
In this study, in order to clarify the generation mechanism of hypoxic water that occurs frequently in
the interior parts of Ariake Sea, various field observations were conducted in summer of 2005 and verti-
cal diffusion coefficient and oxygen consumption rate in the study area were analyzed by the two-layer
box model using Saga Prefecture research data in 1972-2000.

Temporal variations of DO near sea bottom during 23 July-17 August in 2005 were strongly influ-
enced by typhoons and strong wind-induced mixing of sea water and by the advection of hypoxic water
from offshore area, besides tide and current velocity. From the data observed on 16 August in 2005, mix-
ing condition of water column in the west coastal area was the weakly mixed-type and density stratifica-
tion and pycnocline were formed at 3-5m depth from surface sea water at the time of occurrence of hy-
poxic water. There was a relationship between vertical diffusion coefficient obtained by the thermal
stratification model and stratification parameter. That is, vertical diffusion coefficient decreased expo-
nentially with increasing of stratification parameter. Thus, the development of density stratification in
the water column was considered to restrict the ability supply of O２ from surface to lower layers.

From Saga Prefecture research data in 1972-2000, seasonal variations of density difference between
surface and lower layers and density stratification parameter in the interior western parts of Ariake Sea
were clarified. That is, density difference raised and density stratification parameter became high values
in summer due to increasing of freshwater input and surface warming. Conversely, density difference
dropped and density stratification parameter became low values in winter due to decreasing of freshwater
input and surface cooling. Next, vertical diffusion coefficient and oxygen consumption rate in the study
area were analyzed by the two-layer box model. As a result, seasonal variations of vertical diffusion co-
efficient were closely related to that of density stratification parameter. That is, vertical diffusion coeffi-
cient tended to increase in summer-autumn and to decrease in winter-spring. On the other hand, oxygen
consumption rate tended to be positive (O２ consumption) in spring-summer and to be negative (O２ pro-
duction) in autumn-winter.
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Introduction

In resent years, water quality environment and fisheries in the interior parts of Ariake Sea become

serious１），２）, and occurrence of hypoxic water has very important effects on the above-mentioned problems.

Generally, density stratification is easy to develop and seawater mixing between upper and lower layer

decreases easily at summer in the closed sea area. As a result, seawater become easily oxygen depression

in bottom layer, because the ability to supply O２ from surface to lower layer decreases and O２ near bot-

tom layer is consumed by biochemical oxygen-consumption processes. Oxygen depression in bottom

layer deteriorates the environmental condition of habit of benthos such as clam and accelerates the elu-

sion of nutrient and sulfide from bottom sediment. Thus, it is considered that hypoxic water induces the

deterioration of water quality environment and ecosystem in the closed sea area.

In this paper, in order to clarify the generation mechanism of hypoxic water that occurs frequently at

summer in the interior western parts of Ariake Sea, temporal and spatial distribution of DO near bottom

and the sea structure under occurrence of hypoxic water in the sea area were investigated by the field ob-

servations in 2005. Then, the vertical diffusion coefficient and the oxygen consumption rate in the study

area were analyzed by the two-layer box model using Saga and Fukuoka Prefecture research data in

1972-2000, and their seasonal variations were discussed.

Outline of the field observations and material

Fig.1 shows the occurrence frequency of hypoxic water (DO<40% saturation) and the horizontal

distributions of mud content and CODsed in bottom sediment in the interior parts of Ariake Sea. The oc-

currence frequency of hypoxic water and bottom sediment data were obtained by Saga and Fukuoka Pre-

fecture research data in 1972-2000 and the Ministry of the Environment in August 2002, respectively. As

shown in this figure, hypoxic water occurred frequently in the interior western parts of Ariake Sea with

high CODsed and mud content in bottom sediment.

Fig. 1 Occurrence frequency of hypoxic water during 1972-2000 and distributions of mud content and CODsed
in 2002.
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Fig. 2 Observation stations and study area in the interior parts of the Ariake Sea (sea area surround by broken
lines). Two crosses (×) represent observation stations by Saga Prefecture.

