# *ab Initio* MO Study on the Solvent Effect for $S_N^2$ Type Nucleophilic Ring Opening of Aflatoxin B<sub>1</sub> 8,9-Oxide

Toshiya OKAJIMA\* and Akane HASHIKAWA

# Abstract:

*ab Initio* MO calculation was performed to study the solvent effect for  $S_N^2$  type nucleophilic oxirane ring opening of aflatoxin  $B_1$  8,9-oxide by using model compounds, (*2S*, *3R*, *3aR*, *6aS*) - 3a, 6a -dihydrofuro [2, 3-*b*] furan 2,3-oxide (I) and (*2R*, *3S*, *3aR*, *6aS*) - 3a, 6a -dihydrofuro [2, 3-*b*] furan 2,3-oxide (II). Two and three  $H_2O$  molecules were considered for the solvation to oxirane oxygen, on which negative charge grows as the reaction proceeds. Stationary points including transition structures (**TSs**) were optimized with no geometrical constraint at the RHF/3-21G basis set. The activation energies ( $\Delta E^*$ ) were evaluated at Becke3LYP/3-21G level based on the RHF/3-21G geometries. Calculation clarified that (1) involvement of the solvent molecules accelerate the reaction, (2) endo-attacking process is more favorable than exo-attacking one ( $\Delta E^*$  values are +24.4 kcal/mol (**TS-I**), +9.7 (**TS-I**<sub>2</sub>), and +7.4 (**TS-I**<sub>3</sub>)) for the reaction of I and +32.2 (**TS-II**), +14.3 (**TS-II**<sub>2</sub>-**ob**), and +20.5 (**TS-II**<sub>3</sub>)) for II, (3) for endo-attacking TSs,  $\Delta E^*$  value of **TS-I**<sub>3</sub> (+7.4kcal/mol) coordinated by three H<sub>2</sub>O molecules is the smallest, while **TS-II**<sub>2</sub>-**ob** with two H<sub>2</sub>O molecules has the smallest  $\Delta E^*$  value in the series of exo attacking TSs, and (4) for exo-attacking TSs, steric hindrance for solvent coordination increases in the order of outside (o) < backside (b) < inside (i) position.

## Introduction

Aflatoxin B<sub>1</sub> (AFB<sub>1</sub>) is one of the most potent mutagens involved in human carcinogenesis.<sup>1)</sup> Aflatoxins, which belong to a group of dihydrofurans, are produced by the fungal molds *Aspergillus flavus, A. parasiticus,* and *A. nomius*,<sup>2)</sup> and is much interested in health science. AFB<sub>1</sub> exo-8,9-oxide (**1**), which is produced by the metabolic activation of AFB<sub>1</sub> mainly by the liver enzyme cytochrome P450,<sup>3)</sup> is known to be a very reactive electrophile, which forms adducts by the reaction with guanine at N7 position in DNA (genotoxic) (Chart 1).<sup>4)</sup> On the other hand, the endo oxide is known to be unreactive with DNA, and therefore, it is essentially nongenotoxic stereoisomer.<sup>5)</sup> To investigate the toxicity of AFB<sub>1</sub> 8,9-oxide, some theoretical calculation<sup>6)</sup> on the ground state structures including intercalation, DNA adduct conformation,<sup>6a)</sup>

and frontier orbital analysis<sup>6b)</sup> were performed. However, no study on the transition structure (TS) for nucleophilic oxirane ring opening, resulting in the covalent bonding of 1 to nucleic acid bases, is found. In this study, the solvent effect for the transition structures of  $S_N^2$  type nucleophilic oxirane ring opening of the model compounds (I and II) have been investigated. Model compounds I and II include only furofurano ring (A and B ring) in 1. The anti configuration between oxirane ring and B ring with respective to A ring is designated as exo and syn as endo (Chart 1).



#### Method

*ab Initio* molecular orbital calculation was performed using GAUSSIAN 98 programs.<sup>7)</sup> Geometries of all stationary points including transition structures (TSs) were optimized utilizing gradient method without any geometrical constraint at the RHF/3-21G basis set. Activation energies ( $\Delta E^*$ ) were evaluated at Becke3LYP/3-21G level of theory based on the RHF/3-21G geometries.<sup>8)</sup> All TSs were tested by frequency analysis and some by IRC calculation.<sup>9)</sup> For stationary points, an energy minimum (reactant) and maximum point (TS) were characterized by the correct number of negative eigenvalue of their Hessian matrix, that is, the former and the latter have no and a single imaginary frequency, respectively.

