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Abstract 
 
 

A multistage method for estimation of the refractive index and the size 
distribution of aerosol using direct and diffuse solar irradiance as well as 
aureole by means of a method of the modified simulated annealing is 
proposed. In this method, based on simulated annealing, a gradually 
decreasing oscillation function is introduced into the temperature of 
annealing in order to acceralate learning process of annealing. By using the 
method of Successive Orders of Scattering, the simulated data of direct and 
diffuse solar irradiance are generated together. Meanwhile, aureole 
irradiance is estimated by means of an empirical method from the 
experimental data. A comparison between the existing method, which is 
based on linear inversion method proposed by P. Romanov et.al, and the 
proposed method is made. The results show that the retrieval precisions 
from the proposed method improved twice more than that in the existing 
method. 
 
Keywords: Aerosol, Aureole, Refractive Index, Size Distribution, 

Simulated Annealing, Annealing Temperature, Successive 
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Chapter 1    

Introduction  
 
 
Romanov et al.(1999), Sherbrooke University proposed a method for estimation of 

the refractive index and the size distribution of aerosol by means of linear inversion 
method. They estimated the refractive index and the size distribution of aerosol for the 
atmospheric column from the measured data of diffuse solar irradiance at surfaces, 
aureole(solar peripheral irradiance) at surfaces and aerosol optical depth as a solution of 
linear inversion method(It is referred to ”Sherbrooke Model” hereafter). However, the 
relation between unknown parameters(the size distribution and the refractive index) and 
measurement data(diffuse solar irradiance, aureole and optical depth of aerosol) is not 
linear, thus the estimation accuracy is not sufficient. 
 

A sensitivity analysis is made for the Sherbrooke model with respect to the retrieval 
accuracy on each variable. Through the analysis, it is shown that the sensitivities of the 
real part of the refractive index and the size distribution are good enough while that of 
the imaginary part of the refractive index is not. Thus it is also shown that estimation 
accuracy of the imaginary part of the refractive index is not good enough in comparison 
to those for the real part of the refractive index and the size distribution. It is caused by 
a non-linear relation between the unknown parameters and the measurement data as 
well as a small influence due to the imaginary part of the refractive index compared to 
the real part of the refractive index and the size distribution. Thus a method for 
estimation of the aerosol size distribution and the refractive index based on nonlinear 
inversion is proposed together with multi-stage estimation of which firstly the unknown 
parameters which show relatively high sensitivities are estimated followed by the rest of 
unknown parameters(It is referred to Arai-Ryo model). 

 
With respect to the methods of the nonlinear inversion, there are various iterative 

methods, such as Jacobi Method, SDM(Steepest Descent Method), CGM(Condjugate 
Gradient Method) , SA(the method simulated annealing), and so on. they can not avoid 
getting local minima for most of the methods except simulated annealing which ensure 
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to reach global optimum solution theoretically (Arai,2001). Meanwhile, it requires 
anomalous computing resources usually so that an acceleration of learning process is 
needed. Usually a monotonically decreasing function is used for annealing temperature 
control in learning process. This may cause a time consuming process. In this thesis, a 
monotonically decreasing oscillation function is introduced for annealing temperature 
control. A monotonically decreasing function ensure to reach a global optimum solution 
while an oscillation function makes to reach a optimum solution much faster and also 
makes to come out from local minima. 

 
In order to make a sensitivity analysis as well as evaluation of estimation accuracy of 

both Sherbrooke Model and Arai-Ryo models, the simulated and/or the observed data of 
direct and diffuse solar irradiance at surfaces as well as aureole are needed. A successive 
orders of scattering method is used for generation of the simulated direct and diffuse 
solar irradiance data with the varieties of the aerosol parameters(Guang-Yu Shi,1998) of 
the refractive index and the size distribution. Meanwhile, aureole is calculated based on 
an empirical model(Box et al,1981) proposed by P. Romanov of Sherbrooke University. 
Using the simulation data, it is shown the sensitivities of the real part of the refractive 
index and the size distribution are good enough while that of the imaginary part of the 
refractive index is not, and it also shown Arai-Ryo model is superior to the Sherbrooke 
model in terms of estimation accuracy. 
   
  To generate the simulated data of diffuse irradiance, we will describe in detail the 
solution of the radiative transfer equation by means of the method of successive orders 
of scattering in chapter 2. We will also discuss the influence on the diffuse irradiance 
due to the surface and the atmospheric media in this chapter. Atmospheric optical 
properties will be described in chapter 3. We will discuss the phase functions of 
atmospheric molecule and aerosol particle based on the theories of Rayleigh scattering 
and Mie scattering, meanwhile, we will explain how to calculate the optical depth of 
aerosol particles from their microphysics properties. In addition, we will describe 
simply the absorption from water vapor and ozone in visible and near-infrared spectral 
range in this chapter. In chapter 4, we will discuss the aureole model based on an 
empirical model(Box et al,1981) proposed by P. Romanov of Sherbrooke University.  

 
The three chapters above, describe the foundational theories for this thesis. In the 

later chapters we will devote ourselves to discuss and analyze proposed method. In 
chapter 5, we will describe in detail Sherbrooke model in which the size distribution and 
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the refractive index of aerosol are estimated by means of a linear inverse method. A 
sensitivity analysis is made for the Sherbrooke model with respect to the retrieval 
accuracy on each variable in chapter 6. It will be shown that the sensitivities of the real 
part of the refractive index and the size distribution are good enough while that of the 
imaginary part of the refractive index is not. Thus it will be also shown that estimation 
accuracy of the imaginary part of the refractive index is not good enough in comparison 
to those for the real part of the refractive index and the size distribution. In chapter 7 we 
will discuss in detail the proposed method which the size distribution and the refractive 
index of aerosol were estimated by means of a modified simulated annealing method. In 
this chapter, we firstly will summarize simply the method of simulated annealing, then, 
it will be explained that some faults exist in simulated annealing method and a modified 
annealing temperature will be introduced into the proposed method for reducing time 
consumption, finally we will give a whole algorithm of Arai-Ryo model which proposed 
in the thesis. A comparison of retrieval error between Sherbrooke model and the 
proposed method will be made in chapter 8. We will also discuss the influence for the 
retrieval error due to the surface reflectance. In last chapter, we will conclude some 
views from previous analysis. 
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Chapter 2    

Solving Radiative Transfer Equation  
 
 

There are many different methods are available to solve radiative transfer equation, 
such as DOM(Discrete Ordinates Method), SOS(Successive Orders of Scattering), 
Gauss-Seidel Iteration, Doubling and Adding Method, and so on. In this thesis, we will 
mainly introduce one of them for the radiative transfer problem: SOS. It was chosen for 
two main reasons; 1) it is physically intuitive, especially as the physics remains clear 
through the mathematical formalism, and hence relatively easy to code; and 2) it is 
easily adaptable to different geometries and types of simulations.  