Field observations were conducted at St.1 in Fig.2, where hypoxic water occurred frequently in

summer, using the field observation apparatus with DoPa transmission units during 16 July-11 August in

2005 to investigate the temporal variations of water quality and current velocity near sea bottom. And,

mooring observations were conducted at St.1 using the multi-type water quality meter on 23 July and 17

August in 2005 to clarify the relationship between density stratification parameter and vertical diffusion

coefficient. Moreover, water quality profiles along Line A in Fig.2 were observed using the multi-type

water quality meter on 9 August and 16 August in 2005 to make clear the sea structure under occurrence

of hypoxic water in the interior western parts of Ariake Sea.

On the other hand, in order to estimate the vertical diffusion coefficient (K ) and the oxygen con-

sumption rate (R ) in the interior western parts of Ariake Sea, water temperature (T ), salinity (S ) and dis-

solved oxygen (DO) at St.A-H as shown in Fig.2 were used in this study. These data were observed at

the time of a flood tide every month by the Ariake Fisheries Research Agency of Saga Prefecture. T , S

and DO at each station were measured at 0m, 5m, 10m, 20m and 40m depth from surface water. In this

study, these data were interpolated by a linear interpolation at intervals of 1m depth. Seawater density

(ρS) was calculated by the following equation using T and S .
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Monthly meteorological data in Saga weather station were used and river flows that come in the in-

terior western parts of Ariake Sea were estimated by monthly precipitation and catchment area.
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Fig. 3 Schematic diagram of the two-layer box model

Two-layer box model

The study area that hypoxic water occurred frequently, which surrounded with broken lines in Fig.2,

was assumed to be the two-layer box model shown by Fig.3 in this study. Boundary depth between upper

and lower layer (H１) was corresponded to the depth of pycnocline in the study area obtained by our field

research data in August, 2005. The contribution rate to the density difference between surface and bot-

tom layer (σtb-σts) of salinity difference and water temperature difference was 76.4% and 23.6%, respec-

tively３）. Thus, S was used in construction of two-layer box model. S１ and C１ (S２ and C２) are the averaged

salinity and DO values in Box1 (Box2) that obtained from S and DO profiles at St.A-E (Fig.2). S３ and C３

(S４ and C４) are the averaged salinity and DO values in the upper (lower) layer outside of box that ob-

tained from S and DO profiles at St.F-H (Fig.2).

If we assume that the salinity balance in each box is controlled by the horizontal velocities in upper

and lower layers (U１ and U２), the vertical velocity between upper and lower layers (W１２) and K , then the

salinity balance equations in Box1 and Box2 are expressed as follows, respectively４）.
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where V１ and V２ are the volume in upper and lower layers, A１ and A２ are the cross section area in upper

and lower layers, A１２ is the interface area between upper and lower layers, Z１２ is the vertical distance be-

tween mid-point of upper and lower layers, and Q is the total freshwater flux into the upper layer that is

calculated by river flow (Qr), precipitation (Qp) and evaporation (E ), which is obtained by the following

equation.
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Volume (km３)
V１
V２

0.426
0.533

Interface area (km２) A１２ 106.56

Cross section area (km２)
A１
A２

0.029
0.037

Vertical distance (m) Z１２ 4.50

Table. 1 Dimensions of two-layer box model

��������� �� �

where k is the evaporation coefficient (=0.17 mmd-１hPa-１cm-１)５）, Es is the saturation vapor pressure calcu-

lated using surface water temperature, Ea is the atmospheric vapor pressure and W is the wind velocity.

DO balance equation in Box2 is expressed by the following equation.
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where R is the biochemical oxygen consumption rate.

Dimensions of boxes in the study area are listed in Table.1.

