# 動的締固め土の直接セン断特性について

## 藤本昌宣

(千拓水工学研究室) 昭和54年10月31月 受理

## On the Direct Shear Characteristics of the Dynamically Compacted Soil

### Masanobu Fujiмото

## (Laboratory of Shore Reclamation and Hydraulic Engineering) Received October 31, 1979

#### Summary

The characteristics of shear strength and volume change of dynamically compacted soil were investigated experimentally, by means of the direct shear method under a constant normal stress.

The following results were obtained from the experiment.

1) Within the range of smaller normal stresses ( $<3 \text{ kg/cm}^2$ ), the maximum shear strength appeared at water content somewhat lower than the optimum.

2) As normal stress increased, the statically compressive strain of the soil having large initial void ratio became larger and shear strength increased remarkably.

3) The relation curve between void ratio and logarithmic normal stress intersected the relation curve between void ratio and logarithmic shear strength at or near the point of the precompression stress, and under the condition similar to overconsolidation having normal stress less than the stress of intersection (precompression stress), shear strength was larger than normal stress.

4) Dilatancy index and vertical displacement at failure corresponded to the void ratio varying with water content and vertical stress.

## 1. 緒 言

盛土の安定的かつ経済的な設計を行なうためには,施工終了後にあらわれる締固め土のセン断 強さを正確に予想する必要がある.一般に,土に締固め仕事を加えると,土粒子の配列が変化し 密度は増加する.この結果,細粒土では付着力が増大し,粗粒土では粒子相互のかみ合わせがよ くなってセン断強さは増加する.締固めによる密度の増加がわずかであっても,セン断強さをは じめ工学的な性質に与える効果は非常に増幅される.

締固め土のセン断強度特性は締固め時の含水比,締固めエネルギー,締固め機械(方法)およ び締固め後の水浸の程度などによって影響される.Lambe<sup>1)</sup>は動的に締固めに土の構造を含水比 の変化に対応して解説し、さらに構造と締固め土のセン断特性との関連づけを行なった<sup>2)</sup>.また、 Seed ら<sup>3),4)</sup>は締固め土のセン断強さに影響する諸要因に対する土の構造の影響を実験的に明ら かにしている.わが国においても動的に締固めた土の強度特性に関する研究が数多くみられ る<sup>5),6),7),8)</sup>.しかしこれらの研究は締固めた土そのものの貫入抵抗試験や一軸圧縮試験、あるい は締固め後 3 kg/cm<sup>2</sup> 程度までの静的な垂直応力や側圧を加えた一面セン断試験や三軸圧縮試験 が大部分であり、これらは土を動的に締固めることによる特性がセン断強さに与える影響を明ら かにするのが主目的であると考えられる.本実験はフィルダムなどの土構造物の盛土に際して、 まき出し土の機械による転圧とその後の上載盛土の重量による静的な圧縮の両過程によって、盛 土はより密な安定した状態へ移行していくが、その間の力学的な挙動を実験的に把握しようとす るものである.つまり、動的に締固めた土に 0.1~12.8 kg/cm<sup>2</sup> の垂直応力を付加し、等圧一面 セン断試験によって、その圧縮量、体積変化およびセン断強さについて検討を行なったものであ る.

#### 2. 実験概要

試料は2種類のフィルダム用土とし、これらを風乾後、2mm フルイ通過分を実験に供試した. 供試土の物理的性質を Table 1 に、また粒径加積曲線を Fig. 1 に示す.

|                     | Sample A   | В          |
|---------------------|------------|------------|
| Specific Gravity    | 2,660      | 2,673      |
| Liquid Limit (%)    | 38.4       | 43.6       |
| Plastic Limit (%)   | 24.5       | 27.3       |
| Plastic Index       | 13.9       | 16.3       |
| Soil Classification | Sandy loam | Silty loam |

Table 1 Physical properties of soils

セン断試料の作成は動的な締固めによって行なった. 締固めは, 直径 6 cm のモールドと重量 1.1 kg, 落下高 30 cm のランマーを用い,

$$E_{c} = \frac{W_{R} \cdot H \cdot N_{B} \cdot N_{L}}{V} (\text{cm} \cdot \text{kg/cm}^{3})$$

ここに  $W_R$ : ランマーの重量 (kg) H: ランマーの落下高 (cm)  $N_B$ : 層当りの締固め回数  $N_L$ : 層の数 V: 締固めた供試体の体積 (cm<sup>3</sup>)

*E<sub>c</sub>*: 締固め仕事量 (cm·kg/cm<sup>3</sup>)





Fig. 2. Compaction curves.