 
In the following three sections, we firstly describe simply the concept of the radiative 

transfer equation. Then, we explain in detail the method of SOS for a plane-parallel 
atmosphere. Finally, we discuss two factors that affect the radiative transfer equation: 
the surface reflectance and the atmospheric media.  
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2.1 Radiative Transfer Equation 
 
 

 
 

Fig.2. 1  Concept of the Radiative Transfer.   
 

 
The equation of the radiative transfer for the diffuse irradiance ),,( φμτI  in a 

plane-parallel scattering media that is shown as Fig.2.1 may be written, 
 

),,(),,(),,( φμτφμτ
τ

φμτμ JI
d

dI
−=                             (2.1) 

 
The optical depth τ  is the measured perpendicular to the media boundaries with τ =0 

at TOA(Top of Atmosphere), and the direction is specified through μ  (absolute value of 
the cosine of the zenith angle) and φ (the azimuth angle). In this thesis, the source term 

),,( φμτJ is defined by: 
 

thermalbeam JJIPddJ ++= ∫∫− ),,(),,,,(
4

),,( ''''2

0

'1

1

' φμτφμφμτφμ
π
ϖφμτ

π
      (2.2) 

 
The source term  corresponds to scattering of a parallel beam of incident flux beamJ

00 Fμ in direction ),( 00 φμ .  represents the thermal emission (assumed isotropic) 
which determined by a Planck function at temperature T, specifically . 

thermalJ
)(TB

 

0/
000 ),,,(

4
μτφμφμ

π
ϖ −−= eFPJ beam                               (2.3) 
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)()1( TBJthermal ϖ−=                                          (2.4) 

 
where   is the phase function for the scattering media, which 
depends on scattering angle , and 

)(),,,( '' Θ= PP φμφμ
Θ ϖ is the single scattering albedo. The scattering 

angle is given in terms of (incident and scattered) directional variables through the usual 
relation: 

 

)cos()1)(1()cos( '2'2' φφμμμμ −−−+−=Θ                      (2.5) 

 
In visible and near-infrared spectral region the contribution of thermal emission 

processes to the source function can be negligible, and thus, the source function 
comprise only scattering processes. Substituting Eq.(2.3) into Eq.(2.2) and omitting the 
third term of right side in Eq.(2.2), we can obtain the approximate source function in 
visible and near-infrared spectral region as follows, 
 

0/
000

''''2

0

'1

1

' ),,,(
4

),,(),,,(
4

),,( μτπ
φμφμ

π
ϖφμτφμφμφμ

π
ϖφμτ −

−
−+= ∫∫ eFPIPddJ   

(2.6) 
 
  By means of the method SOS, we can resolve the diffuse irradiance ),,( φμτI  from 
the equation of the radiative transfer Eq(2.1). It describe as the following section. 
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2.2 Method of Successive Orders of Scattering 
 

 
 

Fig.2. 2  Concept of the Method of Successive Orders of Scattering  

 
 
The method of SOS is one in which the intensity is computed individually for 

photons scattered once, twice, three times and so forth, shown as Fig.2.2, with the total 
intensity obtained as the sum over all orders. Hence for diffuse reflected and transmitted 
intensities we may write, respectively, 

 

∑
∞

=

=
1

),,(),,(
n

nII φμτφμτ                                  (2.7) 

   

∑
∞

=

−=−
1

),,(),,(
n

nII φμτφμτ                                 (2.8) 

 
where n denotes the order of scattering. 

 
When we assume that there are no downward diffuse irradiance on the TOA and 

upward diffuse irradiance on the base of the finite atmosphere, i.e., 

 7



 
0),,0( =− φμI                                           (2.9) 

 
0),,( 1 =− φμτI                                         (2.10) 

 
With the assumed boundary conditions, we have the solution of the equation of 

radiative transfer as follow, 
 

μ
τμττφμτφμτ

τ

τ

'
'' )/)(exp(),,(),,( 1 dJI ∫ −−=                (2.11) 

 

 
μ
τμττφμτφμτ

τ '

0

'' )/)(exp(),,(),,( dJI ∫ −−−=−               (2.12) 

 
The zero-order intensity can be given by Dirac’s δ function, 
 

)()()/exp(),,( ''
00

''
0 φφδμμδμτπφμτ −−−= FI              (2.13) 

 
Consider the emergent radiation as consisting of light which has been scattered only 

once. Then, the radiation source is simple, 
 

)/exp(),,,,(
4

),,( 00001 μτφμφμτπ
π
ϖφμτ −= PFJ              (2.14) 

 
Inserting it into the formal equations of transfer(Eq. (2.11) and Eq.(2.12)) and 

integrating over the appropriate optical depths, we obtain intensities due to photons 
scattered once. It follows that the source and intensities may be derived successively by 
means of the recursion relationships, 

 

μ
τμττφμτφμτ

τ

τ

'
'' )/)(exp(),,(),,( 1 dJI nn ∫ −−=                   (2.15) 

 

 
μ
τμττφμτφμτ

τ '

0

'' )/)(exp(),,(),,( dJI nn ∫ −−−=−                 (2.16) 
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∫ ∫−+ =
π

φμφμτφμφμτ
π
ϖφμτ

2

0

1

1

''''''
1 ),,(),,,,(

4
),,( ddIPJ nn            (2.17) 1≥n

 
 

2.3 Atmospheric Media and Surface Reflection 
  
Atmospheric constituents have a great influence on the radiative transfer by changing 

the atmospheric optical depth and the phase functions. The atmospheric optical depth 
from the latitude h1 to h2 can be defined as follows, 

 

∫=
1

2

h

h
dhkρτ                                             (2.18) 

 
where ρ  is the density of the atmospheric constituents. k is extinction factor. 
 

In this thesis, we assume that the atmospheric constituents consist of molecule, 
aerosol, water vapor and ozone, and are homogeneous in parallel direction. Then total 
optical depth can be written,  

 
 ohomolaer 23 τττττ +++=                                     (2.19) 

 
molτ , aerτ , oh2τ , 3oτ  represent the optical depths of atmospheric molecule, aerosol, 

water vapor and ozone, respectively. In general, we can observe immediately the optical 
depth of water vapor and ozone as well as the total atmosphere. The optical depth of the 
molecule can also be calculated using an empirical formula described by the chapter 3. 
So we can obtain the optical depth of aerosol from Eq. (2.19). We also can calculate 
the optical depths of the different atmospheric constituents using MODTRAN code in 
different atmospheric models. MODTRAN(Moderate Resolution Transmittance Code) 
is a code which is capable of predicting atmospheric transmittance and irradiance for 
frequencies from 0 to 50,000  at moderate spectral resolution, it was developed by 
AFGL(Air Force Geophysics Laboratory, USA) from 1970. Fig.2.3 shows the optical 
depths of the four components in visible and infrared spectral range, and they were 
calculated by MODTRAN4.0. In Fig.2.3 the signs [x] are the measurement data of the 
total optical depths with resprct to the wavelengths 0.5, 0.675, 0.870 and 1.020um at 
Saga University in Sep, 2003. we can find that the calculated data of the total optical 
depths are similar with their values.  

