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Texture Analysis Using Gaussian Markov Random Fields
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This paper shows experimental results of texture analysis based on the Gaussian

Markov random fields (GMRF) model. The GMRF parameters ( mean, variance, and autocorrelation
function ) were estimated based on the maximum likelihood method using a simulated annealing (SA)
technique. The SA technique maximizes the likelihood function of the Fourier transform of the real
image. The estimated parameters were used for synthesizing artificial GMRF images which look
quite similar to the originals. The developed C-language programs for texture analysis and synthesis
using the GMRF model can be applied to any textual images. This paper reports essense of the

master thesis of Tingting Cao.
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1 Introduction

Texture is observed in the structural patterns of
surfaces of objects such as wood, grain, sand, and
cloth. The term texture generally refers to repetition
of basic texture elements called terels. Natural tex-
tures are generally random, whereas artificial texture
are often deterministic or periodic. Texture may be
coarse, fine, smooth, granulated, regular, or linear. In
an image analysis, texture is classified into two main
categories, statistical and structural. For statistical
analysis an image is specified by average properties.
For structural analysis, shape and character of reso-
lution cells are considered, and then the positions of
these resolution cells are determined. Texture analy-
sis is an important and useful area of machine vision.
One typical application is recognition of image regions
using the different texture properties in them. This is
called texture classification ().

An image is considered to be a sample function of
an array of random variables called a random field.
A two-dimensional random field is called Markov if
at every pixel location we can find a outside parti-
tion(future), a bundary partition(present) and inside
partition(past) of two-dimensional lattice set { (m,n)
}. Every Gaussian noncausal random field is a Markov
random field(MRF) (27 8),

In 1956, P. Lévy proposed a Markovian random
field. In 1972, J.W. Woods defined a Markov random
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field on a discrete space and led a two-dimensional
difference equation on the space (19 In 1974,
B.H.McCormick and S.N. Jayaramamurthy done Tex-
ture synthesis based on a time series model. In
1983, G.R.Cross and A.K.Jain showed texture anal-
ysis based on the Markov random field models ().
In 1984, S. Geman, D. Geman used stochastic re-
laxation and annealing techniques for computing the
maximum a posteriori estimate of an image (). In
1985, R. Chellappa, S. Chatterjee done texture clas-
sification based on Gaussian Markov random fields(
GMRF ) model (V. In 1991, F. S. Cohen et al. ex-
tended the the GMRF model thory and classified ro-
tated and scaled textures (3,

2 Textures

There is not a comprehensive and precise defini-
tion of texture of images. We recognize texture when
we see it but it is not easy to define. There are many
different definitions of textures. For example, two dif-
ferent definitions are given below.

“ A region in an image has a constant texrture if
a set of local statistics or other local properties of the
picture are constant, slowly varying, or approximately
periodic.”

- “The notion of texture appears to depend upon
three ingredients: (i) some local ‘order’ is repeated
over a region which is larger in comparison to the
order’s size, (ii) the order consists in the nonran-
dom arrangement of elementary parts, (iii) the parts
are roughly uniform entities having approximately the
same dimensions everywhere in the textured region.”
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Fig.1  Artifical texture
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Fig.2  Natural texture

In general “texture” means repeated mode of in-
tensity change in some region of an image. Formation
mechanism of texture is changed on some area of an
image.

3 Gaussian Markov Random
Fields

In stochastic representation, an image can be con-
sidered to be a sample function of an array of random
variables called a random field. In the discrete Gaus-
sian Markov random fields models, the gray value of
any pixel can be modeled and given by:

Fg) =3 fli=k.g=Dhk.D) +n(.5), (1)

L)

where Y is defined at a neighborhood set of piexls {
(4,7) } . fli—k,7—0Dh(k,1) is a linear combination of
the gray value on the neighborhood, h(k, 1) is a weight
coeficient at (k,l) , and n(i, 7) is a linear noise.

Random field: v

Z is a lattice set on a two-dimensional real plane,
that is, Z = {(4,7)| — (N/2—-1) < ¢,57 < N/2} ,
where i, j are integers, N is an even integer. Let Rg
be a random space, A = {1,2,....l} be a parameter
set, and S = {0,1,2,..., M} be state space ( a set of
gray-levels ) . Let X;; : Rg — S fori,j € Abea
random variable, then X = {X;, :4,j € A} is called a
random field on Z .

