑙𝑗𝑐}

𝑌

𝑙2
 5-55 

𝑘𝐺57 = −𝛼2
𝑌

𝑙2
 5-56 

𝑘𝐺58 = −𝛼𝛽
𝑌

𝑙2
 5-57 

The matrix element for the element geometric stiffness is shown in Eq. 5-40 to Eq. 

5-57. Referring to Eq. 5-36, geometric stiffness matrix for one contact element which 

consists of three nodes is a 9×9 matrix. The rotation component for the contact node is 

neglected and has no influence to the calculations. By adapting the contact node’s degree 

of freedom into the geometric stiffness matrix, zero values had to be added to the 

rotation component. 

 

5.5 Definition of contact element behavior for contact problem 

 
In this subsection, the application of principle of super position for interposing 

contact phenomena will be performed. The concept of this interposing process for plane  

frame beam element loaded with end moments is shown in Fig. 5.10. 

EI = Bending stiffness 

EA = Extensional stiffness 

 

Figure 5.10: Deformation of the plane frame beam 

     𝑥 → 𝑙 

δ𝑦𝑐 =
1

EI
(
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6𝑙
𝑥3 −

𝑀𝑖

2
𝑥2 +

(2𝑀𝑖 − 𝑀𝑗)𝑙

6
𝑥) 5-58 

𝜃𝑖 =
2𝑀𝑖 − 𝑀𝑗

6EI
𝑙 5-59 
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𝜃𝑖 =
2𝑀𝑗 − 𝑀𝑖

6EI
𝑙 5-60 

The deflection amount when x=li is calculated by equation Eq. 5-58, and deflection 

angles for both ends are shown in equations Eq. 5-59 and Eq. 5-60. 

 

Figure 5.11: Deformation of the plane frame beam by the contact force  

δ𝑦𝑦 =
𝑙𝑖

2𝑙𝑗
2

3EI𝑙
𝑌 5-61 

𝜃𝑖𝑦 =
𝑙𝑖𝑙𝑗

6EI
(1 +

𝑙𝑗

𝑙
) 𝑌 5-62 

𝜃𝑗𝑦 = −
𝑙𝑖𝑙𝑗

6EI
(1 +

𝑙𝑖
𝑙
) 𝑌 5-63 

Case B is shown in Fig. 5.11, the deflection value after external force Y applied at the 

same distance (x=li), is shown in equation Eq. 5-61. Deflection angles for both ends for 

this case are calculated by equations Eq. 5-62 and Eq. 5-63. 

 

Figure 5.12: Beam deformation combined by the principle of super position 

 

If the deflection value for both cases A and B are the same, according to principle of 

superposition, the total displacement value when x=li and deflection angles for both 
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ends can be expressed as in Eq. 5-64, Eq. 5-65 and Eq. 5-66. 

δ𝑦𝑚 =
𝑙𝑖𝑙𝑗

6EI
(1 +

𝑙𝑗

𝑙
)𝑀𝑖 −

𝑙𝑖𝑙𝑗

6EI
(1 +

𝑙𝑖
𝑙
)𝑀𝑗 5-64 

𝜃𝑖𝑚 =
𝑙

3EI
𝑀𝑖 −

𝑙

3EI
𝑀𝑗 5-65 

𝜃𝑗𝑚 = −
𝑙

3EI
𝑀𝑖 +

𝑙

3EI
𝑀𝑗 5-66 

Here, as shown in Fig 5.13, if horizontal force works on the contact node, equations 

Eq.5-58 to Eq. 5-66 and equations Eq. 5-67 to Eq. 5-69 can be expressed in the matrix 

form (see Eq. 5-70.). 