1−cm
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Fig.2. 3  Wavelength Dependence on the Optical Depths.The 

optical depths of aerosol, molecule, water vapor and O3as well as 

total of them in visible and infrared spectral range. 

 
 
We can separate the atmosphere to discrete layers in perpendicular direction as it is 

heterogeneous. The optical depth of each layer can be written,  
 

iohioimoliaeri ,2,3,, τττττ +++=                                 (2.20) 

 
where i is the number of atmospheric layer.  
 

If we know the profiles of each atmospheric constituent and the optical depths can be 
obtained by the ground-based measurement and some empirical formula, the optical 
depths of each layer can be calculated as follows,  

 

  mat

h

h
mati

dhmati

dhmatii

i τ
ρ

ρ
τ

∫
∫
∞
−=

0

,
),(

),(
1                                    (2.21) 

 
Where mat represents atmospheric molecule, aerosol, water vapor or ozone, and h is 

altitude. ),( matiρ is the density of component mat in the  atmosphere layer. thi
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Table 2.1 shows the profiles of molecule, aerosol, water vapor and ozone, in which 

the atmosphere is separated to 30 discrete layers from surface to 50km (McClatchey et. 
al,1972). It was in Middle-Summer model and aerosol type is assumed as clear model. 
Fig.2.4 shows the altitude dependence on the optical depths from MODTRAN4.0. 

 
 

 

 
Fig.2. 4  The Altitude Dependence on the Optical Depth.  

 
In Fig.2.4 we can found that aerosol optical depth is contributed mainly by the 

aerosol particles in the troposphere which the latitude is less than 5km, but ozone optical 
depth is contributed mainly in the stratosphere.      

 
In generation, we can omit the optical depths of the ozone and the water vapor in 

visible and infrared spectral range as we resolve the radiative transfer equation.  
 
Although we assume the upwelling diffuse irradiance as 0 at surface in Eq.(2.10),  

actually, it is great influenced by the surface reflection. Here, we assume the surface as 
Lanbertian surface, so the upwelling diffuse irradiances at surface in all of the scattering 
angles are the same and can be written with a surface reflectance(A) as follows. 

 

'1

0

''
1

2

01 ''),,(),,( φμμφμτ
π

φμτ
π

ddIAI ∫∫ −=                        (2.22) 
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  Table 2. 1  Atmospheric Profiles in Urban Type. 

                 Atompheric Profile Clear model
Antitude Press Temp Molecule Water vapor Ozone Aerosol

km atm K gm/m3 gm/m3 gm/m3 cm-3
0 1012.882 294.2 1.301E+03 1.40E+01 6.00E-05 1.378E+04
1 901.912 289.7 1.162E+03  9.293E+00 6.00E-05 5.030E+03
2 801.936 285.2 1.037E+03  5.896E+00 6.00E-05 1.844E+03
3 709.957 279.2 9.230E+02  3.296E+00 6.20E-05 6.731E+02
4 627.974 273.2 8.282E+02  1.899E+00 6.40E-05 2.453E+02
5 553.988 267.2 7.411E+02  9.995E-01 6.60E-05 8.987E+01
6 487.000 261.2 6.614E+02  6.100E-01 6.90E-05 6.337E+01
7 426.000 254.7 5.886E+02  3.696E-01 7.50E-05 5.890E+01
8 372.000 248.2 5.222E+02  2.099E-01 7.90E-05 6.069E+01
9 324.000 241.7 4.619E+02  1.199E-01 8.60E-05 5.818E+01

10 281.000 235.3 4.072E+02  6.396E-02 9.00E-05 5.675E+01
11 243.000 228.8 3.496E+02  2.199E-02 1.10E-04 5.317E+01
12 209.000 222.3 2.999E+02  5.997E-03 1.20E-04 5.585E+01
13 179.000 215.8 2.572E+02  1.438E-03 1.50E-04 5.156E+01
14 153.000 215.7 2.206E+02  7.684E-04 1.80E-04 5.048E+01
15 130.000 215.7 1.890E+02  4.440E-04 1.90E-04 4.744E+01
16 111.000 215.7 1.620E+02  3.680E-04 2.10E-04 4.511E+01
17 95.000 215.7 1.388E+02  3.054E-04 2.40E-04 4.458E+01
18 81.200 216.8 1.188E+02  2.556E-04 2.80E-04 4.314E+01
19 69.500 217.9 1.017E+02  2.211E-04 3.20E-04 3.634E+01
20 59.500 219.2 8.690E+01  1.941E-04 3.40E-04 2.667E+01
21 51.000 220.4 7.421E+01  1.730E-04 3.60E-04 1.933E+01
22 43.700 221.6 6.338E+01  1.538E-04 3.60E-04 1.455E+01
23 37.600 222.8 5.415E+01  1.408E-04 3.40E-04 1.113E+01
24 32.200 223.9 4.624E+01  1.246E-04 3.20E-04 8.826E+00
25 27.700 225.1 3.950E+01  1.120E-04 3.00E-04 7.429E+00
30 13.200 233.7 1.783E+01  5.752E-05 2.00E-04 2.238E+00
35 6.520 245.2 7.924E+00  2.852E-05 9.20E-05 5.890E-01
40 3.330 257.5 3.625E+00  1.429E-05 4.10E-05 1.550E-01
45 1.760 269.9 1.741E+00  7.700E-06 1.30E-05 4.082E-02
50 0.951 275.7 8.954E-01  4.111E-06 4.30E-06 1.078E-02  
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Chapter 3    

Atmospheric Optical Properties  
 
 
The optical properties(e.g, optical depth, single scattering albedo, phase function) of 

the medium are determined by the particles that compose the medium and their 
properties. If the molecular particles in the atmosphere are far smaller than the 
wavelength, its scattering pattern can be calculated by the Rayleigh scattering law. For 
spherical particles, their scattering behaviors depend on the refractive index and size 
parameter defined as follows, 

 

λ
πχ r2

=                                                 (3.1) 

 
Where r is the radius of sphere. In the following two sections, we discuss scattering 

theory for both small particles(Rayleigh scattering) and large particles(Mie scattering) 
in order to calculated the optical depth and phase function of atmospheric media. 