Results and discussion

1. Temporal and spatial distribution of DO

Fig.4 shows the temporal variations of DO, water level, velocity, wind direction, wind speed, wave

height and turbidity at St.1 during 16 July-11 August in 2005. As shown in this figure, DO near bottom

became hypoxic around the neap tide (16 July-20 July) and increased rapidly and largely around the

spring tide (20 July-24 July). However, DO was high value before and after neap tide (25 July-4 August)

and tended to decrease around the spring tide (5 August-8 August). The high values of DO near bottom

around the neap tide (25 July-4 August) were closely related to the wind velocity. That is, south wind

more than 5m/s blew continuously between 25 July and 4 August and wave heights in this period were

high in comparison with other observation periods. Therefore, it was considered that the stirring and

mixing actions in the water column due to wind and waves accelerated resulting in a rise of O２ supply

from surface to bottom layers.

Fig.5 shows the daily variations in horizontal distributions of waters of DO<50% saturation and sa-

linity>29psu near sea bottom in the interior parts of Ariake Sea during 4 August-7 August, 2005. As

shown in this figure, waters of salinity>29psu moved to the northwest area in the interior parts of bay

from Oura offing with the passage of day, and waters of DO<50% saturation also went north along the

west coastal area. Thus, we considered that the drop of DO at St.1 around the spring tide (5 August-8

August) was related to the entering of low DO waters due to advection from the bay mouth of Isahaya

Bay.

2. Sea structure under the occurrence of hypoxic water

Fig.6 shows the vertical distributions of density (σt) and DO along Line A at the time of no occur-

Koriyama and Seguchi and Ishitani and Syam and Kato: Estimation of vertical diffusion coefficient and oxygen consumption rate in the interior western parts of Ariake Sea３７



140
120
100
80
60
40
20
0

DO（％）�

Water level（m）�

Velocity（cm/s）�

Wind velocity vector（Saga city）�

Wave height（cm）�

Turbidity（FTU）�

5（m/s）� N

8

6

4

2

0

30

20

10

0

15

10

5

0

150

100

50

0
Jul.16 Aug.521 26 31 10

DO＜50％（2005）�

Oura Aug.4�
Aug.5
Aug.6
Aug.7

Salinity＞29psu（2005）�

Oura Aug.4
Aug.5
Aug.6
Aug.7

Fig. 4 Temporal variations of DO, water level, velocity, wind
direction, wind speed, wave height and turbidity at St.1.

Fig. 5 Daily variation of horizontal distributions of DO<50% saturation and salinity>29psu. (August, 2005; Daily
averaged value.)
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Fig. 6 Vertical distributions of σt and DO along Line A.

rence (9 August) and occurrence (16 August) of hypoxic water. As shown in this figure, σt changed from

partially mixed-type into weekly mixed-type with the progress of observation point from a to g at the no

hypoxic water condition. However, at the occurrence of hypoxic water, σt was weakly mixed-type in all

observation points and there was a remarkable pycnocline at 3-5m depth from surface water. Although

DO was supersaturation above the pycnocline, DO decreased rapidly to about 20% saturation below the

pycnocline and large scale hypoxic water was observed from middle to bottom layers.

Fig.7 shows the relationship between the density stratification parameter (P )６）that indicates the po-

tential energy of water column per unit water depth and K that is ability supply of O２ between surface

and bottom layers, which are obtained from the measured T and S profiles at St.1 on 21 August and 27

August in 2004 and 23 July and 17 August in 2005. Here, P was given by equations (8) and (9).
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where H is the water depth, g is the gravity acceleration and z is the vertical coordinate.

Moreover, if we assumed that sea water temperature profile of St.1 was considered as the two strati-

fication layer as shown in Fig.8, K was calculated by equation (10)７）.
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where HL is the lower layer thickness, t is the time, TU and TL are the averaged water temperature in upper

and lower layers and HUL is the vertical distance between mid-point of upper and lower layers.