で求めた  $E_o$ が, JIS A 1210 の第1方法のそれと等しくなるように層数1, 落下回数22とした. またセン断試料の均質化を目的として,モールド下部に圧密リング(直径 6 cm,高さ 2 cm)を はめこむことができるようにして,モールド内でのセン断試料作成位置を一定とした.このよう な締固めに対する締固め曲線を Fig. 2 に示す.この結果,両試料共に最適含水比  $w_{opt}$  は22%前 後である.これより,試料の含水比  $w \in w_{opt}$  と,乾燥側の10,14,18%および湿潤側の26, 30%の6段階に調整し,前述のモールドとランマーを用いて,1層22回の締固めを行ない,これ をセン断試料とした.

セン断試験は在来型の下部可動型の一面セン断試験機を使用し,垂直荷重pは標準圧密試験と 同様に0.1,0.2,0.4,0.8,1.6,3.2,6.4および12.8 kg/cm<sup>2</sup>とし,それぞれ30分間の圧縮 (飽和度の高い場合は,いわゆる一次圧密が終了するまで)ののち,等圧セン断試験を行なった。

#### 実験結果と考察

#### 3.1 動的な締固めと静的応力の付加による圧縮

供試土の締固め前のルーズな状態,これを前述のような要領で動的に締固めた状態,さらにこれ を静的な圧縮荷重によって圧縮した状態での間ゲキ比をそれぞれ e<sub>i</sub>, e<sub>a</sub>, e<sub>c</sub> とし,これらの間ゲキ 比 e と w の関係を Fig. 3 に示す. e<sub>i</sub> 曲線はそれぞれの含水状態の土の最もゆるい状態での e を 連らねたものである. これは砂の相対密度を求める場合の最大間ゲキ比 e<sub>max</sub> に相当するもので あるが,本実験に供試したような土で,かつ水分を含んでいる場合は,土が凝集して厳密な意味 での e<sub>max</sub> を求めることは不可能である.したがって,ここではそれぞれの含水状態の土の 2 mm フルイ通過分に対して最もゆるい状態をつくり,この場合の e を e<sub>i</sub> としている.このような e<sub>i</sub>



Fig. 3. Effect of normal stress and water content on void ratio and compressive strain.

は w の増加につれて実質部の容積が小さくなって次第に大きくなる. これを動的に締固めると, e<sub>a</sub> はいわゆる w<sub>opt</sub> で最小となる. さらにそれにつづく静的な圧縮によって, w<sub>opt</sub> 付近に比べて 乾燥側あるいは湿潤側の圧縮量が大きくなり e<sub>e</sub> の減少が卓越してくる.

次に、間ゲキ比の変化を圧縮ヒズミ € でみるために

$$arepsilon_{id} = rac{e_i - e_d}{1 + e_i}, \hspace{0.2cm} arepsilon_{ic} = rac{e_i - e_c}{1 + e_i}, \hspace{0.2cm} arepsilon_{dc} = rac{e_d - e_c}{1 + e_d}$$

として,これらを同様に Fig. 3 に示す. ただし、この場合  $e_e$  は p=12.8 kg/cm<sup>2</sup> での e を示し ている.  $\varepsilon_{ia}$  は動的締固めによるヒズミであり、湿潤側の方が乾燥側より大きいのは、 $e_i$  の差に もとづくものである.  $\varepsilon_{de}$  は動的締固めによるヒズミであり、 $w_{opt}$  よりやや乾燥側で最小値を示 す.  $\varepsilon_{de} \sim w$  曲線がこのような傾向になるのは、初期の間ゲキ比  $e_a$  (あるいは乾燥密度)の大小 と、圧縮に対する潤滑材としての水分量の多少の相乗効果と考えられる<sup>9)</sup>. さらに  $\varepsilon_{ie}$  は  $e_i$  を基 準にした p=12.8 kg/cm<sup>2</sup> 載荷後までの全ヒズミ量である.