 

Figure 5.13: Forces working on a contacted plane frame beam 

δ𝑦 = δ𝑦𝑦 + δ𝑦𝑚 5-67 

𝜃𝑖 = 𝜃𝑖𝑦 + 𝜃𝑖𝑚 5-68 

𝜃𝑗 = 𝜃𝑗𝑦 + 𝜃𝑗𝑚 5-69 

[

δ𝑙
𝜃𝑖

𝜃𝑗

δ𝑦

] =

[
 
 
 
 
 
 
 
 
 

𝑙

EA
0 0 0

0
𝑙

3EI
−

𝑙

6EI

𝑙𝑖𝑙𝑗

6EI
(1 +

𝑙𝑗

𝑙
)

0 −
𝑙

6EI

𝑙

3EI
−

𝑙𝑖𝑙𝑗

6EI
(1 +

𝑙𝑗

𝑙
)

0
𝑙𝑖𝑙𝑗

6EI
(1 +

𝑙𝑗

𝑙
) −

𝑙𝑖𝑙𝑗

6EI
(1 +

𝑙𝑖
𝑙
)

𝑙𝑖
2𝑙𝑗

2

3EI𝑙 ]
 
 
 
 
 
 
 
 
 

[

𝑁
𝑀𝑖

𝑀𝑗

𝑌

] 5-70 

[

𝑁
𝑀𝑖

𝑀𝑗

𝑌

] =

[
 
 
 
 
 
 
 
 
 
EA

𝑙
0 0 0

0
4𝑙𝑖𝑐 + 3𝑙𝑗𝑐

𝑙𝑖𝑐
𝑘𝑎

9𝑙0
2 − 𝑙𝑖𝑐

2𝑙𝑗𝑐
2

𝑙𝑖𝑐
2𝑙𝑗𝑐

2 𝑘𝑎 −
3𝑙𝑗𝑐𝑙0

2

𝑙𝑖𝑐
2𝑙𝑗𝑐

2 𝑘𝑎

0
9𝑙0

2 − 𝑙𝑖𝑐
2𝑙𝑗𝑐

2

𝑙𝑖𝑐
2𝑙𝑗𝑐

2 𝑘𝑎

4𝑙𝑗𝑐 + 3𝑙𝑖𝑐

𝑙𝑗𝑐
𝑘𝑎

3𝑙𝑖𝑐𝑙0
2

𝑙𝑖𝑐
2𝑙𝑗𝑐

2 𝑘𝑎

0 −
3𝑙𝑗𝑐𝑙0

2

𝑙𝑖𝑐
2𝑙𝑗𝑐

2 𝑘𝑎

3𝑙𝑖𝑐𝑙0
2

𝑙𝑖𝑐
2𝑙𝑗𝑐

2 𝑘𝑎

3𝑙0
4

𝑙𝑖𝑐
3𝑙𝑗𝑐

3 𝑘𝑎
]
 
 
 
 
 
 
 
 
 

[

δ𝑙
𝜃𝑖

𝜃𝑗

δ𝑦

] 5-71 
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𝑘𝑎 =
EI

𝑙0
 5-72 

Eq. 5-71 and Eq. 5-72 are the element force equations for a contact element using Euler–

Bernoulli beam in a simply supported beam coordinate. The equation shown in Eq. 5 -

71 consists by axial force N, edge moments Mi and Mj, and contact force Y. Using this 

beam coordinate, it is assumed that the contact force, Y is within the range of the beam 

(Fig. 5.13), and creates geometric and kinematic variables as expressed in details in  Eq. 

5-67 to Eq. 5-69. The expression of a contact element using this beam coordinate is an 

idealization of the simplest yet accurate frictionless node–element contact.  

 

5.6 The application of Timoshenko beam in node–element contact 

analysis 

 

The Timoshenko beam was initially idealized to handle shear deformation and 

rotational inertia for short beam. Here, the theory describes that when the ratio of beam 

depth to the beam length (span) becomes higher, the shear deformation coefficient qs, 

as shown in Eq. 5-73 could not be neglected. Based on the beam theory, in a node–

element contact, when the contact node approaches the element edge, the effective 

distance between the contact node and the edge would decrease. Therefore, by applying 

the short beam theory for node–element contact case, the aim is to achieve convergence 

solution when the contact node approaches the element edges.  