Neighborhood set:

For a given parametr set A, if D = {D; ; C A x A :
i.j € A} satisfy:

(1) (.j)€Di; ,

(2) if (1]) € Diz,jz then (ig,jg) € Di,’j s
then D is called a neighborhood set on A x A. D, ;
is called the neighbors of (i,7). The c-neighborhood
D' is defined by D) = {(k.))|(k,1) € Z.0 < (k —
)2+ (1 - 5)* <}

Forc=1,
DY = {(i— 1) +1,7). (6. j — 1)(ij + 1)} .
For ¢ = 2,

D = {(i-1,j-1),6,j—1),(i+1,j— 1),
(i—1.7),(G+1,5),G—-1,j+1),
(i,j+1).(i+1,5+1)}.

Connected set:
Let D be a neighborhood set, if C = {C, : a € A}
satisfy:
(1) Ca CTA XA
(2) for all the ( 41,51 ), (i2,52 ) € Cy,
there is (¢,7) € Dy, j,.
then C is called a connected set about the D.

GMRF about neighborhood set:

Let X ={X,, :4,j € A} be a random field, and D
be a neighborhood set. Let X; ; be a sample from a
Gaussian distribution. For all the (i,j) € A x A, the
conditional probability satisfies the equation below:

p{Xi; = x| X =z, (k1) # (4,5)}
=p{Xi; = xi;| Xy =z, (k1) € D; 5}

X is called GMRF about the neighborhood set D .

4 GMRF Models of Textures

4.1 Power Spectral Density of Image

Let gg(m,n) be the intensity of an image at pixel
(m,n) . The GMRF is stationary non-causal two-
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Table 1 Neighborhood D, of the pixel labeled ”
x " for different orders p of the GMRF model. The
numbers indicate the order of the model relative to ”
x "

918|716 |7|8]9
8543|458
71412112147
6|31 | x|1]3|6
71412141247
8543|458
918|716 |7[8]9

dimensional autoregressive process described by the
following equation:

go(m.n) = p+ Y BkDlga(m —k.n—1) = p]
k.IEDT,
+  v(m,n), (2)

where {3(k,l)} are parameters, p is the mean of
go(m,n) , and D, is a neighborhood set. The pixels
which enter D,, can be arbitrarily defined, however it
is natural to consider only neighbors which are spa-
tially close to the pixel at (m,n). Neighborhood sets
D, for p <9, where p is the order of the model. are
shown in Table 1

o2, if (k,1)=1(0,0)
R, (k)= —a?p(k.1), if (k)€ D, (3)
0. otherwise.

The symmetry property 3(k,l) = 3(—k, —1) follows
from the symmetry of the autocorrelation function as-
sociated with go(m,n) .

Rlgo(k.1)] = Rlgo(—k. 1)) (4)

The GMRF is parametrized by -a relatively
small parameter set v = (u,02, 3). g =
(Br.0:P01.51.1,51.-1,...) . The power spectral den-
sity (PSD) associated with g(m,n) = [go(m,n) — u] is
given by

Se(Qu.0) =0"/

k. € Dy

{1- > /3(k,l)exp[~i(kﬂl+192)]}, (5)

where i = /—1.

Let G = {G(m,n) | =(N/2-1) < m,n < N/2}
be the two-dimensional discrete Fourier Transform
(DFT) of {gy — U} . where g, an image of N x N
, and U is the diagonal matrix of the mean u . The
discrete Fourier transform G(m,n) is defined as

Nj2—-1 N/2-1

G(m,n) = Z Z [go(k, 1) — p
k=—N/2i=—N/2

x exp{{—v—1(21/N)[mk + nl]}}.
(6)

4.2 GMRF Parameter Estimation

To estimate the parameter set v = (y, o?, B ) of
the GMRF, the maximum likelihood estimates (MLE)
were calculated. The method is very powerful for esti-
mating parameters of probability functions. The like-
lihood function of the N x N image g is given by

plgln) = (1/27N28g(m.n)1/2
S (N/2-1)<m.n<N/2

x exp 4 — [ Gim.n) |2 J2N2Sg(m.n)} .
—(N/2-1)<m.n<N/2

(M)

The discrete power spectral density S,(m,n) is
given by evaluating the continuous power spectrai
density S,(€1.92) shown in Eq.5 at Q; = 27m/N
,and Qo =27mn/N .