このように,盛土材料となるような土では,その含水状態のちがいによって,動的あるいは静 的な締固め効果が著しく異る.

なお,静荷重を付加したあとの間ゲキ比 e。と log p の関係を Fig. 4 に示す. これは標準圧密 試験のような荷重増加率1の試験ではなくて,同一含水比の試料に対しては各荷重共,初期状態 の同じ試料に載荷した結果である.



#### **3.2** セン断破壊時における試料の体積変化

ー面セン断試験のセン断応力  $\tau$ , 垂直変位  $d_o$ ~水平変位  $d_h$  曲線において,  $\tau$  が最大値  $\tau_f$  に達 したときの  $d_v$ を  $d_{vf}$ とし, この値を曲線から読取り, pおよび w との関係で Fig. 5 に示す. 一般に等圧セン断においては, 試料の厚さはセン断の進行中, 膨張あるいは収縮によって増減す る. この図は  $\tau$  が最大値に達したときに, 試料厚さが初期厚さに比べて膨張, 収縮のいずれの 状態にあるかを示すものである. これによれば,  $d_{vf}$  は p の増加によって膨張をおさえられる ために相対的に小さくなり, さらに p が一定の場合は,  $d_{vf}$ ~w 曲線は Fig. 3 の  $e_c$ ~w 曲線に 対応して, e の小さい試料ほどその  $d_{vf}$  は大きい値を示している.  $d_{vf}$  をそれぞれの p で圧縮 後の間ゲキ比  $e_e$  との関係でみたのが Fig. 6 である. すなわち, p=0.1 kg/cm<sup>2</sup> では締固め時の 状態に支配されて, wの増加と共に  $e_e$  は減少し,  $d_{vf}$  は増加するが,  $w_{opt}$  以上になると再び  $e_e$ 



Fig. 5. The relationships between normal stress, water content and vertical displacement at failure.



Fig. 6. The relationships between normal stress, water content, void ratio and vertical displacement at failure.

は増加し, 逆に  $d_{of}$  は小さくなる. そして同じ  $e_o$  の場合は,  $w_{opt}$  より湿潤側の方が飽和度が 大きいため  $d_{of}$  は小さい.  $p=12.8 \text{ kg/cm}^2$  では静荷重の増加によって  $e_o$  は締固め直後に比べ て相当変化するが, やはり  $e_o$  の減少につれて  $d_{of}$  は大きくなる. また w が一定の場合の曲線 は Fig. 4 に示す  $e_o \sim \log p$  曲線と類似した形を示し,正規圧縮部と過圧縮部で異ったコウ配を もつほぼ2本の直線で近似することができる.

次に、土の体積変化特性をダイレタンシー指数であらわし、これについて考察する. 砂のセン 断抵抗は2つの部分から成ると考えられ、1つは砂粒子間のマサツ抵抗であり、他は砂粒子のか み合わせによるものである<sup>10)</sup>. Taylor は $\tau \sim d_n$  曲線の $\tau_f$  点において、膨張に必要なエネルギー を供給されるエネルギーに等しいとおくことによって、かみ合わせによる抵抗すなわち体積変化 に対する抵抗を求めた<sup>11)</sup>. すなわち  $\tau_f$  点において、4 $d_n$  の水平変位に対して 4 $d_n$  だけ試料の 厚さが増加した場合の体積変化に対する抵抗  $\tau_e$  は