 
 

3.1 Rayleigh Scattering 
 
If χ is smaller than 0.01, then the Rayleigh scattering formulas are valid. The phase 

function for Rayleigh particles can be written as follows, 
 

))(cos)1()1((
)2(8

3)( 2 ΘΔ−+Δ+
Δ+

=Θ
π

P                       (3.2) 

 
where △ is the depolarization factor that gives the correction for the depolarization 
effect of scattering from anisotropic molecules.  

 
The optical depth of Rayleigh scattering can be calculated by MODTRAN described 

above. It also can be calculated by using an empirical formula proposed by the 2th 
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WMO Conference. It is shown as follows, 
 

)005.0074.0916.3(
00838.0*

26.1013
λ

λ
λτ

++−
=

P
mol                         (3.3) 

 
where P is atmosphere press and λ is wavelength in unit um. 
 
3.2 Aerosol Scattering 
 

If the particle size is very close to the length of the wavelength (i.e., 0.1<χ<50), such 
as the most aerosol particles in the atmosphere, their scattering behavior can be 
characterized by Mie theory. Here we only introduce phase function and optical depth 
of the particle by Mie scattering.  

 
The exact expression for the element of the amplitude scattering matrix for isotropic 

spherical particles illuminated by a linearly polarized plane electromagnetic wave are , 
 

  ∑
∞

=

Θ+Θ
+
+

=Θ
1

11 )))(cos()(cos((
)1(

12)(
n

nnnn ba
nn
ns πτ                     (3.4)  

 

∑
∞

=

Θ+Θ
+
+

=Θ
1

22 )))(cos()(cos((
)1(

12)(
n

nnnn ba
nn
ns τπ                     (3.5) 

 
0)()( 2112 =Θ=Θ ss                                              (3.6) 

 
where 

 

   
)()()()(
)()()()(

''

''

χξχψχξχψ
χψχψχψχψ

nnnn

nnnn
n mmm

mmm
a

−

−
=                            (3.7) 

 

)()()()(
)()()()(

''

''

χξχψχξχψ
χψχψχψχψ

nnnn

nnnn
n mmm

mmm
b

−

−
=                             (3.8) 

where im ηκ −=  is the refractive index of the spherical particle. The real part(κ ) is 
commonly called refractive index and the imaginary part(η ) repress the absorption of 
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aerosol particles.    
 

)(2/)( 2/1 χπχχψ += nn B                                      (3.9) 

 

)(2/)( 2/1 χπχχξ += nn H                                     (3.10) 

 
where )(2/1 χ+nB  and )(2/1 χ+nH  are the Bessel and Hankel functions. The angle 
functions are determined by the following formulas, 
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where  is the associated Legendre polynomial and ))(cos(1 ΘnP Θ  is the scattering 

angle. Then we can calculate some optical properties of particle according to Mie theory 
as follows, 

Extinction efficiency factor: 
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Scattering efficiency factor: 
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Phase function: 
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For particles with a size distribution f®, we can calculate the extinction and scattering 
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coefficients extσ , scaσ ,phase function )(ΘP , single scattering albedo ω  and the 
scattering optical depth of aerosol scaτ , 
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If the density of vertical atmospheric constituents are normalized 1, that is, 
 

∫
∞

=
z

dzz 1)(ρ                                                  (3.21) 

 

then the optical depth is equate to the average scattering coefficients scaσ  according to 

Eq(3.20).  
 

For a group of particles, we need to specify the particle size distribution function 
( ). In general, aerosol particle sizes are not identical. Their radiuses can be 
represented by many different functions, such as the power-law function, the modified 

)(rf

gamma distribution function, and the lognormal distribution function. In this thesis, we 
selected the power-law (Junge) function as the particle size distribution function, in 
which the computation of the particle size distribution is simplest. Letting  be 
the number of particles per unit volume in size range r to 

drrn )(
rr Δ+ , this distribution can 

be expressed as follow, 
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where a is a parameter between 2.5 to 4.0 for the natural aerosols and it is refered to 
Junge parameter in this thesis.  
 

Fig.3.1 and Fig3.2 show the calculations of some scattering coefficients scaσ  and 
phase functions )(ΘP . In Fig.3.1 we can find that scattering coefficient of the particles 
without the absorption (the imaginary part is 0) is stable to 2 as the particle radius 
becomes large. In Fig.3.2 we can find that the phase function of the large particles is 
extremely asymmetrical and is greatly larger in the forward scattering angles than that 
in the backward scattering angles. The smallest value of the phase function is about in 
the scattering angle 120゜.     
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Fig.3. 1  Aerosol Radius Dependence on Scattering Efficiency.  

 
 

 

 
Fig.3. 2  Phase Function of the Aerosol for the Several Refractive 

Indices (a=3.0). 
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3.3 Gaseous Absorption 
 
Although the absorption can be omitted in solving the radiative transfer equation in 

visible and near-infrared spectral region, it is necessary to know the absorption of 
atmospheric media. The absorption is caused mainly by atmospheric gases, such as 
water vapor, ozone, oxygen and aerosols. The aerosol absorption is accounted for by the 
single scattering albedo ω . If ω =1, the aerosols are not absorptive. For most 
multispectral sensors, we are concerned mainly with water vapor and ozone. From 
Table 2.1 and Fig.2.4 we can find that ozone is distributed mainly in the stratosphere 
(20~50km above the surface) but water vapor is in the boundary layer(the lowest is 
1~4km). Fig.3.3 show the impacts of water vapor content calculated from Modtran4.0. 
From this figure, we can see that the impacts are mainly in the longer wavelength. 
Fig.3.4 shows the impacts of ozone absorption. Fig.3.5. displays the impacts of CO2 
and other gases. It is clear that their impacts are mainly in the longer wavelength. The 
total atmospheric transmittance with the default values of the midlatitude summer in 
Modtran4.0 is shown in Fig.3.6. This also explains why the contribution of thermal 
emission processes to the source function almost can be omitted in solving the radiative 
transfer equation in visible and near-infrared spectral region.  
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Fig.3. 3  Transmittance of Atmosphere with Different Water Vapor 

Content. 

 
 

 

 
 

Fig.3. 4  Atmospheric Transmittance with Different Ozone 

Concentrations. 
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Fig.3. 5  Atmospheric Transmittance with CO2 

Concentrations .  