As shown in Fig.7, K tended to decrease exponentially with increasing P . The fact indicated that

the ability to supply O２ between surface and lower layers dropped rapidly with the development of den-

sity stratification. Thus, formation of pycnocline or density stratification caused a drop of mixing in the

water column and a pycnocline barrier in the water column restricted O２ supply from surface to bottom

layers.
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Fig. 9 Year-to-year variations in the DO near bottom and (σtb-σts) during 1972-2000.

3. Formation of density stratification

Fig.9 shows the year-to-year variations in DO near bottom and (σtb-σts) during 1972-2000 in the inte-

rior western parts of Ariake Sea. DO and (σtb-σts) are averaged values using the observed data of St.A-E

in Fig.2. As shown in this figure, DO near bottom dropped with increasing of (σtb-σts) in summer and

raised with decreasing of (σtb-σts) in winter.

Fig.10 shows the relationship between DO near bottom and (σtb-σts) in summer (June-August) during

1972-2000. DO tended to decrease with increasing of (σtb-σts). Thus, we considered that the stability of

density stratification was enhanced with increasing of (σtb-σts), so that O２ supply between surface and bot-

tom layers was restricted due to a drop of vertical mixing in the water column.

Fig. 8 Conceptual illustration of thermal stratifi-
cation model for sea water temperature.Fig. 7 Relationship between P and K .

Fig. 10 Relationship between DO near bottom and
(σtb-σts) in summer during 1972－2000.

Fig. 11 Relationship between (σtb-σts) and R７ in
summer during 1972－2000.
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Fig.11 shows the relationship between (σtb-σts) and R７ that is the total amount of precipitation in Saga

City for 7 days before Saga Prefecture research date. From this figure, we found that (σtb-σts) tended to

increase with precipitation. That is, surface layer salinity decreased with increasing of precipitation and

river flow, so that the density stratification or pycnocline was formed with increasing of (σtb-σts).

Fig.12 shows the seasonal variations of P , which are the monthly average values during 1972-2000,

in the interior western parts of Ariake Sea. As shown in this figure, P increased rapidly in summer and

decreased in winter. In summer, (σtb-σts) increased and stable density stratification was formed due to in-

crease in precipitation and river flow and surface warming, so that P became high values. However, in

winter, the water column was almost homogeneously mixed down to a lower layer due to decrease in pre-

cipitation and river flow and surface cooling, so that density stratification was broken down and P be-

came low values.

4. Seasonal variations in K and R

Fig.13 shows the seasonal variations of K and R that calculated by the two-layer box model in the

study area. They are monthly average values for 1972-2000. As shown in this figure, K tended to de-

crease in summer-autumn and to increase in winter-spring. The seasonal variations of K were closely re-

lated to that of P . That is, vertical mixing of sea water was restricted and K decreased in summer-

autumn, because density stratification was enhanced due to increasing freshwater input and surface

warming. However, vertical mixing of sea water was accelerated and K increased in autumn-winter, be-

cause density stratification was alleviated or eliminated due to decreasing freshwater input, wind-induced

mixing and surface cooling.

On the other hand, R tended to be positive (O２ consumption) in spring-summer and to be negative

(O２ production) in autumn-winter. O２ consumption in spring-summer was considered to relate to rising

water temperature and increasing organic matter in the water column. And, O２ production in autumn-

winter was considered to relate to dropping water temperature and activation of photosynthesis by phyto-

plankton with increasing transparency. R calculated by this model ranged from 1.0 to 1.5 mgL-１d-１in

summer. It was the same order as one reported in other sea area such as Tokyo Bay, Mikawa Bay and

Suo-Nada８）. However, it was anticipated that R under occurrence of hypoxic water at a neap tide was

higher than that obtained by this study, because Saga Prefecture research data used in this study were ob-

served at the time of spring tide.

Koriyama and Seguchi and Ishitani and Syam and Kato: Estimation of vertical diffusion coefficient and oxygen consumption rate in the interior western parts of Ariake Sea４１
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From now on, it is necessary to collect the detailed field research data in summer and to construct

the model including the advection from interior eastern parts of Ariake Sea.

