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A Note on the Coupon Collector’s Problems

Akihiro Niism and Kentaro Nomaxucs: *

1. Introduction

Suppose there are infinite number of coupons consisting of unequal proportions of
k(k=2) types. We randomly select one from this aggregate. Let pi(pi>0, 2 pi=1)
be the probability that a coupon of the i-th type G, say, will be selected at each
collection. We denote p={(ps,....o) and p°=(1/k,..,1/k) which corresponds to the
equiprobable case.

We continue our collections until each C; has been obtained g times, where a4i,...,
ayx are the prescribed nonnegative integers. Let r=ra,.ox be the minimal number

of collections needed for the purpose stated above. Wheng, =..=a,=a>0, 7, , will
simply be denoted by 7,. We will consider 7 in case of k=2 in full generality.
Newman and Shepp[5], under p°=(1/k,..1/k) and a=..=a4=a>0, give an

asymptotic evaluation of the mean of z,, as k —oo, Let Y, be the number of coupons
of the i-th type after n collections. It is clear that Y=(Y,.,..., Ywn) posseses the
multinomial distribution M,(n,p)

P[Y:<yl;'--;yk)] y,v y ! pl

Let a+M be defined by, for some i(1=isk) Y on=a and Y, 4u<a(Vi=i), namely, at
the a+M th collection one of k-types is obtained « times for the first time. Evidently
M is a nonnegative integer valued random variable which is at most (k—1}z—1).
When k=2, Bradley[2] calls L=g~M excess. In case ¢, =a=a>0, it will be easily
seen that z, can be expressed as

te=a+M+Ny=2a—L+N,, (1-1)

where the conditional distribution of N, under L=/ and the type i(i.e. Yigin=a,
Y i0:m<a) is negative binomial

. [+i—1
PINc=t+alL=0 e i1=("" ) ppy, 1S05e, t=012... (1)
Note that, under p°=(1/2,1/2), the conditional distribution of N does not depend on
i
[+ 1= 1\ 1\t
Ppe[NL=l+t!L:Z]=< , )(—éy (1-3)

where Py-[A] represents the probability of an event A under p°. Bradley[2], under
p*=1(1/2,1/2), obtains the probability function of the excess L

Pwu;:z]:(2i;f;l)<é)“'“ﬂ 1si<a.. (1-4)
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The probability function of z,, under p®=(1/2,1/2), is immediately obtained by (1-1),
(1-3) and (1-4)

Ppo[ra:2a+t]z;éPpu[L:Z]Ppe[NL:Z+tIL=Z]
(1Nt g <2a-~l—~l><l+t~_l
(2> Z:l a—1 ¢ >

:(_1“>2a+f~1<2a+t~1>
2 a+t (1-5)

which is identical with (2-3) given in the following section.

It will be worthwhile to mention a related situation. Let r;; be the number of
collections needed for the attainment of some j(1=j=k) different types has been
obtained. Obviously 7. is equal to z. Nath[4], under p=(p,,...,.p«), calculates the
probability Plz;,2r] and obtains the exact expressions of the mean and variance
of 7. Baum and Billingsley[1], under p®={1/k,..,1/k), consider the asymptotic
behaviour of 7, as k —©0 posing appropriate conditions on j and k—j. Samuel-Cahn
[8] generalizes the results of Baum and Billingsley to a situation where there exists
some probability of missing collected coupons.

2. Distribution of 7

For real vectors x=(x,...,% ) and v=(y1,...,v.), x is said to be majorized by y
(denoted by x<y) if

k k

2 2y, i=1..., k=1, and fz;lx(n:igym,
where xy 2 Zxg(yw= - 2ypa) is the rearrangement of %,...% (vi,....vx){(Marshall
and Olkin[3], p.7).
A real-valued function ¢ defined on a set A of k-dimensional Euclidean space is said
to be Schur-convex(Schur-concave) if

x<y on A= ¢(x) = p(y)(d(x) = ¢(y))

([3], p.54). Let P= {p=(py,...p)|p: =0, Zp;=1} . It is obvious that p*=(1/k,...,
1/k)<p and (1,0,...,0)>p for all peP.