 
 
 

 
 
Fig.3. 6  Total Transmittance of a Standard Atmosphere in Modtran4.0. 
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Chapter 4    

Aureole Model 
 
 

The solar aureole is a region of enhanced brightness within about 20゜of the sun’s 
disk, due to the predominant forward-scattering effect of atmospheric aerosols. The 
solar aureole theory and its use for determining aerosol size distributions also has been 
discussed in detail by Deirmendjian(1959). Here, we calculated aureole irradiance using 
MS(multiply scattering) approximation proposed by M.A.Box et.al(1981). They 
assumed that the solar aureole irradiance was essentially due to SS(single scattering) by 
aerosols and molecules, and MS by molecules alone. Moreover, they also taken into 
account the effect of the surface reflectance in the computation of the aureole irradiance. 
P.Romanov et al.(1999) summarized an empirical formula of aureole irradiance based 
on the method proposed by M.A.Box et.al. It is shown as follows, 
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(4.1) 
 
where ),( λΘaurI  is the aureole irradiance measured at scattering angle Θ , 

),( λΘmolP  and ),( λΘaerP  are the Rayleigh and aerosol phase functions, respectively.  
)(λτ sca  is the aerosol scattering optical depth. ),,( Ams λΘΔ  is a term that represents 

the contribution of the effects of multiple scattering and reflection from the surface in 
solar aureole. It can be written as follows, 
 

                    (4.2) msmolmolAms tPPAA ),(),0(),(),,( 0 λλλτλ Θ+=ΘΔ

Where, 
     )1/(),( 32 ττλτ AAAA −= , 

))/(22.00.1/(34.1 2
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32
3 54.092.09.0 ssssss ττττ +−= , 
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25.0
0

2 /2.102.0 μττ ssssmst += , 

)()( λτλττ saRss +=                                            (4.3) 
 
A is the surface reflectance and ssτ  is the total scattering optical depth.  

 
Fig.4.1 shows a comparison of the calculated result between aureole irradiance from 

MS model and diffuse irradiance from the method of successive orders of scattering. 
The aureole irradiance was calculated by the aureole model described as above in an 
angle range of the forward scattering in which the azimuth angles are from 0゜to 30゜
and the zenith angle is the same as the solar zenith angle. Meanwhile, the diffuse 
irradiance was calculated in all azimuth angles from 0゜to 180゜by the method of the 
successive orders of scattering. In the forward scattering, we found that it was quite 
different of calculated results between the diffuse irradiance and the aureole irradiance. 
This is because that it exist not only scattering but also diffraction when light passes 
particle in the forward direction. It results in generating a region of enhanced brightness 
in forward direction. From now on, we removed the unrealistic part of diffuse irradiance, 
and remained the corresponding exact estimates of the aureole irradiance in the forward 
scattering.  
 

 
 

Fig.4. 1 Comparison the Aureole Irradiance from MS Model and Diffuse 

Irradiance from the Method of Successive Orders of Scattering. 
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Chapter 5    

Sherbrooke Model 
 
 

The estimation method for the refractive index and the size distribution of aerosol 
proposed by P.Romanovs of the Sherbrooke University based on linear inversion 
method is summarized as follows. The aerosol refractive index and size distribution are 
retrieved by minimizing the squared difference between the measured data and the 
simulated data of direct solar irradiance at surface (or aerosol optical depth), downward 
diffuse irradiance at surface and solar peripheral irradiance (aureole) based on the 
plane-parallel atmospheric model. This model also considered molecular Rayleigh 
scattering and Mie scattering which is dependence on the aerosol refractive index and 
size distribution.  

 
First, 

 
eHF += ϕ                                          (5.1) 

 
is defined where F is the vector of the deviations of the measured data, that is, 
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[*] denotes the measurement data. H is a Jacobian, and can be expressed as, 
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where  is Solar direct irradiance,  is Solar diffuse irradiance and  is dirI difI aurI
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aureole irradiance. , ,  individually indicate a factor of the matrix when the 

relation between the direct and diffuse solar irradiance and aureole, and the refractive 
index and size distribution of aerosol is represented as a matrix.  

'
dirI '

difI '
aurI

 
It is also expressed that )/exp( 00 μτ−= EE , where is the exoatmospheric solar 

irradiance. According to Eq. (2.19), we can replace the direct solar irradiance with 
aerosol optical depth. From now on, discussion will be focused on aerosol optical depth 
instead of the direct solar irradiance.  

0E

 
In the formulation of the inverse problem the verctor ϕ  is defined as follows, 
 

},,...{ 1 ηκνν ϕϕϕϕϕ m
T =  

*ssm −=νϕ  

ηκνν ,,,...,1 ms∈                                                 (5.4) 
 
where mνν ,...,1  represent size distribution of aerosol per air column. ηκ ,  are the real 
part and the imaginary part of the refractive index.  
 

Because the aerosol optical depth, diffuse solar irradiance and aureole can be 
measured on the ground, the Eq.(5.2) can be given. It is possible to estimate the 
unknown parameters of the refractive index and the size distribution of aerosol in the 
Eq.(5.3). However, because the number of the unknown parameters that represent the 
size distribution and the real part and the imaginary part of the refractive index is far 
more than the number of the measured data, it is an ill-posed problem. Hence, it can be 
solved with commonly used inversion solution based on minimizing norm of estimation 
error then, 

 
FHHH TT 1][ −=ϕ                                            (5.5) 

 
It is well known that the retrieval accuracy of the minimized norm method is not 

good enough because the number of the unknown parameters is more than it of the 
equations given. Since the influence of the imaginary part of the refractive index on 
aureole is so small that the accuracy improvement of the imaginary part of refractive 
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index can not be expected from this method. 
 
Assuming the aerosol size distribution as Junge distribution, according to Eq.(3.22), 

the size distribution can be represented as only one Junge parameter(a). Therefore, the 
Eq.(5.3) can be rewritten as,  
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The number of the unknown parameters is three which is totally identical to the 

number of the equations to be given, so that 
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The refractive index and Junge parameter can be retrieved simultaneously. 
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Chapter 6    

Sensitivity Analysis 
 
 
  To evaluate the retrieval accuracy of Sherbrooke model, we generate simulated data 
with the parameters of the refractive index and the size distribution. This simulated data 
is calculated based on the method of successive orders of scattering, aureole model and 
Mie theory described as above.  
 
6.1 Atmospheric Assumption and Simulated Data 

 
For generation of the simulated data of diffuse solar irradiance, aerosol optical depth 

and aureole, it is necessary to assume some atmospheric conditions as follows. 
 