Conclusions

In this study, field observations were carried out in the interior western parts of Ariake Sea and tem-

poral and spatial distribution of DO near bottom and sea structure under the occurrence of hypoxic water

in the study area were investigated on the basis of the field data. Moreover, seasonal variations of (σtb-σts)

and P in the study area were clarified using the Saga Prefecture research data in 1972-2000, and K and R

were analyzed by the two-layer box model. The results obtained by this study are summarized as fol-

lows;

(1). Hypoxic water occurred frequently in the interior western parts of Ariake Sea with high mud content

and CODsed in bottom sediment.

(2). Temporal variations of DO near bottom at St.1 were strongly influenced by wave and wind velocity

besides tide and current velocity.

(3). When pycnocline was formed at the time of neap tide in summer, large scale hypoxic water was ob-

served below the pycnocline.

(4). K obtained by the thermal stratification model decreased exponentially with increasing of P . Thus,

stable density stratification in the water column was considered to restrict the ability to supply O２ from

surface to bottom layers.

(5). Seasonal variations of (σtb-σts) were the opposite of that of DO near bottom in the study area during

1972-2000. (σtb-σts) tended to increase with increasing of precipitation.

(6). Seasonal variations of P were clarified in the study area during 1972-2000. That is, P increased rap-

idly in summer due to formation of stable density stratification and decreased in winter due to alleviation

or elimination of density stratification.

(7). K and R were analyzed by the two-layer box model in the study area. As a result, seasonal vari-

ations of K were closely related to that of P . That is, K tended to decrease in summer-autumn and to in-

crease in winter-spring. On the other hand, R tended to be positive (O２ consumption) in spring-summer

and to be negative (O２production) in autumn-winter.

４２ Bull. Fac. Agr., Saga Univ. No．９２（２００６）
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平成１８年９月１９日 受理

有明海奥部西岸域における鉛直拡散係数及び酸素消費速度の推定

摘 要

本研究では，有明海奥部で頻発する貧酸素水塊の発生メカニズムを明らかにするために，
２００５年夏季に種々の現地観測を行うと同時に，１９７２～２０００年の浅海定線調査データを用いて２
層ボックスモデルによる奥部西岸域の鉛直拡散係数及び酸素消費速度の解析が行われた．
２００５年７月２３日～８月１７日における底層ＤＯの時間的変動は，潮位や流速以外に台風や強風
による海水の撹拌や沖合域からの貧酸素水塊の移流に大きく左右された．また，２００５年８月１６
日の現地観測より，貧酸素水塊の発生時において西岸域の混合状態は弱混合となり，水深３～
５�付近に顕著な密度成層さらには密度躍層の形成が見られた．水温成層モデルより得られた
鉛直拡散係数と成層強度との間には関連性が見られ，鉛直拡散係数は成層強度の増加に伴って
指数関数的に減少した．このことから，海水の密度成層の発達は，表層から下層へのＯ２の供
給能力を制限するものと考えられた．
１９７２～２０００年の浅海定線調査データより，有明海奥部西岸域における表底密度差や成層強度
の季節変動が明らかにされた．すなわち，夏季では淡水流入量の増加や海面加熱により表底密
度差が上昇し，成層強度は増大した．一方，冬季では淡水流入量の減少や海面冷却により表底
密度差は低下し，成層強度は減少した．また，２層ボックスモデルにより奥部西岸域における
鉛直拡散係数及び酸素消費速度が解析された．その結果，鉛直拡散係数の季節変動は成層強度
のそれと密接に関連し，夏季～秋季に減少し，冬季～春季に増加する変動傾向を示した．また，
酸素消費速度は春季～夏季に正（Ｏ２消費），秋季～冬季に負（Ｏ２生産）となる季節変動を示し
た．

４４ Bull. Fac. Agr., Saga Univ. No．９２（２００６）


