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Summary

In this study, in order to clarify the generation mechanism of hypoxic water that occurs frequently in
the interior parts of Ariake Sea, various field observations were conducted in summer of 2005 and verti-
cal diffusion coefficient and oxygen consumption rate in the study area were analyzed by the two-layer
box model using Saga Prefecture research datain 1972-2000.

Tempora variations of DO near sea bottom during 23 July-17 August in 2005 were strongly influ-
enced by typhoons and strong wind-induced mixing of sea water and by the advection of hypoxic water
from offshore area, besides tide and current velocity. From the data observed on 16 August in 2005, mix-
ing condition of water column in the west coastal area was the weakly mixed-type and density stratifica-
tion and pycnocline were formed at 3-5m depth from surface sea water at the time of occurrence of hy-
poxic water. There was a relationship between vertical diffusion coefficient obtained by the thermal
stratification model and stratification parameter. That is, vertical diffusion coefficient decreased expo-
nentialy with increasing of stratification parameter. Thus, the development of density stratification in
the water column was considered to restrict the ability supply of O, from surface to lower layers.

From Saga Prefecture research datain 1972-2000, seasona variations of density difference between
surface and lower layers and density stratification parameter in the interior western parts of Ariake Sea
were clarified. That is, density difference raised and density stratification parameter became high values
in summer due to increasing of freshwater input and surface warming. Conversely, density difference
dropped and density stratification parameter became low values in winter due to decreasing of freshwater
input and surface cooling. Next, vertical diffusion coefficient and oxygen consumption rate in the study
area were analyzed by the two-layer box model. As aresult, seasonal variations of vertical diffusion co-
efficient were closely related to that of density stratification parameter. That is, vertical diffusion coeffi-
cient tended to increase in summer-autumn and to decrease in winter-spring. On the other hand, oxygen
consumption rate tended to be positive (O, consumption) in spring-summer and to be negative (O. pro-
duction) in autumn-winter.
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Introduction

In resent years, water quality environment and fisheries in the interior parts of Ariake Sea become
serious ™, and occurrence of hypoxic water has very important effects on the above-mentioned problems.
Generaly, density stretification is easy to develop and seawater mixing between upper and lower layer
decreases easily at summer in the closed seaarea. Asaresult, seawater become easily oxygen depression
in bottom layer, because the ability to supply O from surface to lower layer decreases and O, near bot-
tom layer is consumed by biochemical oxygen-consumption processes. Oxygen depression in bottom
layer deteriorates the environmental condition of habit of benthos such as clam and accelerates the elu-
sion of nutrient and sulfide from bottom sediment. Thus, it is considered that hypoxic water induces the
deterioration of water quality environment and ecosystem in the closed sea area.

In this paper, in order to clarify the generation mechanism of hypoxic water that occurs frequently at
summer in the interior western parts of Ariake Sea, temporal and spatial distribution of DO near bottom
and the sea structure under occurrence of hypoxic water in the sea area were investigated by the field ob-
servations in 2005. Then, the vertical diffusion coefficient and the oxygen consumption rate in the study
area were analyzed by the two-layer box model using Saga and Fukuoka Prefecture research data in
1972-2000, and their seasonal variations were discussed.

Outline of the field observations and material

Fig.1 shows the occurrence frequency of hypoxic water (DO<40% saturation) and the horizontal
distributions of mud content and CODsed in bottom sediment in the interior parts of Ariake Sea. The oc-
currence frequency of hypoxic water and bottom sediment data were obtained by Saga and Fukuoka Pre-
fecture research datain 1972-2000 and the Ministry of the Environment in August 2002, respectively. As
shown in this figure, hypoxic water occurred frequently in the interior western parts of Ariake Sea with
high CODsed and mud content in bottom sediment.

Mud contentl O 11 CODsedl mg/dldry[T]

Fig. 1 Occurrence frequency of hypoxic water during 1972-2000 and distributions of mud content and CODsed
in 2002.
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Field observations were conducted at St.1 in Fig.2, where hypoxic water occurred frequently in
summer, using the field observation apparatus with DoPa transmission units during 16 July-11 August in
2005 to investigate the temporal variations of water quality and current velocity near sea bottom. And,
mooring observations were conducted at St.1 using the multi-type water quality meter on 23 July and 17
August in 2005 to clarify the relationship between density stratification parameter and vertical diffusion
coefficient. Moreover, water quality profiles along Line A in Fig.2 were observed using the multi-type
water quality meter on 9 August and 16 August in 2005 to make clear the sea structure under occurrence
of hypoxic water in the interior western parts of Ariake Sea.
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Fig. 2 Observation stations and study area in the interior parts of the Ariake Sea (sea area surround by broken
lines). Two crosses (% ) represent observation stations by Saga Prefecture.