Firstly, the particle was assumed as homogenous ball and the size distribution was a 

Junge distribution described as chapter 3. It also means that there are not particles in the 
atmosphere when particle radius is not in the range 0.01um~10um.  Secondly, we 
supposed atmosphere is homogeneous in horizontal direction but it is inhomogeneous in 
vertical direction, and the scale of vertical profiles were shown by Table 2.1. 
Wavelength was selected at 0.55um. The Rayleigh scattering optical depth were 0.0943 
by assuming a middle latitude summer model in Modtran4.0 with respect to 0.55 mμ  
wavelength. The absorption of the O3 and the water vapor were omitted. After that, we 
assumed surface as Lanbertian surface and set the surface reflectance is 0.0. the solar 
zenith angle was assumed as 30゜and the azimuth angle was 0゜. In addition, we 
assumed that aureole irradiance was calculated at the solar zenith angle 20゜and the 
azimuth angle 0゜. Meanwhile, the direction of the diffuse irradiance was assumed at 
zenith angle 10゜and azimuth angle 180゜. The relation of their angles is shown as 
Fig6.1. In order to generate simulated data of diffuse solar irradiance, aerosol optical 
depth and aureole, a typical plane-parallel based atmospheric model with the method of 
successive orders of scattering is used. For improving the retrieval accuracy, the optical 
depth increment of the adjacent layers is set as less than 0.0005. The layers of 
atmosphere are set in Table 6.1. 
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Fig.6. 1  The Direction of Solar, Diffuse Irradiance and Aureole. 

.   
 
 

Table 6. 1  Layered Structure of the Plane Parallel Atmosphere. 

Alatitude(km) Number of Layers Layer Hight(km) △τ
0-1 500 0.002 0.00048
1-2 200 0.005 0.00053
2-3 100 0.01 0.00046
3-6 100 0.03 0.00037
6-11 100 0.05 0.00025
11-17 100 0.06 0.00026
17-20 40 0.075 0.00026
20-23 20 0.15 0.00025
23-25 10 0.2 0.00017
25-30 10 0.5 0.00017
30-35 5 1 0.00019
35-50 5 5 0.0001  
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6.2 Sensitivity Analysis 
 

The real part and the imaginary part of aerosol refactive index and Junge parameters 
are set in the following ranges, 

 The range of the real part of the refractive index is 1.2~1.55. 
 The range of the imaginary part of the refractive index is 0.0~0.009, 
 The range of the Junge parameter is 2.8~3.15.   

 
Fig.6.2 shows the dependence of the measurement data on the each parameter, (a), (b) 

and (c) show the dependence of the optical depth of aerosol on the real part, the 
imaginary part and Junge parameter. (d), (e) and (f) show the dependence of the diffuse 
irradiance on the parameters. (g), (h) and (i) show the dependence of aureole irradiance 
on the parameters. It is obvious that the exoatmospheric solar irradiance is assumed to 
be 1 in the calculation so that the real values can be estimated if the actual 
exoatmospheric irradiance is considered. 
 
 To analyze the sensitivities for the size distribution and the refractive index, we 

define the sensitivity as follows, 
 

|)1//()(| 00 −−= xxRRS                                       (6.1) 
 

where R , represent the measurement data of direct, diffuse solar irradiance and 

aureole and, 

0R

x , are the parameters of the real part and the imaginary part of the 

refractive index as well as Junge parameter. Assuming that the relation between the 

measurement data and the parameters are linear as the parameters are near to the , 

we calculated the sensitivities of the measurement data on the parameters by Eq. (6.1). 
The results from the sensitivities of the measurement data are shown in Table 6.2. 

0x

0x
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(i) 
 

Fig.6. 2  The Dependence of the Measurement data on the parameters. (a), 

(b) and (c) show the dependence of the optical depth of aerosol on the real 

part, imaginary part and Junge parameter. (d), (e) and (f) show the 

dependence of the diffuse irradiance on their parameters. (g), (h) and (i) 

show the dependence of the aureole irradiance on their parameters. 

 
 
 

Table 6. 2  The Sensitivities of Diffuse Irradiance, Aerosol Optical Depth and 

Aureole with Respect to the Real Part and the Imaginary Part of Refractive Index 

as well as Junge Parameter.    

Real part Imaginary part Junge Parameter
Diffuse solar irradiance 0.0485 0.00252 0.289
Optical depth 0.422 0.00386 0.401
Aureole 0.0676 0.00186 0.620  
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From Fig.6.2, we can conclude some points as follows. Firstly, the aerosol optical 
depth is getting larger with increasing of the real part of refractive index, but getting 
smaller with increasing of the imaginary part and Junge parameter. Secondly, the 
aureole and diffuse irradiance increase in accordance as the real part increases. On the 
other hand, the aureole and the diffuse irradiance decrease as the imaginary part or 
Junge parameter decreases. The real part corresponds to the refractive index so that the 
aureole and the diffuse irradiance are large if the refraction gets large because scattering 
increases while the imaginary part corresponds to absorption so that the aureole and 
diffuse irradiance are small if the absorption becomes large. Finally, the aureole and 
diffuse irradiance can be considered to be getting smaller if Junge parameter becomes 
larger because it commonly implies a case of clear atmosphere.  

 
From table 6.2, we can find that there are great differences in the sensitivities of the 

measurement data on the parameters, the retrieval accuracies of the unknown 
parameters in which the sensitivities of the measurement data are high are excellent, but 
the other accuracies improvement can not be expected. The table shows that the lowest 
sensitivity of the measurement data to the imaginary part of refractive index results in 
relatively poor retrieval accuracy of the imaginary part of refractive index in Sherbrooke 
model. 
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Chapter 7    

Proposed Method(Arai-Ryo Model) 
 
 

Low retrieval accuracy of the imaginary part of refractive index in Sherbrooke model 
is due to small sensitivities of the measurement data to the imaginary part of refractive 
index. Meanwhile, it is also due to the linear relation between the measurement data and 
the unknown parameters in Sherbrooke model. To solve the problem, a multistage 
method (Arai-Ryo model) is proposed which is based on a combination with the 
nonlinear inversed method(the method of simulated annealing) and Sherbrooke model.  
 
 
7.1 Introduction of the Multistage Method 
 

Because the sensitivities of the measurement data to the imaginary part of refractive 
index are small so that it is difficult to obtain a high estimation accuracy for the 
imaginary part of refractive index while the sensitivities of the real part of refractive 
index and Junge parameter are good enough in Sherbrooke model. Furthermore, if the 
two parameters are set as constant, it could not be expected to improve the retrieval 
accuracy of the imaginary part of refractive index because of small freedoms. For this 
reason, a multistage method of which first we keep Junge parameter which is retrieved 
in advance by Sherbrooke model, then we estimate the real part and the imaginary part 
of refractive index. Here we refer to Arai-Ryo model. 