4.3 Simulated Annealing Technique

Simulated Annealing (SA) is a stochastic search
method in which a randomly selected purturbation to
the current configuration is acceped or rejected prob-
abilistically. The optimal answer could be found by
simulating annealing process.

Let S = {1, 52, ...5,,} be a set of all possible state.
C . S — R is a nonnegative function, C(S;}) > 0,
where R is a real field. It shows the condition to take
S; as an answer, then the combinatorial optimization
problems could be expressed:

For S* € 5, let C(S*) =min{C(S;)} VS, €S .

The essential idea of SA method is: S; is regarded
as a microcosmic state of some material system, C(S;)
is regarded as the intrinsic energy of the material sys-
tem in S; state. In simulated annealing, a parameter
of temperature T is used. Let T falls slowly from a
enough high temperature. For every T, heat equi-
librium state of the system at T is simulated on the
computer using the Metropolis sampling (%). The cur-
rent state S is stirred and a new state S’ would be
produced, then the increment is computed: AC’
= C(S) - C(9). S’ is accepted as a new state
by probability exp(AC/kT). The process is repeated
for enough times. The probability of the state S; is
defined by

p(Si) = Z(T)™" exp(=C(S;)/kT), (8)
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where Z(T) = Y. exp{—C(S;)/kT} ( the partition

;
function ) and k is the Boltzmann constant.
If T falls very slowly, and 7" — 0 , the current state
would has the minimum C(S;) .

This idea could be expressed as algorithms below,
including the Metropolis sampling and the Realize an-
nealing process.

(1) Realize annealing process algorithm

1. Select an initial state Sy arbitrarily, S(0) = So.
Set an initial temperature Ty and let i be zero;
1=0.

2. Let T = T;, the Metropolis sampling method is
applied by T and S, return the current answer
that is received at last as the current answer .S; =

S.

3. Fall temperature T by a certain way, that is ,
T=Tiw1:Tig1 <T; .

4. Check if the annealing process has finished. If
the process had finished, go to 5: otherwise, go
to 2.

5. Output the current answer as the optimal answer.
(2) Metropolis sampling

1. Let S(0) = S be the current answer when k = 0.
The next steps will be done in 7" condiction.

2. On the state S of the current answer S(k) , a new
state S’ is a candidate answer of the next current
answer by computing AC’ = C(8') — C(S(k))

If AC’ < 0, then S’ is accepted as the next
current answer with probability exp(—AC'/kT).
If S’ was accepted, then let S(k+ 1) = 5, oth-
erwise, let S(k+ 1) = S(k).

3. Increase k ; k = k+1 . Check if the method has
finished or not by some convergent criterion. If
ves, go to 4, otherwise, go to 2.

4. Return the current answer S(k) to the annealing
algorithm.

4.4 Texture Synthesis

Let

= {(m ) : 7(N/2—1) < m,n < N/2},Rigp =
(o) (0,00, (00N/2), (N/2.0), (N2, N /2 =
{(m,n): 0<mn< N/2} U{(mn —(N/2-1)<
m<—11<n<N/2—l} RQ Rl R1R~
The discrete Fourier transform of g(m.n) is given be-
low.
1) (m,n) € Ry, G(m,n) is generated by randomly
selecting G(m, n) from a complex circulary symmetric

Gaussian random number generator with zero mean
and variance N2S,(m,n), where Sy(m,n) is given
in Eq.5 at Q; =27rm/N , and Qy =27n/N .

2) (m,n) € Rig , G(m,n) is generated by ran-
domly selecting G(m,n) from a real Gaussian ran-
dom number generator with zero mean and variance
N2S,(m.n) .

3) (m,n) € Ry — Ry . G(m,n) is determind com-
pletory from G{(m.n) for (m,n) € R1 because of the
symmetry property of the DFT.

The inverse discrete Fourier transform (IDFT) of G
is taken first, after that the u is added at each pixel
point. Then the required texture image based on the
MRF is given.