# **Results and Discussion**

Fig. 1 shows RHF/3-21G TSs (**TS-I** and **TS-II**) and the corresponding initial complexes (**IC-I** and **IC-II**, respectively) for  $S_N^2$  type nucleophilic reaction by NH<sub>3</sub> molecule to oxirane carbon. **IC-I** and **IC-II** have the structures that NH<sub>3</sub> molecule coordinates to oxirane oxygen. Activation energies ( $\Delta E^*$ , Becke3LYP/3-21G//RHF/3-21G)<sup>10</sup> are +24.4 kcal/mol for endo-attacking process (**TS-I**) and +32.2 for exo-attacking one (**TS-II**). Since energy difference between **IC-I** and **IC-II** is only 0.9 kcal/mol (**IC-I** is more stable), the difference of  $\Delta E^*$  values can be mainly attributable to that (8.7 kcal/mol) between two TSs. This is maybe because of favorable Coulomb interaction between ethereal oxygen in B ring and positively charged proton of NH<sub>3</sub> in **TS-I** and



**Fig.1** Stereoviews of RHF/3-21G transition structures (**TS-I** and **TS-II**) and the corresponding initial complexes (**IC-I** and **IC-II**, respectively) for  $S_N^2$  type nucleophilic oxirane ring opening by NH<sub>3</sub>. No solvent molecules are considered. Atomic distances are in angstroms. Energy differences (in kcal/mol) are at Becke3LYP/3-21G/RHF/3-21G level of theory.



Fig.2 Stereoviews of RHF/3-21G transition structures for  $S_N^2$  type nucleophilic oxirane ring opening of exo type model compound (1) by NH<sub>3</sub> molecule. Two H<sub>2</sub>O molecules coordinate to oxirane oxygen, on which negative charge grows as the reaction proceeds. Two types of coordinating geometries could be located, which are designated as TS-I<sub>2</sub>, TS-II'<sub>2</sub>. Atomic distances are in angstroms. Energy differences are at Becke3LYP/3-21G//RHF/3-21G.

unfavorable repulsive Coulomb interaction between negatively charged oxirane oxygen and the facing electron-rich B ring in **TS-II**. The difference of  $\Delta E^*$ s of these two TSs calculated at



**Fig.3** Stereoviews of RHF/3-21G transition structures for  $S_N^2$  type nucleophilic oxirane ring opening of endo type model compound (II) by NH<sub>3</sub>. Two H<sub>2</sub>O molecules coordinate to oxirane oxygen, on which negative charge grows as the reaction proceeds. Three types of coordinating geometries could be located, which are designated as TS-II<sub>2</sub>-ob, TS-II<sub>2</sub>-oi, and TS-II<sub>2</sub>-bi. Atomic distances are in angstroms. Energy differences are at Becke3LYP/3-21G//RHF/3-21G and are the ones between the corresponding transition structure and TS-I<sub>2</sub> shown in Fig. 2.

Becke3LYP/6-31G\*//RHF/6-31G\* level is almost the same (8.8 kcal/mol).

Figs. 2 and 3 show stereoviews of two endo-attacking TSs (TS-I<sub>2</sub> and TS-I'<sub>2</sub>) and three exoattacking TSs (TS-II<sub>2</sub>-ob, TS-II<sub>2</sub>-oi, and TS-II<sub>2</sub>-bi), respectively, located at the RHF/3-21G basis set. The symbol "ob" in "TS-II-ob" means the coordination of two H<sub>2</sub>O molecules from outside and backside direction, "oi" from outside and inside, and "bi" from backside and inside (Fig. 4). The subscript "2" indicates the number of coordinating H<sub>2</sub>O molecules. The most stable endoattacking TS-I<sub>2</sub> has the geometry that oxygen of inside H<sub>2</sub>O coordinates to two C-H hydrogen atoms. TS-I'<sub>2</sub> has a single C-H...O contact and is slightly less stable (by 1.6 kcal/mol at Becke3LYP/3-21G//RHF/3-21G) than TS-I<sub>2</sub>. Three TS-IIs shown in Fig. 3 have the geometries, which five-membered B ring faces with oxirane ring, and therefore, solvation by H<sub>2</sub>O must occur



Fig.4 The direction of coordination of solvent molecules to oxirane oxygen.