 
 That is, first, the unknown vector 
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is assumed while the measurement data with the constraint conditions are assumed as 
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follows, 
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The estimation errors are normalized and the solution is restricted in this way so that 

three of measurement data can be handled on the equality of status. In these calculation, 

 are set to be , , , respectively, in an empirical 

manner. In this iterative method, the simulated-annealing (Arai et al,1998) is used as the 
one of the nonlinear optimum method. We summarized this method at next section. 
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7.2 Method of Simulated Annealing 
 
  Simulated annealing is a global optimization method that distinguishes between 
different local optima. The algorithm is that an initial state is chosen at initial energy 
and temperature, holding temperature constant the initial state is perturbed with a 
perturbed function(i.e., generating function), and the change in energy is computed. The 
new state is accepted with a probability given by the Metropolis criteria(i.e., acceptance 
function). This processes is then repeated sufficient times to reach a balance expressed 
by a Boltzmann Distribution for the current temperature, then the temperature is 
decremented and the entire process repeated until the termination condition is satisfied, 
or a frozen state is achieved as temperature becomes 0.  
 

 
7.2.1 Boltzmann Distribution and Generating function 

 
In a certain temperature constant, the processes must be repeated sufficient times so 

that the energy reach a balance expressed by a Boltzmann Distribution, that is, 
 

ZTxFxQ /)/)(exp()( −=                                    (7.3) 

∑ −=
x

TxFZ )/)(exp(                                       (7.4) 

 
where x represents the variable of real part, imaginary part and Junge parameter. From 
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the Boltzmann distribution, we can find that the probability of low energy state is rather 
higher when the temperature becomes low. Furthermore, only the state probability of 
the lowest energy is not zero as the temperature reaches a limited point( ). Here, 
we introduced a generating function with a random numbers to generate next state as 
follows, 

0→T

                )( minmax
1 MMymm l

ll −+=+ ],[ maxmin MMm ∈               (7.5) 

]1)/11[()2/1( |12| −+−= −μμ jjl TTsigny   ]1,0[∈μ                         

where m is the vector of the real part and the imaginary part of refractive index, and 
 are their range. l represents generated times of new state and j is the 

number of temperature change. μ is random from 0 to 1. The reason for introducing this 
generating function is that the new state is not only perturbed randomly at the previous 

state in their range but also affected by the cooling temperature . The perturbed range 

of new state becomes smaller as the temperature decreases. Thus it can assure that the 
imaginary part with lower sensitivity reach a good precision by restricting the perturbed 
range of the real part with high sensitivity to nearly 0 as the temperature becomes 
extremely low. 

maxmin , MM

jT

 
  In order to satisfy Boltzmann distribution or reach a balance of energy at a 
temperature constant, we take acceptance times large enough to make the current 
movement stable. The acceptance times is acceptance numbers by acceptance function 
which is described as following section.   

    
7.2.2 Acceptance function 
   

Acceptance function confirms if a new state may replace the last state at a certain 
temperature. It is made by the Metropolis criteria. That is, 
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This also satisfies inhomogeneous Markov chain, and means that next state move 

is only decided by the last state and temperature. From Eq.(7.6), we also can find that 
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every state probability are high and similar as the temperature is high, and it  
approximate an average value. This means that there are same chances that the current 
state moves to the next state event if the next state may be a high energy state. On the 
other hand, the probability that move to high energy state is getting lower as 
temperature becomes low. When the temperature approximate zero, the probability of 
all states become zero except for the lowest energy state. Thus we can obtain the global 
optima as the temperature reduces to zero. 
 
  In this thesis, the number of the measurement data is 3, this also means that three 

energy costs( ) exist, by using the minmax method, we can 

rewrite the acceptance function as follows, 

aurdif EEE ΔΔΔ ,,τ

        

⎪
⎩

⎪
⎨

⎧

ΔΔΔ+
=Δ

)/),,(exp(1
1

1
),(

TEEEMax
TEA

aurdifτ

                (7.7) 
kk

kk

FF
FF

>
≤

+

+

1

1

        
 

7.2.3 Modified Annealing Temperature 
   

In general, annealing temperature can be set a monotonous decreased function in 
learning process such as, 
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T                                              (7.8) 

   
If we assume  as 1.0, we can illustrate the temperature curve in Fig.7.1. We can 

obtain the global minima theoretically when T reduce to 0, from Fig.7.1, but, it will 
consume an anomalous computing resources as temperature approach to 0. It is not 
suitable for a practical computation. 

0T
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Fig.7. 1  Iterative Times Dependence on the Annealing Temperature. 

 
 
 

 

 
Fig.7. 2  The Annealing Temperature on Arai-Ryo Model.  

 
 
 
In our paper, we use a decreasing oscillation function on the cooling schedule, 
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probability for reaching global optimum solution in an efficient way is get high enough. 
The proposed cooling function is as follows, 

 

2/))1cos(1(*92.0 1 ++= − jTT jj                                (7.9) 

 
The cooling schedule is a decreasing oscilation function shown in Fig.7.2. The 

coefficient of 0.92 in the Eq.(7.9), is optimized in an empirical manner. 
 

7.3 Algorithm of Arai-Ryo Model 
 
Combining the method of simulated annealing with Sherbrooke model to our 

proposed method, we give an algorithm with a multistage method as follows, 
 
1. Estimate Junge parameter using Sherbrooke model, and obtain higher accurate 

solution  *a
2. Set Junge parameter as , set annealing temperature T, initial 

solution ,Calculate the measurement data(aerosol optical depth, diffuse 

irradiance and aureole) and error( e ).  

*a

T}{ 00 ηκ

3. Generate new solution  using Eq(7.5), calculate their measurement 

data and error( ). According to the acceptance function Eq(7.7), confirm the state 
if to be accepted. This is, 

T
ll }{ ηκ

e

      

     If  =1 or ),( TEA Δ <)(lP  
)/),,(exp(1

1
TEEEMax aurdif ΔΔΔ+ τ

,  

then replace  with . T
ll }{ 11 −− ηκ T

ll }{ ηκ

     else remove . T
ll }{ ηκ

4. Update T. if T=0 or , , , exit ,else repeat to 4. 5
1 10−<e 5

2 10−<e 7
3 10−<e

The whole retrieval scheme based on the method of simulated annealing is simple 
and summarized in Fig.7.3. 
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Fig.7. 3  Schematic description of Arai-Ryo model. 
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Chapter 8    

Error Analysis 
 

 
      We will give an error analysis of the retrieval result in both models. In order to prove 

the precision of retrieval result in Arai-Ryo model, we also introduced Gauss-Seidel 
model which is a code to calculate the atmospheric radiative transfer developed by 
University of Arizona.  

 
8.1 Comparison of Retrieval Error Between Proposed Method and 

Sherbrooke Model 
 

In Fig.8.1, it shows that the real part of refractive index dependence of the diffuse 
solar irradiance calculated by Arai-Ryo model and by Gauss-Seidel 
model(Lenoble ,1985) as the imaginary part of refractive index was set 0.003 and 0.006. 
Junge parameter was unified on the retrieval of the diffuse solar irradiance by both 
models. With respect to the Gauss Seidel model, we calculate the diffuse solar 
irradiance using the real part and the imaginary part of refractive index as parameters by 
the method of successive orders of scattering. On the other hand, with respect to the 
retrieval of the diffuse solar irradiance by Arai-Ryo model, we gave a unified Junge 
parameter, a real part and an imaginary part of refractive index, and put their parameters 
into the constraint that the normalized retrieval accuracies of the measurement data of 
aureole irradiance, diffuse solar irradiance and aerosol optical depth.  