5 Experimental Results

5.1 Objectives

This is the first simple test and shows whether the
parameters have been estimated correctly. The other
test is to synthesize textures using the estimated pa-
rameters and to compare them with the real textures.
The models can be considered correct if the syntesized
textures using the extracted parameters look exactly
like the input images. To estimate statistical parame-
ters for real textures and to generate artificial textures
using the obtained parameters , two programs were
writen in C language. The first program estimates
the parameters of images using the GMRF model and
the second one synsesizes textured images using the
parameters. The program for extracting the param-
eters was made to use a sample image of small size,
usually 32x32 or 64x64, from a much larger image.
Since larger images need a significant computational
burden and they are not neccessary.

5.2 Program for GMRF Parameter
Estimation

The program for estimating the GMRF parameter
set v = (u,0?, 3) from an image was developed and
applied to real photographs of textures. The program
uses the maximum likelihood estimate (MLE) method
for obtaining 4 ®) . The program started by selecting
a sample image from the larger black & white input
image with size 512x512 pixels. The sample image
was selected by taking a piece of size N x N (N is a
power of two. typically 64 or 128) so that its top left
corner was at the point (CUTX,CUTY) of the input
image. This image was placed in the array gO[N][N].
Then the average intensity ( u ) of the sample image
was calculated and subtracted from each pixel, result-
ing in a zero-mean image, placed in the array g[N][N].
At that point the image variance ( 02 ) was calculated
as well.
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The next step of the program is to calculate the
forward DFT of the sample image. This is done using
the routine for n-dimensional FFT fourn described in
Numerical Recipes in C : Cambridge University Press
. This routine converts an n-dimensional complex ar-
ray, represented as an 1-D array, into its Fourier trans-
form. The array g[N][N] is placed into the 1-D array
cplg[2N?] .

After the end of the FFT routine. output of the
fourn is placed again in the same array cplg[2N?].
This array starts with zero frequency of the spectrum,
continues to the highest positive frequency (at index
N), then all the negative frequencies follow, starting
with the highest to the lowest one at index 2/N. This
is repeated N times, corresponding to all the columns
of the original N x N array.

The resulting two arrays Re[N][N] and Im[N][N]
have the same placement of the Fourier spectrum
G(m,n) as that required in %):

G(m,n) =

N/2-1 N/2-1

9
Z z g(k. 1) exp{—i(2n/N)[mk + nl]} . ®)

k=—N/21=—N/2

In (9), ¢ = +/-1 and G(m.n) = Re[m]n] +
iIm[m][n]. Further, the program calculates the like-
lihood function p(g|v), given as

N/2

1 1/2
H J (27TNQSg(m,n)>

mn=—(N/2—1

N/2
X exp (~ Z

m.n=—(N/2-1)

pgly) =

|G(m. 77)2/21V25'g(7r1f,1'1)> ;
(10)
where
(G(m.n)* = (Re[G(m.n)))? + (Im|G(m.n)))?.

The discrete power spectral density S,(m,n) is given
by

Sy(m,n) =a°/

1-2 Z B(k, 1) cos[(2n /N )(mk + nl)]

k.l € D,
(11)

where D;, is the non-symmetric half-plane of the
neighborhood set D, shown in Table 2 . The set
D,, can be used instead of D', because of the symime-
try of the parameters 3 : 3(k,l) = B(—k,—l) . This
reduces the number of independent parameters. The
number of parameters 3 as a function of the order of
the model can be calculated and is given in Table
3 .From symmetry consideration there are 8 possible

ways in which the set D;) can be selected from D,

The set D;, used here consists from the lower left part
of the indices of D,,, as shown in Table 4 .

Table 2 Neighborhood D,, of the pixel labeled ™ x
" for different orders of the GMRF model. The index
shows the number of elements in each order. Elements
with the same index have equal values.

91 | 8& | T2 | 62| 75| 8| 9
81 181 |42 | 32| 43| 52| 84
T4 |21 | 1o | 29 | 44| Ts
61131 | 14 X 1; | 31 | 64
Tqg |49 |20 |10} 21 |4 | 71
84 | Do 1 43 | 32| 42| 57 | &
92 | 8 | 73 | 62 | T2 | 8 | 91

Table 3 Number of parameters of the GMRF model
as a function of its order. The additional 2 parameters
except 3(k.1) are o2 and p.

