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Abstract: Initial starting points those generated randomly by K-means often make the clustering results 
reaching the local optima. The better results of K-means clustering can be achieved after computing more 
than one times. However, it is difficult to decide the computation limit, which can give the better result. 
In this paper, we propose a new approach to optimize the initial centroids for K-means. It utilizes all the 
clustering results of K-means in certain times, even though some of them reach the local optima. Then, 
we transform the result by combining with Hierarchical algorithm in order to determine the initial 
centroids for K-means. The experimental results show how effective the proposed method to improve the 
clustering results by K-means. 
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1. Introduction 

Clustering is an effort to classify similar objects in 
the same groups. Cluster analysis constructs good cluster 
when the members of a cluster have a high degree of 
similarity to each other (internal homogeneity) and are 
not like members of other clusters (external 
homogeneity) (Grow, 1999; Castro, 2002). It means 
process to define a mapping f:D C from some data 
D={d1,d2,..,dn} to some clusters C={c1,c2,..,cn} on 
similarity between di. There many applications of 
clustering diverse in many fields, such as data mining, 
pattern recognition, image classification, biological 
sciences, marketing, city-planning, document retrievals, 
etc. 

The most well known methods for clustering is 
K-means developed by Mac Queen in 1967. The 
simplicity of K-means made this algorithm used in 
various fields. K-means is a partition clustering method 
that separates data into k mutually excessive groups. By 
iterative such partitioning, K-means minimizes the sum 
of distance from each data to its clusters. K-means 
method is very popular because of its ability to cluster 
huge data, and also outliers, quickly and efficiently. It 
remains a basic framework for developing numerical or 
conceptual clustering systems because various 
possibilities of distance and prototype choice 
(Ralambondrainy, 1995). 

However, K-means algorithm is very sensitive in 
initial starting points. K-means generates initial cluster 
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randomly. When random initial starting points close to 
the final solution, K-means has high possibility to find 
out the cluster center. Otherwise, it will lead to incorrect 
clustering results (Cheung, 2003). Because of initial 
starting points generated randomly, K-means does not 
guarantee the unique clustering results. (Shehroz and 
Ahmad, 2004). K-means method is difficult to reach 
global optimum, but only in local minimum (Kövesi, 
2001). 

Several methods proposed to solve the cluster 
initialization for K-means. A recursive method for 
initializing the means by running K clustering problems 
is discussed by Duda and Hart (1973). A variant of this 
method consists of taking the entire data and then 
randomly perturbing it K times (Shehroz and Ahmad, 
2004). Bradley and Fayyad (1998) proposed an 
algorithm that refines initial points by analyzing 
distribution of the data and probability of data density 
(Bredley and Fayyad, 1998). Penã et al. (1999) presented 
empirical comparison for four initialization methods for 
K-means algorithm and concluded that the random and 
Kaufman initialization method outperformed the other 
two methods with respect to the effectiveness and the 
robustness of K-means algorithm. Shehroz and Ahmad 
(2004) proposed Cluster Center Initialization Algorithm 
(CCIA) to solve cluster initialization problem. CCIA is 
based on two observations, which some patterns are very 
similar to each other. It initiates with calculating mean 
and standard deviation for data attributes, and then 
separates the data with normal curve into certain 
partition. CCIA uses K-means and density-based multi 
scale data condensation to observe the similarity of data 
patterns before finding out the final initial clusters. The 
experiment results of CCIA performed the effectiveness 
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and robustness this method to solve the several clustering 
problems. 

In Section 2, we describe the K-means algorithm and 
distortion of the method. In Section 3, we propose 
Hierarchical K-means algorithm as a new approach to 
determine the centroids initialization for K-means 
algorithm. We describe our proposed method how to 
designate the initial cluster centers. Section 4 performs 
the experimental results on the normal data distribution 
as well as real world data set. In Section 5, we draw 
conclusions. 

These introductions give you guidelines for 
preparing papers for the Reports of the Faculty of 
Science and Engineering, Saga University. The reports 
are printed by photo-offset reproduction of the material 
prepared by the authors. 
 