$$\tau_e = p \left( \frac{\Delta d_v}{\Delta d_h} \right)_{\tau = \tau_f}$$

である. この  $(4d_v/4d_u)_{\tau=\tau_f}$  はダイレタンシー指数 D.I. と呼ばれ, 試料の膨張特性を示す指数 として粗粒土ではよく用いられている. この値は前述の  $d_{vf}$  とも関係するが,  $\tau_f$  に達したとき の試料が膨張収縮のいずれの過程にあるか, あるいはそのヒズミに対するコウ配の大きさを示す ものである. ダイレタンシーは本来, 砂質の盛土や基礎地盤の安定性を検討する一つの尺度とし ての限界間ゲキ比を求める際に用いられた. また三笠は土の力学的特性の要因として土の構造の 重要性を強調しており, セン断に伴う体積変化すなわち D.I. の正負によって構造の高低を分類 類している<sup>13)</sup>. 締固め土に関しては, Uchida らは福岡市周辺のマサ土を静的に締固めて三軸圧 縮試験を行ない, D.I. について次のような結果を得ている<sup>13)</sup>. すなわち, 側圧が小さいほど D.I. は大きくなり, *s*<sub>r</sub> が増すにつれて小さくなる. また, *e* が大きくなり側圧が大きいと D.I. は負 値を示すようになる.

本実験のように動的に締固めた土の一面セン断試験におけるセン断中の試料厚さの増減から求 められる D.I. についての結果を Fig. 7 に示す.動的締固めの場合は  $w_{opt}$  が存在し,  $w_{opt}$  より 湿潤側では p が一定の場合 w の増加によって D.I. の値は減少する.しかし,乾燥側では w と 共に増加する.この傾向は Fig. 5 に示す  $d_{vf}$  とほぼ曲線形が類似しており,さらに Fig. 3 の  $e_c \sim w$ 曲線に対抗している.また w が一定の場合 p が大きいほど D.I. は小さくなる.つまり  $d_{vf}$  のところで述べたように, p の大きさによって  $e_c \sim w$ 曲線は動的締固め後の曲線から静的な 圧縮の増大によってその形は徐々に変化し,  $e_c$  が最小となる w も移動してくる.このようなこ とから, p が一定の場合,  $e_c$  の小さい密な状態では,試料はセン断を受けても粒子間の結合力が 強いので,容易に平行な配列状態とはならずに,密な砂と同様にセン断面に沿って粒子がほかの 粒子を乗りこえる必要があり,その結果試料厚さが増加して D.I. 値も大きくなる. $e_c$  が大きく てゆるい状態では,このような現象はみられず,容易に安定な状態へ移行する.特に湿潤側では  $s_r$  も大きくなり,水の潤滑作用も加わって D.I. 値は小さくなる.また w が一定の場合は, p の 増加によって圧縮が進行すると,  $s_r$  が急速に増加するために,  $e_c$  が小さくなって密になるにも かかわらず, D.I. 値が減少するものと考えられる.



Fig. 7. Effect of normal stress and water content on Dilatancy Index.

#### 3.3 セン断強さ

本実験は動的に締固めた土に静的な応力を付加して圧縮させ、その結果セン断強さ r, がどのように増加していくか、また含水比 w によってその特性がどのように変化するか、などについて検討したものである.

土のセン断強さを実験室で測定する場合には、直接セン断(一般には一面セン断)試験と三軸 圧縮試験が広く行なわれ、それぞれ長短を有している。一般に取扱いが簡単なために直接セン断 試験が行なわれることが多く、さらに一面セン断試験には下部可動型と上部可動型があり、我が 国では前者が広く普及している。これら試験機の種類、機構の相違が試験結果に及ぼす影響を井 上は砂<sup>14)</sup> あるいは粘土質ローム<sup>8)</sup> について次のように報告している。 $\tau \sim d_h$  曲線のピーク時の  $\tau$  すなわち  $\tau_f$  は次のような各成分から成っている。

$$\tau_f = \sigma \tan \phi_{rf} + \sigma \left(\frac{\Delta d_v}{\Delta d_h}\right)_{\tau_f} + F_s$$