𝑞𝑠 =
12EI

𝐺𝐴𝑒𝑙
2
 5-73 

Due to the sliding of the contact point toward element edges, when the distance 

between the contact node to the element edges either ic or jc section, the unbalanced 

force is not able to be converged when considering the element force equation by Euler–

Bernoulli theory as shown in Eq. 5-71. The sliding of the contact node towards the 

element edge may reduce the lic or ljc in Eq. 5-71 to zero which leads to the “division 

by zero” of the element force equation matrices. Therefore, it is difficult to achieve 

equilibrium when the contact node approaches the element edge owing to the non-

convergence of the unbalanced force. As the contact node approaches the element edge 

and the distance decreases, the author describes the section where the unbalanced force 

is hardly to be converged as the “critical area”. The “critical area” has been an obstacle 

to perform “passing through” or “sliding through” of the contact node to the next non-

contact element. 
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Here, the derivation of Timoshenko beam for node–element contact will be done. 

Firstly, the fundamental assumption of the Euler–Bernoulli and the Timoshenko beam 

is the plane cross section remains plane throughout the beam deformation. In 

Timoshenko beam, the cross section rotates due to the effect of shear deformation and 

no longer normal to the neutral axis. Furthermore, it is also assumed that the beam 

deformation is produced by two components, namely the bending and shear 

deformations. Here, the author will relate these two components to derive the element 

force equation for node–element contact based on Timoshenko beam. 

 

5.7 The arbitrary point load on a simply supported beam 

 

 

Figure 5.14: The BMD and SFD of a simply supported beam 

 

According to the shear force diagram (SFD) in Fig. 5.14, the deformation caused by 
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shear effect when the flexural load (contact force, Y) is subjected creates a discontinuity 

of the shear distribution and should be handled separately into li and lj sections. In 

addition, the point where the flexural load is subjected could be also considered as the 

position of the contact node. Here, considering the li section from the range x=0 to x=li, 

the shear force could be represented as; 

𝑄𝑖 = 𝑌
𝑙𝑗

𝑙
= G𝐴𝑒𝛾𝑖 5-74 

Here, the relation between the shear strain and the contact force could be shown is 

shown in Eq. 5-75. 

𝛾𝑖 =
𝑙𝑗

G𝐴𝑒𝑙
𝑌 5-75 

Furthermore, the deflection due to contact force in Fig. 5.13 when x=li or x’=lj could 

also be defined as Eq. 5-76, 

𝑦 =
𝑙𝑖𝑙𝑗

G𝐴𝑒𝑙
𝑌 5-76 

Here, when considering the plane frame beam, the relation between the shear Q and 

edge moments Mi and Mj for Timoshenko case could be shown as;  

𝑄 = −
𝑀𝑖 + 𝑀𝑗

𝑙
= G𝐴𝑒𝛾 5-77 

By super positioning Eq. 5-75 to Eq. 5-77 according to the derivation made in Eq. 5-

70, the bending and shear deformation component could be shown in Eq. 5-78. Eq. 5-

78 shows the super positioning result for node–element contact when shear deformation 

is taken into account. As shown in the equation, if the shear deformation component in 

the matrices is neglected, the equation is similar to the Euler–Bernoulli case, in the 

previous section. Here, by inversing the matrix equation (Eq. 5-78), the element force 

equation for node–element contact by Timoshenko beam theory could be shown in Eq. 

5-79 to Eq. 5-82.  

[

δ𝑙
𝜃𝑖

𝜃𝑗

δ𝑦

] =

[
 
 
 
 
 
 
 
 
 

𝑙

EA
0 0 0

0
𝑙

3EI
+

1

G𝐴𝑒𝑙
−

𝑙

6EI
+

1

G𝐴𝑒𝑙

𝑙𝑖𝑙𝑗

6EI
(1 +

𝑙𝑗

𝑙
)

0 −
𝑙

6EI
+

1

G𝐴𝑒𝑙

𝑙

3EI
+

1

G𝐴𝑒𝑙
−

𝑙𝑖𝑙𝑗

6EI
(1 +

𝑙𝑖
𝑙
)

0
𝑙𝑖𝑙𝑗

6EI
(1 +

𝑙𝑗

𝑙
) −

𝑙𝑖𝑙𝑗

6EI
(1 +

𝑙𝑖
𝑙
)

𝑙𝑖
2𝑙𝑗

2

3EI𝑙
+

𝑙𝑖𝑙𝑗

G𝐴𝑒𝑙 ]
 
 
 
 
 
 
 
 
 

[

𝑁
𝑀𝑖

𝑀𝑗

𝑌

] 5-78 
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[

𝑁
𝑀𝑖

𝑀𝑗

𝑌

] =

[
 
 
 