2. K-means algorithm 
 
2.1. Basic theory 

Let },...,1|{ niaA i == be attributes of 

n-dimensional vector and },...,1|{ rixX i ==  be 
each data of A. The K-means separates X into K 
partitions called clusters },...,1|{ KisS i ==  where 

XM ∈  is )}(,...,1|{ ii snimM == as members 
of S. Each cluster has cluster 
center },...,1|{ kicC i == . 

K-means algorithm can be described as follows: 
1. Initiate its algorithm by generating random initial 

cluster centers ck. 
2. Calculate the distance d(x,c) between vector xi to 

cluster center ck. Euclidean distance can be used to 
express the distance. 

3. Separate xi into sk which has minimum d(x,c). 
4. Determine the new cluster centers defined as: 

∑
=

=
p
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,  where p=n(si)     (1) 

5. Go back to step 2 until Ci = Ci-1. 
It may stop in the t iteration with a threshold ε  

(Kövesi et al, 2001) if  K-means reaches as: 
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2.2. Distortion aggregate 

To calculate the distortion of K-means method, let 
E:X S be encode function to cluster X into S, and 
D:S X be the decode function. The distortion of 
clustering can be defined as: 

( )[ ]( )∑
=

−=
r

i
ii xEDxDistortion

1

       (3) 

The correct clustering has xi=D[E(xi)], so that Distortion 
is 0. The good clustering performs minimum Distortion. 
Therefore, it try to make Distortion as minimum as 
possible. Referring Eq.1 and XM ∈ , the effort to 
minimize Distortion can be set by minimizing P as: 

)),(( ji cjsmP −=         (4) 

where ck is the cluster center of m(si,k). Therefore, the 
determining of initial cluster centers for K-means is very 
important because it can determines the distortion and 
the precision of clustering results. 
 
3. Hierarchical K-means 
 

In this paper, a new approach to determine initial 
centroids for K-means is proposed, called as Hierarchical 
K-means. The approach combines the K-means and 
Hierarchical algorithm. 
 
3.1. Basic concept 

The better result of K-means clustering can be 
achieved after making some experiments. However, it is 
difficult to decide the limitation of experiments those 
which one can give the better result. We do not know 
what the numbers of experiments those have been done 
are enough to get the best result or perhaps the next 
experiment will achieve the better result. This kind of 
uncertainty makes the K-means algorithm somewhat 
difficult to be applied in real clustering cases. 

Actually, the clustering result of K-means can be 
considerable as valuable input to get the better result, 
even though it reaches the local optima, because it 
reflects the partitioned feature space based on the certain 
initial points which were generated randomly. 

We utilize all clustering results by K-means in order 
to determine the desired initial centroids. Let us illustrate 
the clustering case of Ruspini data set in Fig. 1. 
 

 
Fig. 1. Ruspini data set 

 



Hierarchical K-means: an algorithm for centriods initialization for K-means 

Then we apply K-means algorithm to solve the clustering 
case of Ruspini data set. Because K-means generates 
random initial starting points, the clustering result is not 
unique, and we do not know which one is best result. By 
computing in certain times, some different clustering 
results of Ruspini data set can be produced. For each 
computation, we record each final centroids.  Fig. 2. 
shows the different final centroids from 10 computations 
by K-means. 
  

Fig. 2. The final centroids from 10 computations 
 
After we get the all final centroids from certain 
computations, we apply the hierarchical clustering 
algorithms. However, we have tried in some data sets of 
clustering cases with different hierarchical algorithms 
(Single, Centroid, Complete and Average Linkage) 
without having any change in the results. The final 
centroids after applying hierarchical algorithm can be 
used for initial centroids for K-means. 

For simple clustering cases, like Ruspini data set, 
Hierarchical K-means does not perform the superiority. 
But for the complex clustering cases with large numbers 
of data set and many dimensional attributes those are 
very difficult to be visualized, Hierarchical K-means can 
show the good performance, both in precision and speed. 
The experiment results in Section 4 will perform the 
clustering results of Hierarchical K-means, compared 
than the other clustering algorithms. 
 
3.2. Algorithm 

In this subsection we present execution steps of our 
proposed Hierarchical K-means algorithm to determine 
initial centroids for K-means. The algorithm is described 
as follows: 

1. Set },...,1|{ rixX i ==  as each data of A, 

where },...,1|{ niaA i == is attribute of 
n-dimensional vector. 