On the other hand, in order to estimate the vertical diffusion coefficient (K) and the oxygen con-
sumption rate (R) in the interior western parts of Ariake Sea, water temperature (T), sdlinity (S) and dis-
solved oxygen (DO) at St.A-H as shown in Fig.2 were used in this study. These data were observed at
the time of a flood tide every month by the Ariake Fisheries Research Agency of Saga Prefecture. T, S
and DO at each station were measured at Om, 5m, 10m, 20m and 40m depth from surface water. In this
study, these data were interpolated by a linear interpolation at intervals of 1m depth. Seawater density
(0s) was calculated by the following equation using T and S.

os =1+103%0s (1)

(T'—-3.98)* T+283.0
503.570  T+67.26

where 0s = + (050 +0. 1024){1 Ai + Bt (050 —0. 1.)24)}

oso = —0.0939 + 0.8149S — 0.0005S 2 + 0.0000066S *,
=T (4.7869—0.098185T+0.0108437%) x 10~* and
=T (18.030—0.81647+0.016677%) x 10~¢

Monthly meteorological datain Saga weather station were used and river flows that come in the in-
terior western parts of Ariake Seawere estimated by monthly precipitation and catchment area.
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Two-layer box model

The study areathat hypoxic water occurred frequently, which surrounded with broken linesin Fig.2,
was assumed to be the two-layer box model shown by Fig.3 in this study. Boundary depth between upper
and lower layer (Hy) was corresponded to the depth of pycnocline in the study area obtained by our field
research data in August, 2005. The contribution rate to the density difference between surface and bot-
tom layer (ow-0+) Of salinity difference and water temperature difference was 76.4% and 23.6%, respec-
tively™. Thus, S was used in construction of two-layer box model. S and G (S and G) are the averaged
salinity and DO valuesin Box1 (Box2) that obtained from S and DO profilesat St.A-E (Fig.2). S and G
(S and G)) are the averaged salinity and DO values in the upper (lower) layer outside of box that ob-
tained from S and DO profilesat St.F-H (Fig.2).

Or Qp E
tinam || BT S1, C1 U —» S5, Cs
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Box2 14, 1
H-05m Ve —>

Fig. 3 Schematic diagram of the two-layer box model

If we assume that the salinity balance in each box is controlled by the horizontal velocities in upper
and lower layers (Us and U-), the vertical velocity between upper and lower layers (Wn) and K, then the
salinity balance equationsin Box1 and Box2 are expressed as follows, respectively™.

Box1
Vl%= ~ AU 4 WSS K SZZZSI (2)
MU =AuWi+Q, Q=@ +Q)—E (3)

Box2
v, 985; - —AZUZ%—AQWQ Si ;SZ —AuK SZZZSI (4)
AUz = —ApWi (5)

where \i and Vi are the volume in upper and lower layers, A; and A; are the cross section area in upper
and lower layers, Ar is the interface area between upper and lower layers, Zr is the vertical distance be-
tween mid-point of upper and lower layers, and Q is the total freshwater flux into the upper layer that is
calculated by river flow (Q:), precipitation (Q;) and evaporation (E), which is obtained by the following
equation.
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where k is the evaporation coefficient (=0.17 mmd~hPa’ecm®)", E; is the saturation vapor pressure calcu-
lated using surface water temperature, E. is the atmospheric vapor pressure and W is the wind velocity.
DO balance equation in Box2 is expressed by the following equation.

%Ctl - _AUC TG C”C‘ AIZWZCIQCwA KGZ C_yR (7)

where R isthe biochemical oxygen consumption rate.
Dimensions of boxes in the study area are listed in Table.1.