 
 
 
 
EA

𝑙0
0 0 0

0 (4Ω + 3𝑙𝑖𝑐𝑙𝑐𝑗
3 − 108Ψ2)𝑘𝑏 {9(𝑙0

2 − 𝑙𝑐𝑗Ψ) − Ω}𝑘𝑏 −3𝑙0(𝑙0𝑙𝑐𝑗 + 6Ψ)𝑘𝑏

0 {9(𝑙0
2 − 𝑙𝑐𝑗Ψ) − Ω}𝑘𝑏 (4Ω + 3𝑙𝑖𝑐

3𝑙𝑐𝑗 − 108Ψ2)𝑘𝑏 3𝑙0(𝑙0𝑙𝑖𝑐 + 6Ψ)𝑘𝑏

0 −3𝑙0(𝑙0𝑙𝑐𝑗 + 6Ψ)𝑘𝑏 3𝑙0(𝑙0𝑙𝑖𝑐 + 6Ψ)𝑘𝑏

3𝑙0(𝑙0
3 + 12𝑙0Ψ)

𝑙𝑖𝑐𝑙𝑐𝑗
𝑘𝑏

]
 
 
 
 
 
 
 

[

δ𝑙
𝜃𝑖

𝜃𝑗

δ𝑦

] 5-79 

Where; 

𝑘𝑏 =
EI

𝑙0Ω
 5-80 

Ψ =
EI

GA𝑒
 5-81 

Ω = (𝑙𝑖𝑐𝑙𝑐𝑗)
2
+ 3Ψ(𝑙0

2 + 𝑙𝑖𝑐𝑙𝑐𝑗) + 36Ψ2
 5-82 

In this case, kb (Eq. 5-80) is the bending stiffness for Timoshenko beam. Ψ in Eq. 5-

81 is the shear deformation coefficient while Ae is the effective cross sectional area. For 

the geometrical parameters, l0 is the non-stressed beam length, lic is the distance between 

the contact node and i edge, and lcj is the distance between the contact node and the j 

edge. 

In this section, the element force equation of node–element contact for the 

Timoshenko beam is expressed as shown in Eq. 5-79 to Eq. 5-82. These equations are 

developed to overcome the “division by zero” discussed in section 5.4 and 5.5, to 

encounter the problem when the contact node approaches element edge into the “critical 

area” and leads to the divergence of unbalanced force. Furthermore, owing to the 

reduction of “critical area” enhanced by these equations, “passing through” could be 

executed smoothly for the contact node to shift to the next noncontact element with 

stable convergence result. The effectiveness of these equations is demonstrated in 

details in each numerical example in the following section.  

 

5.8 Numerical example 

 

5.8.1 Frictionless contact analysis of a cantilever beam 

 

The main objective of this analysis is to investigate the range of the “critical area,” 

by comparing the application of the Timoshenko beam in the element force equation in 

Eq. 5-79 to Eq. 5-82, to the equations derived in section 5.4 and 5.5 (Eq. 5-71 and Eq. 

5-72), and to the previous equations developed by Tsutsui et al. [2]. As shown in Fig. 

5.9, the distances between the contact point and the two edges are li and lj, respectively. 
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In this case, if li → 0 or lj → 0 in Eq. 5-71, the matrices become singular. Therefore, if 

li or lj is close to zero, the unbalanced force would hardly converge. This implies that 

there is a particular space close to the element edge in which the approach of the contact 

node is prohibited from achieving convergence result. This is referred as the “critical 

area”. 

 

Figure 5.15: Cantilever beam model 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

←  Control Node

10, 20 & 50 @ 1.00[m]
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(g) (h) 

  

(i) (j) 

  

(k) (l) 

Figure 5.16(a) – (l): Beam deformation diagrams 

 

As shown in Fig. 5.15, a cantilever beam configuration is used in this analysis, and 

the beam consists of 18 elements and 19 nodes. A compulsory displacement in the lateral 

upward direction is applied to the control node, which is independent and unconnect ed 

to any element in the primary position. The material parameters are E = 2.1 × 1011[N/m2], 

A = 0.005[m2], I = 0.001[m4], G = 7.5 × 1010[N/m2], and υ = 0.3.  