2. Set K as the predefined number of clusters. 
3. Determine p as numbers of computation 

4. Set i=1 as initial counter 
5. Apply K-means algorithm. 
6. Record the centroids of clustering results as Ci 

= {cij | j=1,…,K} 
7. Increment i=i+1 
8. Repeat from step 5 while i<p. 
9. Assume C = {Ci | i=1,…,p} as new data set, 

with K as predefined number of clusters 
10. Apply hierarchical algorithm  
11. Record the centroids of clustering result as D = 

{di | i=1,…,K} 
Then, we can apply D = {di | i=1,…,K} as initial cluster 
centers for K-means clustering. The experiment results 
will perform the accuracy of our proposed method. 
 
4. Experimental results 
 

In order to analyze the accuracy of our proposed 
method, we apply Hierarchical K-means to three kinds of 
experiments: random normal data distribution, real world 
data sets and image clustering case. 
 
4.1. Random normal data distribution 

This kind of experiment can express the ability of the 
proposed method to solve clustering cases with normal 
data distribution. In the experiment, we use 
two-dimensional data set (x and y). Then, we use 
normrnd function in Matlab to generate the random 
normal data distribution. We determine 9 nodes as 
random mean, (20,20), (50,20), 80,20), (20,50), (50,50), 
(80,50), (20,80), (50,80) and (80,80), with minimal 
number of nodes = 6. We set the standard deviation = 5 
because we want to intent well-separated clusters. We 
determine numbers of data ≥ 10 for each nodes. With this 
model, it can generate thousands of different 
combination for normal data distribution. 

We made 1000 experiments and used Centroid 
Linkage as Hierarchical algorithm in Hierarchical 
K-means with 10 computation times for K-means (this is 
also used for other data set experiments) . For each 
experiment, we compared our proposed method with 
some Hierarchical algorithms (Single Linkage, Centroid 
Linkage, Complete Linkage and Average Linkage), 
Fuzzy c-means and K-means using random initialization. 
For Fuzzy c-means, we use 1.5 for degree of fuzziness. 
For K-means, we compute 1000 iteration times and take 
the average results. 

We represent variance factors as performance 
measure in the experiments. Variance constraint 
(Veenman et al, 2002) can express the density of the 
clusters with variance within cluster and variance 
between clusters (Ray and Turi, 1999; Ming and Hou, 
2004). The ideal cluster has minimum variance within 
clusters (Vw) to express internal homogeneity and 
maximum variance between clusters (Vb) to express 
external homogeneity (Barakbah and Arai, 2004). 
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%100x
Vb
VwV =             (5)  

Good cluster can be represented by low V. Table 1 
performs the error comparison between four methods 
from experiments results. 
 
Table 1 Comparison error using random normal data 
distribution 
     
    V (%) 
 

Single linkage   0.7345 
Centroid linkage   0.5452 
Complete linkage   0.5524 
Average linkage   0.5455 
Fuzzy c-means   0.6962 
K-means using random initialization 1.0730 
Hierarchical K-means  0.5562 

 
We can see that the error of our proposed method has 
low V, and is very close to V computed by Centroid and 
Average Linkage. It means that our proposed method can 
be considerable to solve the well-separated clustering 
cases. 
 
4.2. Real world data sets 

In order to analyze the accuracy of our proposed 
method, we try to make experiments using a number of 
real world data sets. The data sets, which we use, are Iris 
data, Wine data, Fossil data, Ruspini data, Letter 
Recognition data and New Thyroid data. 

We use raw data sets in the experiments, because we 
concern in the accuracy of the methods to solve 
clustering cases. If we normalize the data, even though it 
is usual to get the better clustering results, the clustering 
results are not only depend on clustering methods, but 
also are depend on normalization methods. Therefore, we 
decide to not normalize the data in order to ensure that 
the clustering results are absolutely depending on the 
accuracy of clustering methods. 

We compute the real world data sets with several 
methods, Single Linkage, Centroid Linkage, Complete 
Linkage, Average Linkage, Fuzzy c-means, K-means 
using random initialization and our proposed method. In 
some data sets, we add CCIA (Sheroz and Ahmad, 2004) 
as the other comparison method, even though its 
clustering result computed after normalizing the data to 
lie between 0 and 1. For Fuzzy c-means, we use 1.5 for 
degree of fuzziness. For K-means, we compute 1000 
iteration times and take the average results. 