Fig.5 Stereoviews of RHF/3-21G transition structures for  $S_N2$  type nucleophilic oxirane ring opening of model compounds (I and II) by NH<sub>3</sub> molecule. Three H<sub>2</sub>O molecules coordinate to oxirane oxygen, on which negative charge grows as the reaction proceeds. Single transition structure (TS-I<sub>3</sub> for I and TS-II<sub>3</sub> for II, respectively) could be located. Atomic distances are in angstroms. Energies are at Becke3LYP/3-21G//RHF/3-21G.

Table1. Activation energies ( $\Delta E^{\neq}$ , kcal/mol) evaluated at Becke3LYP/3-21G//RHF/3-21G level.

| no H <sub>2</sub> O |       | (H <sub>2</sub> O) <sub>n</sub> , n=2 |        |                        |                        |                        | (H <sub>2</sub> O) <sub>n</sub> , n=3 |                    |
|---------------------|-------|---------------------------------------|--------|------------------------|------------------------|------------------------|---------------------------------------|--------------------|
| exo                 | endo  | exo (endo attack)                     |        | endo (exo attack)      |                        |                        | exo                                   | endo               |
| TS-I                | TS-II | TS-I <sub>2</sub>                     | TS-I'2 | TS-II <sub>2</sub> -ob | TS-II <sub>2</sub> -oi | TS-II <sub>2</sub> -bi | TS-I3                                 | TS-II <sub>3</sub> |
| +24.4               | +32.2 | +9.7                                  | +11.4  | +14.3                  | +16.4                  | +20.4                  | +7.4                                  | +20.5              |

from the side of B ring. The most stable exo-attacking TS is **TS-II<sub>2</sub>-ob** and is followed by **TS-II<sub>2</sub>-oi** (+2.1 kcal/mol) and **TS-II<sub>2</sub>-bi** (+6.1). **TS-II<sub>2</sub>-ob** is less stable by +7.6 kcal/mol than the most stable endo-attacking **TS-I<sub>2</sub>**. The relative energies also shown in Figures 2 and 3 implies that endo attacking is predominant to exo attacking. Activation energies ( $\Delta E^*$ ) were evaluated to be only +9.7 kcal/mol for **TS-I<sub>2</sub>**. On the other hand,  $\Delta E^*$  value for **TS-II<sub>2</sub>-ob** is +14.3 kcal/mol (Table 1). The coordination of two H<sub>2</sub>O molecules at the oxirane oxygen atom, on which negative charge grows as the C-O bond breaking proceeds, considerably reduces  $\Delta E^*$  values as compared with the case considered to be mainly obtained by Coulomb stabilization between growing negative charge on oxirane oxygen and coordinated H<sub>2</sub>O, exo-attacking TSs (**TS-IIs**) must suffer severe steric congestion between B ring (coumarin ring of AFB<sub>1</sub> 8,9-oxide (1)) and coordinating H<sub>2</sub>O molecules. Actually, less stable **TS-II<sub>2</sub>-oi** and **TS-II<sub>2</sub>-bi** include the most sterically unfavorable inside coordination of H<sub>2</sub>O. It is concluded that the solvation by H<sub>2</sub>O could stabilize TSs in the order of **ob** > **oi** > **bi** coordination mode. The critical geometrical



Fig.6 Stereoviews of RHF/3-21G geometries of initial complexes (ICs). Atomic distances are in angstroms.

parameters at transition state indicate that the most stable **TS-II<sub>2</sub>-ob** is the earliest of the three and the least stable **TS-II<sub>2</sub>-bi** latest (atomic distances are in order of 2.381Å, 2.152, and 2.149 for forming C...N and 1.972, 1.984, 2.011 for breaking C...O for **TS-II<sub>2</sub>-ob**, **TS-II<sub>2</sub>-oi**, and **TS-II<sub>2</sub>-bi**, respectively) and the  $\Delta E^{\neq}$  values of these TSs increase as TSs become later.<sup>11</sup>