Fig. 5.16 (a) to (l) represents the beam deformation due to the displacement of the 

control node and Fig. 5.18 shows the deformation behavior throughout the compulsory 

displacement, whereas Fig. 5.17 shows the relationship between the ratio li/l of a contact 

element and the displacement of the control node after contact. In this analysis, the 

control node was set at six primary positions, namely 4.05[m], 4.1[m], 4.2[m], 4.3[m], 

4.35[m], and 4.4[m] in the horizontal direction. The results of the analysis showed that 

the “critical area” of the Euler–Bernoulli beam in Eq. 5-71 and Eq. 5-72 ranged between  
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7.749% and 12.952%, whereas that of the cantilever coordinate system of Tsutsui  et al. 

[2] ranged between 2.164% and 3.865%. An idealization of the cantilever coordinate 

system by comparison of the two results can be used to reduce the range of the “critical 

area”. However, using the Timoshenko beam, the “critical area” can be significantly 

reduced from 0.067% to 0.501%. The reduction of the “critical area” makes it easier for 

the contact node to smoothly “passing through” the element edge to the next element, 

producing a strict equilibrium solution. 

 

Figure 5.18: Deformation behavior of the cantilever beam 

 

5.8.2 Accuracy comparison of FEM to TSM 

 

In this analysis, a comparison is made between the FEM by Konyukhov and 

Schweizrhof [4] with the TSM for contact simulation. A cantilever beam with solid 

elements and 50 divisions was used for the FEM study, whereas simple linear element s 

were used for TSM. To demonstrate the accuracy of TSM, 10, 20, and 50 divisions of 

the beam are used in this analysis. The control node is displaced in the upper left 

direction by the vector [1, 0.6366] as shown in Fig. 5.20, and the material parameters 

are E = 2.1 × 104[N/m2], b × h = 0.02[m]×0.02[m], L = 1.00[m], G = 7.5 × 1010[N/m2], 

and υ = 0.3. Fig. 5.19 shows the beam deformation for both methods.  
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The figure reveals that the beam deformations for TSM and FEM are not significantly 

different. The TSM solution for the larger 10 and 20 divisions is similar to that of FEM 

using densely partitioned solid elements. Furthermore, a simple definition of the contact 

element is sufficient to simulate the TSM contact analysis, while also avoiding the 

complex settings of the nonlinearity between the strain and the displacement. 

 

Figure 5.20: Cantilever beam deformation due to contact node compulsory 

displacement 

 

5.8.3 Contact of two cantilever beams 

 

Two independent cantilever beams are used in this analysis, and the control node is 

displaced laterally and downward until it exceeds those of the two beams. The objective 

of this analysis is to perform multiple contacts using the Timoshenko beam, taking i nto 

consideration the “critical area”, the “passing through” phenomenon, and the 

deformation behavior of both structures. Both beams have 10 equal divisions, and the 

material parameters in this case are E = 2.0 × 107[N/m2], A = 3.0 × 10-4[m2], I = 2.2 × 

10-8[m4], G = 7.142 × 106[N/m2], and υ = 0.3. 
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(c) (d) 

  
(e) (f) 

  (g) (h) 

  

(i) (j) 

  

(k) (l) 

Figure 5.21: Control node displacement quantity and beam deformation diagrams 

 

Contact is about to occur when the displacement of the control node is at stage (a). 

At stage (c), multiple contacts initially occur between the control node and an element 

of the upper beam, and between the tip of the upper beam and an element of the lower 
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beam. The control node is displaced until stage (h), at which time the control node is 

about to shift from the upper beam and make contact with an element of the lower beam. 

The analysis is continued until the control node displacement is at stage (k), when the 

node is about to exceed the lower beam. By applying the Timoshenko beam, the 

significant reduction of the “critical area” discussed in section 5.6 and 5.7 enables the 

contact nodes to smoothly and simultaneously “passing through” every element edge. 