Order | Number of parameters
1 242

4+ 2

6+ 2

10 + 2

12 4+ 2

14 +2

18+ 2

22 4+ 2

244+ 2

OO || U x| DO

The MLE of the GMRF parameter set + is obtained
by maximizing (10) with respect to 7. In case of 9"
order GMRF 25 parameters have to be obtained be-
cause p = 0, since we use images with zero mean.
The maximization of p(g | 7) can be reduced to the

Table4  One of the possible neighborhoods D;} of the
pixel labeled 7 x 7 for different orders of the GMRF
model.

91 | 8 | 72
81| 51| 4
4| 2

61 31 11 X
T4 | 44| 22| 1o
84 | 5o | 43 | 32
92 | 83 | 73 | 62




6 Tingting Cao, Hisao Tokushima, Yoshio Noguchi

simpler task of maximizing its logarithm, given as

, N2 1
| N = °
np(g [7)] = - In5—
1 N/2 )
w20y (_>
2 n1411=~(1\'/2V1) Sg(nl’fn') (12)
2N Sg(m.n)

mn=—(N/2-1)

The first term in (12) is a constant and can be omit-
ted. The value of S,(m,n) must be positive, because
it enters the denominator and is the argument of the
logarithm in (12). However, the value of Sy(m,n)
can change its sign as the 3(k,1) vary, therefore only
positive Sy(m,n) should be allowed to enter (12). If
Sg(m.n) is not positive for certain indices (m.n) the
subroutine for calculating (12) returns a value much
smaller than the typical In[p(g | 7)]. In this way non-
positive S, (m,n) are excluded from the calculation.

The maximization procedure applied in the pro-
gram uses the Simulated Annealing (SA) technique as
a main algorithm. This is required because the log-
arithmic function of Eq.(12) has many local maxima
and its maximization by other methods are difficult.
The SA is much more robust and can handle to a large
extent problems with many local maxima.

To make the conversion faster, a simple Golden
Section Search procedure for maximization to
only one variable is used in the main SA loop. The
Search is a very reliable method for finding the global
maximum of a function which can have many local
maxima. The range in which golden1 varies 3(k,1)
in search for the maximum has been limited to [—1, 1].
The algorthm is as follows: ’

1. Read initial approximations for the ¢? and j
from a file. If the file does not exist, the program
put 3 = 0.

2. Maximize In[p(g | 7)] with respect to o2, using
the initial 3. The subroutine for that is golden2.

3. Randomly choose two elements (k,1) and (m,n)
from the neighborhood D;). where (k,1) # (m,n).
Store their values in the temporary variables a
and b.

4. Add to B(m,n) a random number in the range
(—scale, scale), where scale < 1.

Maximize In[p(g | )] with respect to 8(k,1). us-
ing the procedure goldenl. This gives a new
value for (k. 1).

[}

6. Compare the calculated In[p(g | ~)] with that
from the previous iteration.
If a new maximum has been achieved, store
B(m.n) and B(k,1) as new estimations.
If the new In[p(g | 7)] is not larger than the old
maximum, it still can be accepted because of the
method of SA. We use the Metropolis proce-
dure, which compares a random number in the
range [0,1) with the probability exp(—de/T)
where

de = ln[p(g I Fy)]uld - ln[p(g l ’Y)]neua (13)

and T is a parameter, equivalent to temperature
in real-world physical systems. Let rand[0,1)
be a generated random rumber. If

rand[0,1) < exp(—de/T).

then the In[p(g | 7)]new is accepted as new esti-
mation. The probability of accepting higher de
decreases exponentially and can be controlled by
the parameter T

As the number of iterations progresses, T is de-
creased so that accepting big values of de be-
comes less probable. The Metropolis procedure
is implemented in the subroutine metrop(de,t)
described in the Numerical Recipes in C.

=1

If the new value of In[p(g | 7)] has been accepted,
maximize again In[p(g | 7)] with respect to o2
using the new values of 3(m.,n) and g(k,1). I
not, restore 3(m.n) and 3(k.l) to their original
values a and b .

8. Check the number of times each element 3 from
the neighborhood D; has changed so far. If the
number of changes exceeds certain limit, exit the
loop and decrease scale and T' according to the
annealing schedule. Smaller scale makes the de-
viations of 3(m,n) smaller until the desired pre-
cision is achieved.