ここに  $\sigma$ : 垂直応力  $\sigma \tan \phi_{rf}$ : 摩擦抵抗  $\sigma (Ad_v/Ad_h)_{\tau f}$ : 体積変化に対する抵抗  $F_s$ : 側面摩擦

下部可動型一面セン断試験機の場合はセン断箱の両半部とも上下方向の移動に対して拘束されているため、機構上、上式の右辺第三項の $F_s$ が大きくなる傾向にある.したがって膨張性の大きい密な、特に乾燥した砂の場合にこれを使用することは不適当である.しかし、締固めた粘土質ロームの場合は砂に比べて間ゲキ比が大きいために、セン断中の試料の膨張性は小さく、 $F_s$ の影響はほとんどみられない.特に垂直応力が大きくなるほど $F_s$ は小さくなって、上下両可動型のそれぞれの $\tau \sim d_b$ 曲線は一致してくる.したがって、 $F_s$ の大きさを決定する要因はセン断中の試料の膨張性であるといえる.本実験の場合、試料が砂ではないこと、垂直応力が大きくなって密度が高くなったときのD.I.値はゼロに近いこと、などのために $F_s$ の影響は小さいものと考えられ、 $\tau_f$ をセン断強さとして採用した.

ー般に土を一定の締固めエネルギーで動的に締固めた場合の  $\tau_f$  は w によって変化し、 $w_{opt}$  よ りやや乾燥側で最大となるといわれている.そしてその理由を久野<sup>15)</sup> は次のように述べている. w<sub>opt</sub> よりやや乾燥側では、締固めによって土粒子がたがいに接近させられたとき、粒子間の水が 各粒子に付着し、その水と間ゲキの空気との間にメニスカスができ、その表面張力によって粒子間に強いつながりができるためである.これを裏付けるものとして久野<sup>5)</sup>、Seed  $ら^{3),4)}$ 、三国<sup>6)</sup>、その他数多くの実験結果が報告されている.



本実験における締固め後の静的な圧縮による  $\tau_f$  の変化を Fig. 8 に示す. これによれば,  $p=2 \text{ kg/cm}^2$  程度以下の比較的低応力領域では,前述のように  $w_{opt}$  よりやや乾燥側で  $\tau_f$  は最大値

Fig. 8. Effect of normal stress and water content on shear strength.



Fig. 9. The relationship between shear strength, normal stress, water content and void ratio.



を示している.これは静荷重付加後の e,~wの関係が,まだ締固め時のそれとほぼ類似している ためである.前に述べた従来の報告結果も,締固め土そのものの強さあるいは垂直応力または側

圧がせいぜい 3 kg/cm<sup>2</sup> 程度までのセン断強さを求めたものであり、同様に  $w_{opt}$  よりやや乾燥 側で強さは最大値を示すことになる.しかし、これ以上の応力レベルでは、やはり Fig. 3 に示 すような e の変化特性に対応して、逆に初期の乾燥密度  $\gamma_a$  の小さい部分の  $\tau_f$  の増加 が顕著に なるという特性があらわれる.そこで、締固め土への静荷重付加によって生ずる圧縮量からセン 断直前の間ゲキ比  $e_a$  (Fig. 4 ですでに示している)を求め、 $\tau_f$  と共に log p との関係で示したも のを Fig. 9 に示す.Hvorslev<sup>16)</sup> は飽和粘土の直接セン断試験(急速セン断)を行ない、正規圧 密状態ではセン断直前の w (あるいは e) と log  $\tau_f$  は直線関係にあり、同じ w と log p との関 係でできる直線と平行となり、かつ後者の直線が高応力部に位置することを図によって示してい る.このように log p と log  $\tau_f$  が w との関係で平行な直線になるということは、 $\tau_f$  と p が  $\tau_f = ap(\alpha>0)$  なる関係にあるということである.