 

5.9 Discussion 

 

The contact problem has been known as one of major topics which have difficult 

nonlinearity to solve. The difficulties that have been prescribed previously were the 

problem with the calculation stability, discontinuity of element boundary, “finite-

sliding” etc. In this study, the author has tried to solve a simple, yet efficient case of 

contact problem by TSM to encounter all the problems that have been prescribed.  Also, 

the application of TSM for this strong nonlinear analysis has been proven to be efficient 

when the converged solutions were successfully obtained in all contact analysis and this 

has been shown throughout this chapter. 

In this chapter, two types of contact cases were examined. Firstly, the contact 

between elements by the axial force elements and followed by node–element contact by 

the plane frame beams. For the contact between elements, the axial force elements which 

do not resist to compressional forces were introduced, which simulates the 

approximation of cables. Here, when the element contacts each other, a contact point 

where the elements intersect are generated as the “sliding node” which slides on an 

element without friction by the definition of “isotonic”. The occurrence of contact is 

judged by vector triple product of both edges of each of the elements. Then, the contact 

force is always monitored, and if the inverse of sign is observed, the sliding node is 

removed. Using TSM as the theory for geometrically nonlinear analysis, the unbalanced 

force was successfully converged in very small number of iteration steps.  

Also, the case of multiple contact between elements was also considered, where a 

complex contact phenomena was shown in subsection 5.3.2. Although with the 

simultaneous involvement of multiple contact nodes, the calculation was performed 

smoothly and the unbalanced force was successfully converged in every incremental 

step. 

Furthermore, the simulation of the node–element contact case using the plane frame 

beam elements was also introduced in this chapter. Here, two types of beam theory were 
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derived; which are based on Euler–Bernoulli beam theory and Timoshenko beam theory. 

On applying these elements to the node–element contact, a major problem was that the 

unbalanced forces were hardly to be converged when the contact node approaches to the 

element edge. In this study, this area around the element edge is called as the “critical 

area”.  

As the distance between the contact node and the element edge decreases, it shares 

the similar characteristics to the deep beam elements which are simulated by 

Timoshenko beam theory. Here, the shear deformation is considered and the components 

in the element force equation were substituted into ones regarding to Timoshenko beam 

theory for the contact problem. By the application of the shear deformation into the 

element force equation, the aim is to eliminate the occurrence of “division by zero” in 

the stiffness matrix, while producing a stable convergence result throughout the analysis.  

As the result for all node–element contact cases, stable convergence results have 

been successfully achieved at every element edges and “passing through” of the contact 

node to the next non-contact element was also performed smoothly. Here, by the 

consideration of the shear deformation, the author has solved the problems regarding 

the calculation stability, the element discontinuity and “finite-sliding” that have been 

the obstacles in other studies.  

In addition, in subsection 5.8.2, a comparison of node–element contact between 

FEM and TSM was executed. In the analysis, the author has compared the behavior of 

a cantilever beam model with the solution of FEM. Consequently, even if in case of 

coarse mesh division, the proposed contact element has achieved enough accuracy 

corresponding to the result by FEM with dense mesh division.  

Finally, a multiple contact case of a plane frame beam was introduced in 5.8.3, to 

examine the computational stability when the “critical area” and the “passing through” 

occur simultaneously. All of the results shown in this chapter have proved the 

superiority of TSM in handling so much complex and strong geometrically nonlinear 

analysis with contact problem. 
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List of symbols 
 

Symbol  Description 

D : Nodal force vector 

α : Cosine vector 

S : Element edge force vector 

KGC : Tangent stiffness matrix for contact element 

U : Force component in u-direction 

V : Force component in v-direction 

W : Force component in w-direction 

α : Cosine vector in u-direction 

β : Cosine vector in v-direction 

γ : Cosine vector in w-direction 

i : The i edge of an element 

c : Contact point of an element 

j : The j edge of an element 

l : Element length 

u : Nodal coordinate in u-direction 

v : Nodal coordinate in v-direction 

w : Nodal coordinate in w-direction 

N : Axial force 

Mi : Edge moment on i edge 

Mj : Edge moment on j edge 

Yc : Contact force 

kG : The matrix element of tangent geometric stiffness matrix  

Q : Shear force 

θi : Deflection angle on i edge 

θj : Deflection angle on j edge 

δyc : Deflection at contact point due to axial force and edge moments  

li : Length between i edge to the contact point c 

lj : Length between j edge to the contact point c 

x : Horizontal component in global coordinate system 

y : Vertical component in global coordinate system 

δyy : Deflection at contact point due to contact force 

θiy : Deflection angle on i edge due to contact force 
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List of symbols 
 