9. Repeat steps 3 to 8 until the procedure cannot
change In[p(g | v)] any more.

10. Write the obtained parameters o and 3 to file.
The SA regires some tuning of the annealing
schedule and the rate with which the parame-
ter scale decreases with the number of iterations.
This is done experimentally.

The program can handle GMRF models of any or-
der, provided that the user writes a mask file giving
the correct neighborhood D;). Those can be easily
obtained from Table 2 and Table 4 . For example.
the contents of the mask files for GMRF models with
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Table 5  Mask files for GMRF models with orders
from 9" to 4",
9th order &7 order
1 1 1 [§] 0 0 0 Q 1 1 0 0 4] [
1 1 1 0 ) 0 0 1 1 1 0 0 4] 0
1 1 1 8] [4] 0 [ 1 1 1 0 0 0 0
1 1 1 [0} 4] 0 [ 1 1 1 [4] [4] [4] 0
1 1 1 1 0 0 0 T 1 1 1 [§] [8] [0}
1 1 1 1 [9) 0 0 1 1 1 1 0 [4] 4]
1 1 1 1 0 0 0 0 1 1 1 [§] 1) [5)
70 order 6" order
0 [9) 1 [9) 1) 1) 4] Q 0 0 4] 0 4] 0
0 1 1 9] 9] [ 0 0 1 1 (] O [§] [
1 1 1 9] [4] 0 0 0 1 1 0 0 [4] [4
1 1 1 0 0 [9) 0 1 1 1 0 [§] 1) [§]
1 1 1 1 ) [4] 0 Q 1 1 1 0 [§) 0
0 1 1 1 9] 9] 0 Q 1 1 1 Q Q 0
0 0 1 1 0 0 0 0 0 0 1 0 [4] [6)
5th order 4P order
0 [} 9] 0 0 O 0 0 [ [¢) 0 [8] 4] [4]
0 1 1 0 0 [ 0 [s] [9) 1 0 0 [4] [9)
0 1 1 [4) 9] [ 0 0 1 1 0 0 [4] []]
0 1 1 0 4] 0 3] 0 1 1 [0) 0 [§) Y
0 1 1 1 4 0 [4) [0 1 1 1 0 0 3]
0 1 1 1 0 [} (4] 0 0 1 1 0 0 0
0 0 0 0 0 [ 0 0 0 0 0 0 (9] [

order from 9% to 4! are given in Table 5 . The
program files the test image and its Fourier spectrum
Re[N][N] and Im[N][N] in ASCII format.

The program gmrf_extract.c runs in Linux envi-
ronment and it takes significant amount of computer
time to execute. The FFT of the test image is very
fast, however the maximization of the likelihood func-
tion is the most time-consuming task. Because the
likelihood function has many local maxima. We are
quite confident that the parameters found correspond
to the global maximum.

5.3 Test Images and Estimated Pa-
rameters

Two test images were used for obtaining their
GMRF parameters. Both are close-up photographs
of handkerchiefs, shown on Fig.3 and Fig. 4 .
The images have 512x512 pixels with 256 gray scale
levels. Several sample images with 64x64 pixels were
taken from each of these images and the algorithm
for extraction of GMRF parameters was applied on
them. GMRF model of 9-th order was used because
it can capture the details of the image than lower or-
der models.

Both images have distinct deterministic features
with large spatial periods. The image on Fig. 3 has
white horizontal and black vertical lines and we can
notice wide vertical stripes in the image on Fig. 4. To
capture these features, we will require GMRF model
of very large order. For the image on Fig. 3 it is possi-
ble to choose such a test image with size 64 x64 pixels
( test image 1 shown in Fig.5(a) ) , so that it falls
between the lines. The test image can be described
quite well by GMRF model. For the test image 2
shown in Fig.6(a) , it is impossible to select a 64 x64
pixel frame which does not touch the vertical stripes.

Fig.3 Input image 1 with size 512x512 pixels.

Therefore the GMRF model parameters were not be
as good as that of the test image 1.

Higher values of In[p(g|y)] were achived in the maxi-
mization of parameters for the picture shown on Fig. 3
than for the picture on Fig. 4. The first picture ( the
test image 1 ) is well described by the GMRF model
than the second one.