締固め土の場合, Fig. 9 に示すように,ある圧縮降伏応力値  $p_v$  およびそれにつづく直線部を 有する  $e_c \sim \log p$  曲線に対して  $e_c \sim \log \tau_f$  曲線はこれと  $p_v$  あるいはその付近で交わる. この交点 より小さい p の領域では, $\tau_f$  曲線は p 曲線より上に位置し,締固めによる内部応力のために  $\tau_f > p$  となる. また交点より大きいp の領域では, $\tau_f$  曲線は p 曲線より下に位置し,飽和土と 同様に直線となるが,そのコウ配はp 曲線より急となり $\tau_f < p$  となる. したがって  $\tau_f = ap^{\beta}$  ( $\alpha >$ 0,0< $\beta$ <1) であらわされ, 圧縮応力の増加による強度増加を示す Fig. 10 の曲線は  $\log p$  の増 加によってコウ配が漸減することになる.

## 4. 摘 要

土を締固めた構造物の合理的な設計,施工および管理を行なうためには,締固め土の力学的特 性を十分に理解する必要がある.

本報告は、動的に締固めた土に対して等圧直接セン断を行ない、強度特性を実験的に検討した ものである.

1) 垂直応力が小さい場合は、セン断強さは最適含水比より乾燥側で最大値を示す.

2) 垂直応力が大きく(3 kg/cm<sup>2</sup> 以上)なると,静的な圧縮が進行して初期間ゲキ比の大きい土のセン断強さの増加が著しい.

3) 間ゲキ比一垂直応力(対数)曲線と間ゲキ比ーセン断強さ(対数)曲線は圧縮先行応力付近の応力で交わり,交点より小さい応力では過圧密性状を示して,セン断応力は垂直応力より大きくなる.

4) ダイレタンシー指数および破壊時の試料の垂直変位は、含水比および垂直応力の変化に よって生ずる間ゲキ比の変化と対応する.

#### 参考文献

- Lambe, T. W. (1958). The structure of compacted clay. Jour. of Soil Mech. and Found. Div., ASCE 84-SM 2. 19-22.
- Lambe, T. W. (1958). The engineering behavior of compacted clay. Jour. of Soil Mech. and Found. Div., ASCE 84-SM-2.14-31.
- Seed, H. B. and Chan, C. K. (1959). Structure and strength characteristics of compacted clays. Jour. of Soil Mech. and Found. Div., ASCE 85-SM 5, 87-128.
- Seed, H. B., Mitchell, J. K. and Chan, C. K. (1960). The strength of compacted cohesive soils. Research Conf. of Shear Strength of Cohesive Soils, ASCE. 877-964.
- 5) 久野悟郎 (1968). 土の締固め. 技報堂. 東京. pp. 63-85.

- 三国英四郎(1962). フィルタイプダムしゃ水壁材料の性質と締固めに関する研究(その1). 土と基礎 10.4-12.
- 7) 福住隆二・木村 薫(1963). 施工時の盛土地盤の強さに関する考察(その1). 土と基礎 11.19-24.
- 8) 井上広胤(1964). 不飽和締固め土のセン断. 土と基礎 12.31-36.
- 9) 藤本昌宣(1980). 動的ならびに半動的締固め土の一次元圧縮特性について. 佐賀大農彙 48.93-101.
- 10) 土質工学会編(1968). 土のセン断試験法に関する基礎的研究. 土質工学会. 東京, pp. 42-46.
- 11) Taylor, D. W. (1948). Fundamentals of Soil Mechanics, Johy Wiley and Sons, Inc. pp. 305-306.
- 12) 最上武雄(1969). 土質工学. 技報堂. 東京. pp. 514-515.
- Uchida, I., Matsumoto, R. and Onitsuka, K. (1968). Shear characteristics of compacted partially saturated soils. Soils and Foundations 8. 32-45.
- 14) 井上広胤 (1964). 砂の直接セン断に関する研究. 土木学会論文集 No. 101. 15-18.
- 15) 前出 5). pp. 50-53.
- Hvorslev, M. J. (1960). Physical Components of the shear strength of saturated clays. Research Conf. on Shear Strength of Cohesive Soils. ASCE. 194–196.