We represent error percentage as performance 
measure in the experiments. It is calculated from number 
of misclassified patterns and the total number of patterns 
in the data sets. 

%100x
tternsNumberofpa

dsclassifieNumberofmiError =   (6) 

 
4.2.1. Iris data set 

We obtained this data set from UCI Repository. This 
data set contains information about Iris flowers. There 
are three classes of Iris flowers, namely Iris Setosa, Iris 
Versicolor and Iris Virginica. The data set consists of 
150 examples with 4 attributes. One class is well 
separable the other two. The others have a large overlap. 
 
Table 2 Iris data set 
     
    Error (%) 
 

Single Linkage   32 
Centroid Linkage  9.3333 
Complete Linkage  16 
Average Linkage   9.3333 
Fuzzy c-means   13.524 
K-means using random initialization 17.7027 
Hierarchical K-means  10.6667 
K-means using CCIA  11.33 

 
 
4.2.2. Wine data set 

We obtained this data set from UCI Repository. The 
data is the result of a chemical analysis of wines grown 
in a region in Italy but derived from three different 
cultivars. There are three classes. The dataset consists of 
178 examples each with 13 continuous attributes. The 
data set contains distribution 59 examples of class 1, 71 
examples for class 2 and 48 examples for class 3. 
 
Table 3 Wine data set 
     
    Error (%) 
 

Single Linkage   57.3034 
Centroid Linkage  38.764 
Complete Linkage  32.5843 
Average Linkage   38.764 
Fuzzy c-means   30.3371 
K-means using random initialization 32.5236 
Hierarchical K-means  29.7753 
K-means using CCIA  5.05 

 
 
The high error happened with Hierarchical K-means 
compared with CCIA because the raw data actually has 
far difference scale among attributes. There is an 
attribute that has high scale of value compared to the 
others. For this case, the data is usually better to 
standardize before clustering. Table 4 performs the error 
of Hierarchical K-means after normalizing the data using 
4 different normalization methods. 
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Table 4 Error of Hierarchical K-means after normalizing 
the wine data 
 

Normalization method  Error (%) 
 

Min-max (0-1)   3.9326 
Z-Score   3.3708 
Sigmoid   2.809 
Softmax   2.809 

 
 
4.2.3. Fossil data set 

The Fossil data is obtained from Chernoff (Yi-tzuu, 
1978). It consists of 87 nummulitidae specimens from 
Eocene yellow limestone formation of northwestern 
Jamaica. There are three 6 attributes with 3 classes which 
the distribution is 40 examples of class 1, 34 examples of 
class 2 and 13 examples of class 3. 
 
Table 5 Fossil data set 
     
    Error (%) 
 

Single Linkage   13.7931 
Centroid Linkage  11.4943 
Complete Linkage  14.9425 
Average Linkage   9.1954 
Fuzzy c-means   11.5057 
K-means using random initialization 8.5931 
Hierarchical K-means   3.4483 
K-means using CCIA  0 

 
 
We can see in Table 5 that K-means using CCIA 
computed a better result compared to Hierarchical 
K-means. However, we try to make experiments with 
normalizing the data. Table 6 performs the error of 
Hierarchical K-means after normalizing the data using 4 
different normalization methods. 
 
Table 6 Error of Hierarchical K-means after normalizing 
the fossil data 
 

Normalization method  Error (%) 
 

Min-max (0-1)   0 
Z-Score   0 
Sigmoid   0 
Softmax   0 

 
 
4.2.4. Ruspini data set 

The Ruspini data set represents a simple, well-known 
example that is commonly used  as a benchmark 
problem in evaluating clustering methods and is widely 
available, incorporated as a built-in data object in both R 
and S-plus statistics packages (Pearson et al, 2004). The 
data set consists of 75 bi-variate attribute vectors. There 

are four classes. The data set contains 23, 20, 17 and 15 
in classes 1, 2, 3 and 4 respectively. 
 