 
In Fig.8.1, it is found that the retrieval results of both models are reasonably 

consistent in the range of the real part of aerosol refractive index. The error of retrieval 
results between the two models are not more than 2%. In this thesis, the refractive index 
is set as 1.53-0.007i and Junge parameter is set as 3.00, which is represented a terrestrial 
aerosol type. The calculated accuracies (i.e. the difference between set values from 
Gauss-Seidel model and retrieved values from Arai-Ryo model) of the diffuse solar 
irradiance and aerosol optical depth are shown in Table 8.1.  
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Fig.8. 1  A Comparison of Diffuse Irradiance for Arai-Ryo and 

Gauss-Seidel Models.  

 
 

 

 

Table 8. 1  Calculated Errors on Diffuse irradiance and Optical Depth. 

Arai-Ryo Gauss-Seidel Estimation Error
Diffuse solar irradiance 0.05976 0.06011 0.58230%
Optical depth 0.181564 0.18157 0.00330%  

 
 
 
 
 
 
 
 

Table 8.2 shows the comparison of the retrieval errors between Arai-Ryo model 
and Sherbrooke model. It is found that the retrieval error of the real part of 
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refractive index from Arai-Ryo model is lower than it from Sherbrooke model while 
the estimation error of the imaginary part of refractive index in Arai-Ryo model is 
reduced a half compared to it from Sherbrooke model. 

 
Table 8. 2  Retieval Errors of Refractive Index and Junge Parameter. 

Designated Sherbrooke % Arai-Ryo %
Real Part 1.530 1.52964 0.023 1.52972 0.018
Imaginary Part 0.007 0.00583 16.640 0.00756 7.997
Junge parameter 3.000 2.988 0.407 2.988 0.407  
* % Denotes percent difference between designated and estimated values. 

 
The retrieval errors of the measurement data are shown in Table 8.3. The errors of the 

diffuse solar irradiance and the aerosol optical depth are larger much than the error of 
aureole irradiance in Sherbrooke model. On the other hand, it is also found that these 
errors decreased greatly and almost kept the same in Arai-Ryo model. It is due to the 
fact that the possible solutions are restricted with retrieved error norm in the Sherbrooke 
model while those are constricted in normalized retrieval error in Arai-Ryo model. 

 
Table 8. 3  Retieval Errors of Diffuse irradiance, Optical 

Depth and Aureole.  

Sherbrooke Arai-Ryo
Diffuse solar irradiance 2.001% 0.511%
Optical depth 1.919% 0.504%
Aureole 0.739% 0.512%  

 
 
8.2 Influence Due to Surface Reflectance and Convergence 
Process 
 

Until now the surface reflectance is assumed as 0, naturally, the retrieval accuracies 
are influenced since the multiple-scattering in the atmosphere and multiple-reflection 
from the surface become large if the surface reflectance increases. Assuming Junge 
parameter to be 3.0, the aerosol refractive index to be 1.53-0.007i, influence of the 
surface reflectance is evaluated at Table 8.4. It is found that the retrieval accuracies are 
almost similar as the surface reflectance increases in Arai-Ryo model. 
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Table 8. 4 Influence Due to Surface Reflectance on Retieval Errors of 

Diffuse Irradiance, Optical Depth and Aureole 

Surface reflectance 0.0 0.1 0.2
Diffuse solar irradiance 0.530% 0.511% 0.511%
Optical depth 0.528% 0.504% 0.509%
Aureole 0.530% 0.512% 0.511%  

 
Naturally, the time required for the convergence in the Arai-Ryo model is far more 

than that of Sherbrooke model. A comparison is shown in Table 8.5. 
 
 

Table 8. 5  A Comparison of Elapsed Time 

Sherbrooke Arai-Ryo
Elapsed time(hour) 0.03 55.30  

*CPU=1GHz, Memory=128M 
 

 
Fig.8.2 shows the convergence process for Arai-Ryo model, we can find that the real 

part becomes stable, but the imaginary part perturbs a quite large range as the 
temperature becomes extremely low. This is because the sensitivities of the 
measurement data to the imaginary part are lower much than that to the real part. Thus it 
can assure that the imaginary part with lower sensitivity reach a good precision by 
restricting the perturbed range of the real part with high sensitivity to nearly 0 as the 
temperature becomes extremely low. The solutions tend to local optima as the 
temperature reaches a lowest value. In addition, the direct irradiance perturbs larger than 
the aureole and diffuse irradiance during the learning process since the sensitivity of the 
direct irradiance to the real part is larger than that of the other two data. We obtain the 
best solutions as acceptence times is 1592.     
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Fig.8. 2  A Example of Convergence Process for Arai-Ryo Model. 
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Chapter 9    

Conclusion 
 
 
It is found that the retrieval errors of the real part and the imaginary part of refractive 

index and Junge parameter are 0.0299%, 16.64%, 0.0406%, respectively, for the 
Sherbrooke model. The retrieval precision of the imaginary part of the refractive index 
is extremely low than that of the real part and the Junge parameter. Through a sensitivity 
analysis we find that it is caused by the fact that the sensitivities of the measurement 
data are greatly lower to the imaginary part of refractive index than the other two 
parameters. On the other hand, comparison to the retrieval errors from Sherbrooke 
model, it is found that the error of the real part of refractive index becomes small while 
the error of the imaginary part is reduced more than a half in the Arai-Ryo model. It is 
due to the fact that the relation between the unknown parameters (the refractive index 
and the size distribution) and the measurement data (the diffuse solar irradiance, aerosol 
optical depth and aureole) is not linear.  

 
Additionally, the three measurement data can be handled on equality status because 

the solution lei on constraints with the normalized retrieval errors of the measurement 
data in Arai-Ryo model. Meanwhile, because these errors are not normalized in 
Sherbrooke model so that it is found that the retrieval error of the diffuse solar 
irradiance is relatively large while those errors of the aerosol optical depth and the 
aureole are smaller. Furthermore, it is also found that the influence due to the surface 
reflectance on the retrieval accuracies for Arai-Ryo model is almost the same. Even if 
the surface reflectance is 0.2, the retrieval accuracies of diffuse solar irradiance, aerosol 
optical depth and aureole for the Arai-Ryo model are around 0.5% and are still superior 
to that for the Sherbrooke model which is about 2.0%. 
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