Fig.4

Input image 2.

5.4 Generation of GMRF Images

To verify the GMRF extraction algorithm, the pro-
gram gmrf_-make.c was created. It can generate
GMRF images from the set of parameters v = (u, 0.
3), extracted by gmrf_extract.c using the method
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Table 6 GMRF parameters 3 (9-th order), obtained
from a sample from image 1 with size 64x64 pixels.
Element 3(0,0) is in the upper left corner; element
B3(6,0) is in the lower left corner; element 3(6,3) is in
the middle of the bottom row of the table. This is the
output of the program gmrf_extract.c. The remaining
2 parameters are u = 89 and o2 = 1439.8; the error
is below 1073,

-0.0408 | -0.0597 | -0.0025

-0.0519 | -0.0347 | 0.1044

0.0004 | -0.0598 | -0.1002

0.1691 0.2028 | -0.0973 X

-0.0390 | -0.0599 | -0.0786 | 0.2331
-0.1200 | -0.0660 | 0.1480 | 0.0013
-0.0049 | -0.0624 | -0.0739 | 0.1072

Table 7 GMRF parameters 3 (9-th order), obtained

from a sample from image 2 with size 64 x64 pixels.
The remaining 2 parameters are y = 59 and o2 =

1474.58.

-0.0347 | -0.0022 | -0.0476

0.0355 { 0.0713 | 0.0736

-0.0701 | -0.0195 | -0.0997

0.2895 | -0.0086 | 0.0473 X
-0.0432 | -0.0377 | -0.1004 | 0.3159
0.0018 | 0.0472 | 0.0508 | -0.1380
-0.0151 | 0.0180 | -0.0134 | 0.1230

described in (¥, The generation of GMRF images is
very fast. It consists of two steps: 1) generation of
the FFT spectrum G(m,n) of the GMRF image; and
2) taking inverse Fourier transform on the generated
G(m,n).

The detailed description of the algorithm on the
program gmrf _make.c is as follows:

1. The GMRF parameter set is read form a file.

2. Two arrays, Re[N][N] and Im[N][N] are set ini-
tially to zero. They hold the real and the imagi-
nary parts of G(m,n).

3. S4(m,n) is calculated according to (11) for each
—(N/2-1)<m < N/2, —(N/2—1)<n < N/2
and stored in an array.

4. For indices 0 < m < N/2,0 < n < N/2, and
—(N/2-1)<m < —-1,1<n<(N/2-1) the ar-
rays Re[N][N] and Im[N][N] are filled with ran-
dom numbers with Gaussian distribution. zero
mean and variance

o? = N2S,(m,n). (14)

Random numbers with Gaussian propability
function

p(x) = \/127 exp <~§> : (15)

corresponding to zero mean and unit variance can
be generated using the method described in Nu-
merical Recipes in C :

gasdev = /—2logxy cos(2mxz), (16)

where x; and o are two independent random
numbers in the range (0,1]. From (16) it is easy
to generate random numbers with arbitrary vari-
ance and mean values.

5. The elements of Re[N][N] with indices (0,0).
(0,N/2), (N/2.0) and (N/2,N/2) are filled with
numbers generated from the same Gaussian dis-
tributed random generator ( See Eq. 14 ). The
elements of I'm[N][N] with the same indices are
set to zero.

6. The rest of the array G(m.n) is reconstructed us-
ing the symmetry property of the FFT spectrum
of a real image:

G(—=m,—n) = G*(m,n), (17)

where G*(m,n) is the complex conjugate of

G(m.,n).

7. Inverse FFT to the G(m.n) is taken, which pro-
duces real image of the GMRF .model.

The synthesized images were output in ASCII for-
mat. The biggest computational burden is the IFFT
calculation, however it is done only once and the al-
gorithm is very fast.

Fig. 5a,Fig. 5b. Fig. 6 a, and Fig. 6
b show close-up views of both the sample images of
size 64 x 64 pixels and the synthesized images with the
same size. We can notice that the generated images
look quite similar to the source textures. The syn-
thesized images have the distinctive micro texture of
the sample images. This shows that both algorithms,
for parameter extraction and image generation. are
correct and give good results. However. it can be no-
ticed that the sample image 1 is significantly better
described by GMRF model than the sample image 2.
Because the likelihood function of the image 1 had
higher maximum than that of the image 2.