Ve

Table. 1 Dimensions of two-layer box model

Vo 0.426
Volume (knt) v, 0533
Interface area (knt’) Ao 106.56
. A 0.029
Cross section area (knt) A 0.037
Vertical distance (m) Zn 4.50

Results and discussion

1. Temporal and spatial distribution of DO

Fig.4 shows the temporal variations of DO, water level, velocity, wind direction, wind speed, wave
height and turbidity at St.1 during 16 July-11 August in 2005. As shown in this figure, DO near bottom
became hypoxic around the neap tide (16 July-20 July) and increased rapidly and largely around the
spring tide (20 July-24 July). However, DO was high value before and after neap tide (25 July-4 August)
and tended to decrease around the spring tide (5 August-8 August). The high values of DO near bottom
around the neap tide (25 July-4 August) were closely related to the wind velocity. That is, south wind
more than 5m/s blew continuously between 25 July and 4 August and wave heights in this period were
high in comparison with other observation periods. Therefore, it was considered that the stirring and
mixing actions in the water column due to wind and waves accelerated resulting in a rise of O, supply
from surface to bottom layers.

Fig.5 shows the daily variations in horizontal distributions of waters of DO<50% saturation and sa
linity>29psu near sea bottom in the interior parts of Ariake Sea during 4 August-7 August, 2005. As
shown in this figure, waters of salinity>29psu moved to the northwest area in the interior parts of bay
from Oura offing with the passage of day, and waters of DO<50% saturation also went north along the
west coastal area. Thus, we considered that the drop of DO at St.1 around the spring tide (5 August-8
August) was related to the entering of low DO waters due to advection from the bay mouth of Isahaya

Bay.

2. Sea structure under the occurrence of hypoxic water
Fig.6 shows the vertical distributions of density (o)) and DO aong Line A at the time of no occur-
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Fig. 4 Temporal variations of DO, water level, velocity, wind
direction, wind speed, wave height and turbidity at St.1.
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Fig. 5 Daily variation of horizontal distributions of DO<50% saturation and salinity>29psu. (August, 2005; Daily
averaged value.)
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rence (9 August) and occurrence (16 August) of hypoxic water. As shown in thisfigure, o, changed from
partially mixed-type into weekly mixed-type with the progress of observation point from ato g at the no
hypoxic water condition. However, at the occurrence of hypoxic water, o: was weakly mixed-type in all
observation points and there was a remarkable pycnocline at 3-5m depth from surface water. Although
DO was supersaturation above the pycnocline, DO decreased rapidly to about 20% saturation below the
pycnocline and large scal e hypoxic water was observed from middle to bottom layers.
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Fig. 6 Vertica distributions of 6. and DO dong LineA.

Fig.7 shows the relationship between the density stratification parameter (P Y that indicates the po-
tential energy of water column per unit water depth and K that is ability supply of O between surface
and bottom layers, which are obtained from the measured T and S profiles at St.1 on 21 August and 27
August in 2004 and 23 July and 17 August in 2005. Here, P was given by equations (8) and (9).

0
P:HL/,HV) (z2)—0lgzdz (8)

ﬁ:HL/f;p(z)dz (9)

where H isthe water depth, g isthe gravity acceleration and z isthe vertical coordinate.

Moreover, if we assumed that sea water temperature profile of St.1 was considered as the two strati-
fication layer as shown in Fig.8, K was calculated by equation (10)™.

o d‘;? _K < TI}{—ULTL ) 10
where H. isthe lower layer thickness, t isthetime, Ty and T. are the averaged water temperature in upper
and lower layers and Hu. isthe vertical distance between mid-point of upper and lower layers.

As shown in Fig.7, K tended to decrease exponentially with increasing P. The fact indicated that
the ability to supply O; between surface and lower layers dropped rapidly with the development of den-
sity stratification. Thus, formation of pycnocline or density stratification caused a drop of mixing in the
water column and a pycnocline barrier in the water column restricted O, supply from surface to bottom
layers.
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3. Formation of density stratification

Fig.9 shows the year-to-year variationsin DO near bottom and (ow-0+) during 1972-2000 in the inte-
rior western parts of Ariake Sea. DO and (0w-0is) are averaged values using the observed data of St.A-E
in Fig.2. As shown in this figure, DO near bottom dropped with increasing of (6w-05) in summer and
raised with decreasing of (ow-0) in winter.
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Fig. 9 Year-to-year variationsin the DO near bottom and (ow-0:) during 1972-2000.