Symbol  Description 

θjy : Deflection angle on j edge due to contact force 

δym : Deflection at contact point by the principle of superposition 

θim : Deflection angle of i edge by the principle of superposition 

θjm : Deflection angle of j edge by the principle of superposition 

qs : Shear deformation coefficient 

γi : Shear strain 

kb : Bending stiffness coefficient by Timoshenko beam theory 

Ae : Effective cross sectional area 
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Chapter 6 

Conclusion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1 The superiority of TSM 

 

In this study, the author has applied tangent stiffness method (TSM) for all of the 

geometrically nonlinear analyses with extremely large deformational cases. The results 

obtained in this study are guaranteed to match the “perfect equilibrium” as well as 

being precise, as the concept of TSM is based on the equilibrium of forces  at all nodes. 

Therefore, if the basic law of physic and Newton’s first law are obeyed, a simple and 

efficient algorithm can always be produced by TSM. Another specialty of TSM is that 

it treats the element stiffness and the tangent geometric stiffness separately, where the 

formulization of equations could be easily done without any approximation for 

unexpected cases. 
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The derivation of TSM is precisely shown in chapter 2, and followed by a 

comparison with the finite element method (FEM) in chapter 3, where the superiority 

of TSM was exhibited. Here, from comparison of the results, it is evidently clear that 

TSM is far more efficient when the convergence behavior of both methods differed 

significantly. The difference is caused by the treatment of strain and nodal 

displacement in the global coordinate system by FEM. The author concluded that the 

treatment should be made within the local coordinate system, as the results differed 

between both methods as shown by the numerical analysis. Furthermore, the strictness 

of the compatibility equation and the tangent stiffness equation also have to be 

considered in order to achieve reliable result, without the approximation by the shape 

function, which has been the practice in the TSM. 

 

6.2 An efficient approach for form-finding analysis 

 

By applying TSM to perform form-finding analysis for tensegrity structure, various 

numbers of equilibrium shapes have been obtained. In this study, the author had 

implemented the measure-potential element and the truss element for the tensegrity 

configuration. The form-finding procedure using the measure-potential element with 

virtual stiffness was compared to the method introduced by force density method 

(FDM). Also, the definition of measure-potential element is simple and clear, and the 

equilibrium shape can be achieved by using an ordinary any nonlinear stiffness 

analysis. 

In addition, the author investigated the relation between the incidence rate and the 

total potential energy for the tensegrity structure. Here, it could be concluded that the 

target solution (the most preferable morphology) did not have exactly the lowest 

potential energy, and the highest incidence rate. A correlative relation between those 

two parameters could not be distinctly determined, and the prediction of emerging 

morphology from the initial condition is considered to be extremely difficult.  

In the following example of form-finding process, the author also executed path 

finding of equilibrium path in the load–displacement curve. The author has applied a 

simple yet efficient load or displacement control in order to pursue all possible paths. 

In this study, all possible main and bifurcation paths have been obtained and were 

shown in chapter 4. Path finding procedure can be switched into a bifurcation path by 

substituting an appropriate amount of eigenvector of the tangent stiffness matrix at the 

bifurcation point.The shapes of the paths are different depending on the kinematic field, 
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i.e. whether considering gravitational influence or not. In this study, it is clear that 

when the gravitational influence is taken into account, various independent paths were 

achieved. In addition, the equilibrium shapes on the bifurcation path showed the sides 

topple phenomena and loss the degree of symmetricity.  

Meanwhile, if the gravitational influence is neglected, the total paths and 

self-equilibrium shapes are significantly less than when the gravitationa l effect was 

considered. All the individual shapes could be classified by the total number of 

negative eigenvalue, which is equivalent to the concept of the group theory. By 

applying TSM in form-finding for tensegrity structure in this study, all equilibrium 

shapes and paths have been successfully extracted, and this showed the superiority and 

merit of TSM for form-finding process of the tensegrity; which is one of the softest 

structures with extremely strong nonlinearity. 