Fig.5 shows that pixels with approximately equal
gray levels are separated by 2 pixels in the horizontal
direction. The same patter can be observed in the
matrices of GMRF parameters [ in Tables 6 and
Table 7 .

On Fig. 7 we can see how the GMRF model has
captured properly the microtexture of the image. but
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Fig.b Close-up view of sample image with size
64x64 pixels, taken from the input image 1 (a) and
synthesized GMRF image (b). The sample image was
taken form the left part of the input image with cut
points (x,y) = (100, 0), which is away from the verti-
cal and the horizontal stripes. The images are mag-
nified 2 times.

LI s n ikl
Py CaRdd
Ly g B Ed sy EgrRm

Fig.6 Close-up view of sample image with size
64x64 pixels, taken from the input image 2 (a) and
synthesized GMRF image (b). The sample image was
taken form the left part of the input image with cut
points (z.y) = (100,0). The images are magnified 2
times.

not the macrotexture consisting of vertical and hori-
zontal strips. This is natural since the sample image
does not include the macrotexture.

The GMRF model of the image 2 (Fig. 8(a)) is
less successful in describing the real image because
the image of size 64 x64 pixels always includes part
of the wide vertical strips, and therefore it is not uni-
formly textured. The GMRF model of such nonuni-
form texture is not very close to the original, which
is expected. Unfortunately, sample images with sizes
32x32 pixels also include part of the strips and their
GMRF model is only slightly better.

Table 8 shows the GMRF parameters of the im-
age 2 using sample with size of 32x32. It can be
noticed that they are quite similar to those extracted
from 64 x64 sample image (Table 7). The synthesized
GMRF image, generated from the parameters from
Table 8. resembles its real image only slightly better
than the synthesized one using a 64 x64 sample image

. e s ..

Fig.7 Sample image with size 256 x 256 pixels, taken
from input image 1 (a) and synthesized GMRF image
(b). The sample image was taken form the left part
of the input image with cut points (z,y) = (0,0).

a) b)

Fig.8 Sample image with size 256 x 256 pixels, taken
from input image 2 (a) and synthesized GMRF image
(b). The sample image was taken form the left part
of the input image with cut points (x,y) = (0.0).

on Fig. 8(a).

6 Conclusion

The programs for analyzing and synthesizing real
textured images based on GMRF model had been
developed. The algorithm for extracting statistical
parameters adopted the Simulated Annealing tech-
nique for maximization of the likelihood function of

Table 8 GMRF parameters 3 (9-th order), obtained
from a sample from image 2 with size 32x32 pixels.
The remaining 2 parameters are u = 54.0 and 0?2 =
1762.7

-0.0180 | -0.0368 | -0.0424

0.0289 | 0.0832 | 0.0203

-0.0961 | -0.0357 | -0.0952

0.2936 | -0.0265 | 0.0210 X
-0.0584 | -0.0439 | -0.0916 | 0.2874
0.0084 | 0.0313 | -0.0101 | -0.1561
-0.0387 | -0.0027 | -0.0232 | 0.0955
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Fig.9 Synthesized GMRF image from sample of im-
age 2 with size 32x32 pixels.

the Fourier transform of an image with respect to the
GMRF parameters. The maximization used a com-
bination of two methods ( the Golden Section Search
and the Metropolis procedure ). The Golden Sec-
tion Search was used for maximizing only one vari-
able, here only one of the GMRF parameter set, cou-
pled within the main SA loop which searched for the
maximum in multidimensions. These two methods
combine the best features of both and result in fast
and reliable routine for maximization of a function of
many variables with many local maxima.

The estimated parameters were used for synthesiz-
ing artificial textured images of the GMRF model.
The synthesized images look similar to the original
ones. However, microstructures of the texture re-
lated with more than third order statistics had been
ignored. Because, extracted parameters were prin-
cipally belonged to second order statistics. Some of
the syntesized images are presented together with the
input images used for parameter estimation. The im-
portant features of GMRF models were revealed. The
features capture the microtexture of images and han-
dle the macrotextures. The results about the image
synthesis are discussed in detail. The developed pro-
grams can be used to textured images in wide range
of applications.
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