Fig. 5 shows the stereoviews of RHF/3-21G TSs (TS-I<sub>3</sub> for the reaction of I and TS-II<sub>3</sub> for II) having three H<sub>2</sub>O molecules coordinated to oxirane oxygen. Only one TS could be located for the reaction of each reactant.  $\Delta E^{*}$  values for TS-I<sub>3</sub> and TS-II<sub>3</sub> could be evaluated to be +7.4 and +20.5 kcal/mol at Becke3LYP/3-21G//RHF/3-21G level (Table 1). As shown in Table 1, TS-I<sub>3</sub> has the smallest  $\Delta E^{*}$  value in all endo-attacking TSs studied here, probably because of larger coordination space around exo positioned oxirane oxygen and the fact that non-congested coordination of maximum three H<sub>2</sub>O molecules is possible in endo-attacking TS. On the other



Fig.7 Becke3LYP/6-31G\* structure of ethylene oxide coordinated by two H<sub>2</sub>O molecules.

hand, **TS-II<sub>2</sub>-ob** has the least  $\Delta E^*$  (+14.3 kcal/mol) in the series of exo-attacking TSs. **TS-II<sub>3</sub>** (+20.5 kcal/mol) having three coordinating H<sub>2</sub>O has larger  $\Delta E^*$  (by 6.3 kcal/mol) than that of **TS-II<sub>2</sub>-ob**. Clearly, there exists severe steric repulsion between B ring and two H<sub>2</sub>O molecules in **TS-II<sub>3</sub>**. Actually,  $\Delta E^*$  values of **TS-II<sub>3</sub>** (+20.5 kcal/mol) and **TS-II<sub>2</sub>-bi** (+20.4 kcal/mol) is quite the same, indicating that these large  $\Delta E^*$ s are caused mainly by inside coordination of H<sub>2</sub>O.

These results imply that  $TS-I_3$  could be favorably stabilized by the hydrogen bonding between growing negative charge on oxirane oxygen and three H<sub>2</sub>O solvents, however, the repulsive interaction between backside and inside H<sub>2</sub>O solvent molecules and B ring offsets Coulomb stabilization obtained by hydorgen bonding between oxirane oxygen and them.

Finally, Fig. 6 shows stereoviews of RHF/3-21G geometries of initial complexes (**ICs**). In **ICs**, no stable structures having three  $H_2O$  molecules coordinated to oxirane oxygen could be located. It seems that negative charge on oxirane oxygen is too small to make hydrogen bonding with three  $H_2O$  molecules, considering the fact that hydrogen bonding with only two  $H_2O$  is possible. The coordination of two  $H_2O$  toward oxirane oxygen occurs from the direction which each set of lone pair electrons spreads out, in spite of the steric hindrance of two C-H bond in I and B ring in II. The groud state geometry located at Becke3LYP/6-31G\* level for two  $H_2O$  molecules also coordinate to oxirane oxygen from the same direction seen in these ICs. It is likely that the maximum stabilization energy could be obtained by this coordination mode in the solvation by two  $H_2O$  molecules toward oxirane oxygen. Any ground state structure having three  $H_2O$  molecules coordinate to oxirane oxygen of ethylene oxide could not be located at Becke3LYP/6-31G\* level, in spite of little steric hindrance around oxirane oxygen.

#### Summary

In order to investigate the solvation effect of  $S_N^2$  type nucleophilic oxirane ring opening of AFB<sub>1</sub> 8,9-oxide (1), *ab initio* molecular orbital calculation for the model reaction of I and II with NH<sub>3</sub> molecule was performed. The solvation by nH<sub>2</sub>O molecules (n=2-3) around oxirane oxygen, on which negative charge grows as the reaction proceeds, was considered. Calculation clarified the following points: (1) involvement of the solvent molecules accelerate the reaction. (2)  $\Delta E^*$  values (+24.4 kcal/mol (TS-I), +9.7 (TS-I<sub>2</sub>), and +7.4 (TS-I<sub>3</sub>)) for the reaction of I are generally smaller than those (+32.2 (TS-II), +14.3 (TS-II<sub>2</sub>-ob), and +20.5 (TS-II<sub>3</sub>)) for II, suggesting that endo-attacking process is more favorable than exo-attacking one. (3) For endo-attacking TSs,  $\Delta E^*$  value of TS-I<sub>3</sub> (+7.4kcal/mol) coordinated by three H<sub>2</sub>O molecules is the smallest, while TS-II<sub>2</sub>-ob with two H<sub>2</sub>O has the smallest  $\Delta E^*$  value in the series of exo-attacking TSs. (4) For exo-attacking TSs, three direction (outside (o), backside (b), and inside (i)) for solvent coordination is possible and steric hindrance increases in the order of o < b < i (net stabilization obtained by solvation is in the order of o >b >i). The solvent effect found in the reaction of I and II implies that coumarin skeleton in AFB<sub>1</sub> 8,9-oxide (1) might give more serious steric influence for the solvation of exo-attacking TSs.