Table 7 Ruspini data set 
     
    Error (%) 
 

Single Linkage   0 
Centroid Linkage  0 
Complete Linkage  4 
Average Linkage   0 
Fuzzy c-means   0 
K-means using random initialization 13.6973 
Hierarchical K-means  0 
K-means using CCIA  4 

 
 
4.2.5. Letter recognition data set 

This data set obtained from UCI Repository. The 
objective is to identify each of a large number of 
black-and-white rectangular pixel displays as one of the 
26 capital letters in the English alphabet.  The character 
images were based on 20 different fonts and each letter 
within these 20 fonts was randomly distorted to produce 
a file of 20,000 unique stimuli.  Each stimulus was 
converted into 16 primitive numerical attributes 
(statistical moments and edge counts), which were then 
scaled to fit into a range of integer values from 0 through 
15. The training data consists of first 16000 items and 
then used the resulting model to predict the letter 
category for the remaining 4000. For experimental 
purpose we have taken 595 patterns of letter A and 597 
patterns of letter D from the training data set, as CCIA 
has done. 
 
Table 8 Letter recognition data set 
     
    Error (%) 
 

Single Linkage   49.8322 
Centroid Linkage  48.1544 
Complete Linkage  42.7852 
Average Linkage   6.8792 
Fuzzy c-means   13.1711 
K-means using random initialization 8.2323 
Hierarchical K-means  8.2215 
K-means using CCIA  8.55 

 
 
4.2.6. New thyroid data set 

The new thyroid data set is also obtained from UCI 
Repository. The data set contains information about 
classification whether a patient's thyroid to the class 
euthyroidism, hypothyroidism or hyperthyroidism. The 
diagnosis (the class label) was based on a complete 
medical record, including anamnesis, scan etc. The data 
set consists 5 attributes, with 215 examples. The 
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distribution is 150 of class euthyroidism, 35 of class 
hypothyroidism and 30 of class hyperthyroidism. 
 
Table 9 New thyroid data set 
     
    Error (%) 
 

Single Linkage   29.7674 
Centroid Linkage  27.907 
Complete Linkage  28.3721 
Average Linkage   26.0465 
Fuzzy c-means   14.4186 
K-means using random initialization 20.9126 
Hierarchical K-means  13.9535 

 
 
4.3. Image clustering case 

We also try to apply our proposed method for multi 
bands image clustering case. The imagery data (Fig. 7) 
that we use contains information about Landsat TM data 
of Saga, Japan, acquired on May 1989. There are five 
classes, Ariake sea, road, paddy field, bare soil and 
artificial construction. 

Fig. 8 performs the comparison results between our 
proposed method, K-means using random initialization, 
Maximum Likelihood (MLH) and SOM (Arai, 2004). It 
is found that the clustering result from our proposed 
method can make better separated cluster than the others. 

 
5. Conclusions 
 

It is widely reported that the K-means algorithm 
suffers from initial cluster centers. Our main purpose is 
to optimize the initial centroids for K-means algorithm. 
Therefore, in this paper, we proposed Hierarchical 
K-means algorithm. It utilizes all the clustering results of 

K-means in certain times, even though some of them 
reach the local optima. Then, we transform the all 
centroids of clustering result by combining with 
Hierarchical algorithm in order to determine the initial 
centroids for K-means. This algorithm is better used for 
the complex clustering cases with large numbers of data 
set and many dimensional attributes. Hierarchical 
K-means bargains the advantage of K-means algorithm 
in speed and hierarchical algorithm in precision. 
Experimental results with random normal data 
distribution, real world data sets, and multi band image 
clustering performs the accuracy and improved 
clustering results as compared to some clustering 
methods. 
 
 

           
 

      
Fig. 8. Comparison of clustering results between 4 

methods 
 
Table 10 Computation time 
 
 Iris Wine Fossil Ruspini Letter New thyroid 
 (ms) (ms) (ms) (ms) (s) (ms) 
 

Single Linkage 78 156 31 15 38.766 188 
Centroid Linkage 78 156 31 15 38.734 188 
Complete Linkage 78 156 31 15 38.687 188 
Average Linkage 297 562 78 47 209.625 875 
Fuzzy c-means 39.344 140 27.386 15 0.406 219 
K-means using random init. 3.168 5.133 1.977 2.459 0.0051 6.057 
Hierarchical K-means 47 62 31 31 0.453 62 

 
Band 1 Band 2    Band 3 Band 4    Band 5 Band 7 

      
Fig. 7. Landsat imagery data of Saga, Japan (32x32) 

K-means using random initialization 

SOM 

MLH

Hierarchical K-means 
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