When k=3, it seems difficult to obtain, under p=(p,...,.px), the exact probability
function of zg,..a. It is clear that the events {ru..q=x} and {Y 2 a, 1=Visk} are
identical for all nonnegative integers x.

Thus we have

Polrg.asx]=P[Vix2a, 12Visk]. 2-1)

When @ ==ag=a>0, the inequality (3-4) given by Olkin[6]([3],E.ll.e., p.306) is
identical with the Schur-concavity of P,[z,<x], p& P. Thus this can be stated as:

If p> g on P, then the distribution of 7, under p is stochastically larger than that
of 7, under q. In particular we have
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p>q on P = Eo(ta) Z2Eq(7a)

where E,(X) represents the mean of a random variable X. Note that Ey(z,) is a
Schur-convex function of p.

The proof of the above statement is immediately obtained if we use a theorem
of Rinott [7] (cited in [3], p.304)

Theorem (Rinott): Let Y=(Y,,..Y.,) be a random vector having the
multinomial distribution My(x,p). If ¢ is a Schur-concave function, then E,[#(Y)] is
a Schur-concave function of p.

Let Ix, (v) be the indicator function of the set R,= {y=(yv.,...vi)|vi2q, ISVi=
k} . It is easily verified that Iz, (y) is a Schur-concave function. The theorem of
Rinott and the equality (2-1) show that E,[Iz, (Y)] =P, [Y .2 l1=Visk] =P, (r,=x)
is a Schur-concave function of p.

Remark. Let H(p)=— é pilog p: be the entropy of pe . 1t is well known that
H(p) is Schur-concave([3], ‘5.171). It will be of some interest to ascertain whether
Hip)=H(4) implies E (1,) 2 E{r.) or not and/or, more strongly, H(p)< H(4) implies
that the distribution of z, under p is stochastically larger than that of 7, under q.
Note that, in case of k=2, the majorization and the entropy induce a equivalent order
relation in P namely, p>q & H{p)=H{(qg).

In the following we will confine our attention to the case k=2, We use r=1,,
and {p,q) instead of r=14,4, and {p,,p.) respectively, where ¢ and b are positive

integers and p>0, g>0, p+q=1.
Lemma 2-1.
+bh+t—1 +h+t—1
P(r=a+b+t)={<a b )t (“ b

7 b1 )Z)‘}p“qb,Z:O,l,Z‘,...,. (2-2)

Proof. If Y iprrr=a—1, then Yo uyps1=b-+1t2b. I Youipsiei=b—1, then
Yy qrpee-1=a+t=a. Therefore it is easily seen that {r=a+b+t}={YViarost-1=a—1
and Yiaveee=a) U (Yoasoeor=b—1 and Yoqip+=5b} (disjoint union).  Since

P(Yl,a+b+(-—]:a"1 and Y},a+(7+z:d>:(a+2j;~])pawlqb”D and P(Yz,a+b+1n1:b“1
- ,
and Yz,a+b+z:b):<a bb“ 7 l)qb“’DG”Q, the equation (2-2) is verified. (g.ed)
When b=a and p=qg=1/2, (2-2) becomes
Za+t—1\( 1)+t
e W ¢) 29

that is identical with (1-5).
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Lemma 2-2,

e=§+1<bg—t)z)tqbﬂzzg)(a:t)pa“qt (2-4)

where ¢ and b are nonnegative integers and p>0, ¢>0, p+g=1.