Fig.10 shows the rel ationship between DO near bottom and (0w-0is) in summer (June-August) during
1972-2000. DO tended to decrease with increasing of (ow-0:s). Thus, we considered that the stability of
density stratification was enhanced with increasing of (ow-0i5), S0 that O supply between surface and bot-
tom layers was restricted due to adrop of vertical mixing in the water column.
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Fig.11 shows the relationship between (ow-0i) and R: that isthe total amount of precipitation in Saga
City for 7 days before Saga Prefecture research date. From this figure, we found that (ow-0.) tended to
increase with precipitation. That is, surface layer salinity decreased with increasing of precipitation and
river flow, so that the density stratification or pycnocline was formed with increasing of (0w-0).

Fig.12 shows the seasonal variations of P, which are the monthly average values during 1972-2000,
in the interior western parts of Ariake Sea. As shown in this figure, P increased rapidly in summer and
decreased in winter. In summer, (0w-0+) increased and stable density stratification was formed due to in-
crease in precipitation and river flow and surface warming, so that P became high values. However, in
winter, the water column was amost homogeneously mixed down to alower layer due to decrease in pre-
cipitation and river flow and surface cooling, so that density stratification was broken down and P be-
came low values.
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Fig. 12 Seasonal variation in P (average over 1972-2000).

4. Seasonal variationsin K and R

Fig.13 shows the seasonal variations of K and R that calculated by the two-layer box model in the
study area. They are monthly average values for 1972-2000. As shown in this figure, K tended to de-
crease in summer-autumn and to increase in winter-spring. The seasonal variations of K were closely re-
lated to that of P. That is, vertical mixing of sea water was restricted and K decreased in summer-
autumn, because density stratification was enhanced due to increasing freshwater input and surface
warming. However, vertical mixing of sea water was accelerated and K increased in autumn-winter, be-
cause density stratification was alleviated or eliminated due to decreasing freshwater input, wind-induced
mixing and surface cooling.

On the other hand, R tended to be positive (O consumption) in spring-summer and to be negative
(O production) in autumn-winter. O, consumption in spring-summer was considered to relate to rising
water temperature and increasing organic matter in the water column. And, O, production in autumn-
winter was considered to relate to dropping water temperature and activation of photosynthesis by phyto-
plankton with increasing transparency. R calculated by this model ranged from 1.0 to 1.5 mgL“d"in
summer. It was the same order as one reported in other sea area such as Tokyo Bay, Mikawa Bay and
Suo-Nada™ However, it was anticipated that R under occurrence of hypoxic water at a neap tide was
higher than that obtained by this study, because Saga Prefecture research data used in this study were ob-
served at the time of spring tide.
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From now on, it is necessary to collect the detailed field research data in summer and to construct
the model including the advection from interior eastern parts of Ariake Sea.
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Conclusions

In this study, field observations were carried out in the interior western parts of Ariake Sea and tem-
poral and spatial distribution of DO near bottom and sea structure under the occurrence of hypoxic water
in the study areawere investigated on the basis of the field data. Moreover, seasona variations of (ouw-0i)
and P in the study areawere clarified using the Saga Prefecture research datain 1972-2000, and K and R
were analyzed by the two-layer box model. The results obtained by this study are summarized as fol-
lows;

(2). Hypoxic water occurred frequently in the interior western parts of Ariake Sea with high mud content
and CODsed in bottom sediment.

(2). Temporal variations of DO near bottom at St.1 were strongly influenced by wave and wind velocity
besides tide and current velocity.

(3). When pycnocline was formed at the time of neap tide in summer, large scale hypoxic water was ob-
served below the pycnocline.

(4). K obtained by the thermal stratification model decreased exponentially with increasing of P. Thus,
stable density stratification in the water column was considered to restrict the ability to supply O, from
surface to bottom layers.

(5). Seasond variations of (ow-0i) were the opposite of that of DO near bottom in the study area during
1972-2000. (ow-0) tended to increase with increasing of precipitation.

(6). Seasonal variations of P were clarified in the study area during 1972-2000. That is, P increased rap-
idly in summer due to formation of stable density stratification and decreased in winter due to alleviation
or elimination of density stratification.

(7). K and R were analyzed by the two-layer box model in the study area. As a result, seasonal vari-
aions of K were closely related to that of P. That is, K tended to decrease in summer-autumn and to in-
crease in winter-spring. On the other hand, R tended to be positive (O, consumption) in spring-summer
and to be negative (O; production) in autumn-winter.
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