 

6.3 The improvement for strong geometrically nonlinear contact 

problem 

 

As the deformations of tensegrity tower have been observed, the random and large 

deformational behavior may cause contact phenomena, either the contact between 

elements or node–element. In the chapter that follows, the author has introduced 

contact analysis as a preliminary assumption of contact for tensegrity. In chapter 5, the 

author has presented a three dimensional contact between elements by a 

non-compressible axial force element. By the application of the non-compressible axial 

force element, it could simulate the approximation of cable element, which is 

considered to be applicable to the tensional members of tensegrity structure. While 

performing the contact algorithm by TSM, sliding nodes are applied at the po int where 

the elements intersect, in order to relate the mechanical properties of the contacted 

elements and exhibits the phenomena of contact between elements. Also, the multiple 

contact case has been performed to examine the precision of the formulized equations, 

and as the analysis result has proved, the unbalanced force was successfully converged 

throughout the analysis. 

The author also introduced the node–element contact analysis for a plane frame 

beam. Here the Timoshenko short beam theory was applied in order to counter the 

difficulties that have been prescribed in other earlier studies, by mainly focusing on the 

calculation instability when performing node-element contact analysis. Also in this 

study, the author has formulized a simple yet efficient contact cases by TSM to counter 



127 
 

all of the problems with high precision. Especially for the node–element contact, the 

main problem normally is with regards to the convergability of unbalanced forces 

when the contact node approaches the element edge. The author defined this 

phenomenon as the “critical area”. Here, shear deformation by Timoshenko short beam 

theory is considered and the component was substituted into the element force equation 

for the contact case. The aim is to eliminate the occurrence of “division by zero” in the 

stiffness matrix, while producing a stable convergence result throughout the analysis.  

As the results showed, stable convergence results have been obtained throughout 

the analysis and the range of “critical area” has been reduced to almost 100%. By this, 

it could be concluded that the problems regarding the discontinuity of element edge 

has been solved in this study. Using the same Timoshenko beam for node–element 

contact analysis, a comparison was made with an analysis result that was performed by 

FEM. In the analysis, the author has compared a cantilever beam deformation diagram 

with the result obtained by FEM, and by coarsely and densely dividing the mesh of the 

beam. As a result, either using coarse meshing or dense meshing, a relatively similar 

results have been achieved by TSM, as compared to the densely meshed beam by FEM. 

The analysis also showed that in TSM, even with less element meshing or fewer nodes, 

the result is consistent, which is probably not achievable by using other geometrically 

nonlinear analysis methods. 

 

6.4 Conclusion 

 

Compared to the past decades, the evolution of numerical analysis is proportionate 

to the rapid growth of science, engineering, information technology and multimedia. 

The development of computers made it easier and simpler to simulate complex 

phenomenon in engineering. Currently, the numerical simulation gives us so much 

information, prediction or new knowledge in various research fields of all around the 

globe. When developing the computational algorithm for the simulation, the 

commercial demand may require the aspects of “practicality” and “low cost”, but the 

“reliance of solution” should be the top priority from the view point of ethics as 

engineers. 

Here, as introduced in every chapter of this study, TSM has both of the “accurate” 

and “practical” abilities. As mentioned previously, TSM is an expansion version of the 

displacement method. The displacement method is very easy and primary theory as to 

be a part of an educational program of engineering for undergraduate level. In other 
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word, it is simple and efficient method to be used for engineering practice.  

Moreover, TSM distinguishes the tangent geometric stiffness caused by the 

element’s rigid body displacement and the element stiffness caused by elements’ own 

deformations strictly. Hence, all of the solutions are guaranteed to satisfy the “perfect 

equilibrium”, and this is the main philosophy of TSM. Therefore, TSM has the 

potential to be applied extensively with strong robustness. 

This study demonstrates the superiority of TSM by considering two aspects of 

“form-finding” and “contact problems” through tensegrity which is one of the typical 

structural systems with strong geometrical nonlinearity. To conclude this study, the 

author has suggested a practical and efficient method that can be referred for future 

research, either for form-finding, path finding, folding behavior or contact problem for 

any kind of geometrically nonlinear case, with the aid of TSM. The knowledge 

obtained in this study can be a core hint to make it evident the essentials of the 

geometrical nonlinearly. 
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