Proof. Yo=Y =(Y ., Y2a) can be viewed as a random walk on the plane starting
at the origin. According to the Fig.2-1, it is seen that the trajectories that pass
through the lattice points on the line A must pass through those on the line B and vice
versa. Thus we have

b
E)(azt)p““q’:P(Yn arrvives at the line A after some epochs)=

P(Y, arrives at the line B after some epochs) =, §+l(bzi>pfqb+1_ {q.ed)

Yon
C B
b+l TY £
2 i3
LA
e a a+1 Yin
Fig.2-1

Considering
e b+t = (b+t b+t
5§0< b )ptqb+1+t=§+1( 5 >1)’qb“21(2§0< b )piqb+lqu+1(l_p)—b~1) (2__5)

and (2-4), we have
b

e O -9

where the left hand side of (2-5) represents the probability of the event that Y,
arrives at the line B or C after some epochs. When =g and p=q=1/2, (2-4) and (2

-6} yield
S G =ACTNE) T e

the latter half of which is found in Bradley[2].
Theorem 2-1

E(r)=(a+ b)(az b)ﬁ“qb+%+(-§m§)g}(‘zz t)f)‘”’qf. (2-8)
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- atdb+1 a+b+2 atb+1
E[T(T+I>]_[“<a+1>{< a+1 >+( a+1 HMU)“){( b+1 )

R - e

Proof. According to (2-2),

E(@)=E(a+ b+ OP(=a+ b+0)= 5 a(“ 0T g o770 ) gt} page

Vet 29

:d§<a+t)pa t+b2(b+t> ~(a +b)<a+b>1)aqb a i <a+z‘>pa”
i=b D =6+1
__b~ < <b+t) t ., b+1
+ q t=%}+1 b pav
Using (2-4) and (2-5), we obtain (2-8). The proof of (2-9) is similarly obtained.
{g.e.d.)
In case a:b=p:q, (2-8) reduces
a’b® <a+b> { 1 /1 1} _
B(r)= (a+b){1+(wa+b)a+b } ~(a+b) ”F + (2-10)
When b=a and p=g=1/2, after some calculations, we have
Corollary.
= 2(1 l) ,_2” 1/2__._,_1____ -~1/2 —~3/2 .
E(r) 2a{l+< )( 5 } 2a+ﬁa 4551 + O(a3?). (2-11)
(o) W) &)
wa—1 a/l?
Var(f) Za 4& 223 +(2Cl+2>(2a+1 22(2 "“{2& ZZG}
~2-Lya+-Lan+ (a1 (2-12)
kg Jr '

Let L and Nt be the random variables defined in Introduction. The conditional
mean and variance of Ny given L=/ are, assuming p=q=1/2,

ENUL=0=27, Va(NJL=0=2. (2-13)
Since 7 and L satisfy (1-1), it follows
E(r)=2a+E(L), (2-14)
Var( T>: 2 E(L)+Var(L)- (2-15)
Considering, (2-11), (2-12), (2-14) and (2-15) we have
= Za 2 1 a1 ~3/2 _
E(L)= 226( )~ Fa—a O(a), (2-16)
~{ 2 4 ~1/2 : _
Var(L)~(2 7{)a+ ﬁa’ + O(a™1?), (2-17)

which are slightly precise expressions found in Bradley[2].
We consider a simple asymptotic property of z. Similar consideration done in
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the proof of Lemma 2-2 tells us
{rsa+b+ti={as Yiapisa+t}, 1=012,.. (2-18)
where Y, ,.5.+, has the binomial distribution B(a+ 4+ ¢,p). Thus we have

P(réa+b+t}=P[ﬁ%%%“f%§UMb”§%ﬁ%~%%%} (2-19)

whereUg, p. ¢ 18 the normalized variable of Y, 446.: When a=up and b=nqgnamely,
a:b=pq, (2-19) becomes

P —
P(Z’é n+z‘)=P{~1/ ﬁ%éUnﬂg\/ﬁif%} (2‘20)

Note that g—c0 & p—c0 & p—oo, Setting r=x4/7, x=20, we have

Theorem 2-2.

ime{(- g Gerl-olef5) ol 2) e

where ®( ¢ ) is the distribution function of the standard normal distribution. In case
p=q=1/2 (necessarily a=b since a:b=p:q),

7272?‘?———»11\«0, Dlas @ — o, in law (2-22)

where N(0,1) stands for the standard normal distribution.
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