## References

- Groopman, J. D., Cain, L. G.; Kensler, T. W. *Crit. Rev. Toxicol.*, **19**, 113 (1988): Busby, W. F., Wogan, G. N. In *Chemical Carcinogens*; Searle; C.E., Ed.; American Chemical Society: Washington, DC, 1984; pp. 945-1136: Garner, R. C., Wright, C. M. *Br. J. Cancer*, **28**, 544 (1973): Detroy, R. W.; Lillehoj, E. B.; Ciegler, A. In *Microbial Toxins*, Ciegler, A.; Kadis, S.; Ajl, S. J., Ed.; Academic Press, New York, 1971; Vol. 6, pp. 3-178.
- Massey, T. E., Stewart, R. K., Daniels, J. M., Liu, L. Proc. Exp. Biol. Med., 208, 213 (1995).
- Ueng, Y-F., Shimada, T., Yamazaki, H., Guengerich, F. P. Chem. Res. Toxicol. 1995, 8, 218: Shimada, T., Guengerich, F. P. Proc. Natl. Acad. Sci. U. S. A., 86, 462 (1989).
- 4) Raney, V. M., Harris, T. M., Stone, M. P. Chem. Res. Toxicol., 6, 64 (1993).
- Iyer, R.; Coles, B., Raney, K. D. Thier, R., Guengerich, F. P., Harris, T. M. J. Am. Chem. Soc., 116, 1603 (1994).
- (a) M. Bonnett, E. R. Taylor, J. Biomol. Struct. Dyn., 7, 127 (1989); (b) A. C. Pavao, L. A. S. Neto, J. F. Neto, M. B. C. Leao, THEOCHEM, 337, 57 (1995); R. Pachter, P. S. Steyn, Mutat. Res., 143, 87 (1985).
- 7) Gaussian 98, Revision A.4, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.
- 8) Energies (Becke3LYP/3-21G//RHF/3-21G) and single imaginary frequency (in parenthesis) for RHF/3-21G TSs (cm<sup>-1</sup>) are as follows: Transition structures (TSs); TS-I, -511.508792 (-472.0); TS-II, -511.494898 (-371.7); TS-I<sub>2</sub>, -663.536437 (-368.4); TS-I'<sub>2</sub>, -663.533800 (-395.7); TS-II<sub>2</sub>-ob, -663.524263 (-275.0); TS-II<sub>2</sub>-oc, 663.520876 (-378.7); TS-II<sub>2</sub>-bc, -663.514548 (-349.9); TS-I<sub>3</sub>, -739.548984 (-370.6); TS-II<sub>3</sub>, -739.522898 (-318.7). Initial Complexes (ICs); IC-I, -511.547618; IC-II, -511.546252; IC-I<sub>2</sub>, -663.551971; IC-II<sub>2</sub>, -663.547023; IC-I<sub>3</sub>, -739.560798; IC-II<sub>3</sub>, -739.555505.
- 9) Schlegel, H. B. In *Encyclopedia of Computational Chemistry*, Schleyer, P. v. R., Ed. in chief, vol. 4, pp. 2432, John Wiley & Sons Ltd. (1998).
- 10) Activation energies ( $\Delta E^*$ ) were calculated to be the energy difference between the TSs (Figures 2-3 and 5) and the corresponding initial complexes shown in Fig. 6.
- 11) Pross, A. In *Advances in Physical Organic Chemistry*, vol. 14, pp. 73, Academic Press (1977).